轻型货车制动系统设计说明书

轻型货车制动系统设计说明书
轻型货车制动系统设计说明书

摘要

制动系统是汽车中最重要的系统之一。因为随着高速公路的不断发展,汽车的车速将越来越高,对制动系的工作可靠性要求日益提高,制动系工作可靠的汽车能保证行驶的安全性。由此可见,本次制动系统设计具有实际意义。

本次设计主要是对轻型货车制动系统结构进行分析的基础上,根据对轻型货车制动系统的要求,设计出合理的符合国家标准和行业标准的制动系统。

首先制动系统设计是根据整车主要参数和相关车型,制定出制动系统的结构方案,其次设计计算确定前、后鼓式制动器、制动主缸的主要尺寸和结构形式等。最后利用计算机辅助设计绘制出了前、后制动器装配图、制动主缸装配图、制动管路布置图。最终对设计出的制动系统的各项指标进行评价分析。另外在设计的同时考虑了其结构简单、工作可靠、成本低等因素。结果表明设计出的制动系统是合理的、符合国家标准的。

关键词:轻型货车;制动;鼓式制动器;制动主缸;液压系统.

Abstract

Braking system is one of the most important system in the automotive . because of the continuous development with the highway. The car will become more and more high-speed, braking system on the work of the increasing reliability requirements,Brake work of a reliable car,guarantee the safety of travelling,This shows that, The braking system design of practical significance.

The braking system is one of important system of active safety. Based on the structural analysis and the design requirements of intermediate car’s braking system, a braking system design is performed in this thesis, according to the national and professional standards.

First through analyzing the main parameters of the entire vehicle, the braking system design starts from determination of the structure scheme. SecondlyCalculating and determining the main dimension and structural type of the front、rear drum brake,brake master cylinder ans so on,Finally use of computer-aided design drawing draw the engineering drawings of the front and rear brakes, the master brake cylinder, the diagram of the brake pipelines. Furthermore, each target of the designed system is analyzed for checking whether it meets the requirements. some factors are considered in this thesis, such as simple structure, low costs, and environmental protection, etc. The result shows that the design is reasonable and accurate, comparing with the related national standards.

Key words:light truck;brake;drum brake;master cylinder;hydraulic pressure system

目录

第1章绪论 (1)

1.1 本次制动系统设计的意义 (2)

1.2 本次制动系统应达到的目标 (2)

1.3 本次制动系统设计内容 (2)

1.4 汽车制动系统的组成 (3)

1.5制动系统类型 (3)

1.6 制动系工作原理 (4)

第2章汽车制动系统方案确定 (5)

2.1 汽车制动器形式的选择 (5)

2.2 鼓式制动器的优点及其分类 (6)

2.3 盘式制动器的缺点 (7)

2.4 制动驱动机构的结构形式 (8)

2.4.1简单制动系 (8)

2.4.2动力制动系 (9)

2.4.3伺服制动系 (9)

2.5 制动管路的形式选择 (10)

2.6 液压制动主缸方案的设计 (11)

第3章制动系统主要参数的确定 (13)

3.1 轻型货车主要技术参数 (13)

?的确定 (13)

3.2 同步附着系数的

3.3 前、后轮制动力分配系数β的确定 (14)

3.4 鼓式制动器主要参数的确定 (14)

3.5 制动器制动力矩的确定 (16)

3.6 制动器制动因数计算 (17)

3.7 鼓式制动器零部件的结构设计 (18)

第4章液压制动驱动机构的设计计算 (22)

4.1制动轮缸直径d的确定 (22)

的计算 (22)

4.2 制动主缸直径d

F (22)

4.3 制动踏板力

P

4.4 制动踏板工作行程Sp (23)

第5章制动性能分析 (24)

5.1 制动性能评价指标 (24)

5.2 制动效能 (24)

5.3 制动效能的恒定性 (24)

5.4 制动时汽车的方向稳定性 (25)

5.5 前、后制动器制动力分配 (25)

5.5.1 地面对前、后车轮的法向反作用力 (25)

5.5.2 理想的前、后制动器制动力分配曲线 (26)

5.5.3 实际的前、后制动器制动力分配曲线 (26)

5.6 制动减速度j (27)

5.7 制动距离S (27)

5.8 摩擦衬片(衬块)的磨损特性计算 (28)

5.9 汽车能够停留在极限上下坡角度计算 (29)

第6章总结 (30)

参考文献 (31)

致谢 (32)

附录1 (33)

附录2 (40)

第1章绪论

汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。所以重视发展汽车工业,有着深远的现实意义。

随着我国经济的发展,尤其我国对外贸易的不断扩大,汽车工业受到国外同行业的强烈竞争,而我国汽车工业起步比较晚,生成技术水平较低,因而改进和提高我国的汽车性能及其机构是一个迫在眉睫的问题,这关系到我国汽车工业的生存与发展的大事。

汽车的行驶速度是汽车的一个重要性能参数。尽可能提高汽车的行驶速度,是提高运输生产率的主要技术措施之一,但必须保证行驶的安全性为前提。因此在道路宽阔平坦,人流和车流又较小的情况下,汽车可以用高速度行驶,而在转向或者行驶在不平路面或两车交会时,都必须降低车速,特别是在遇到障碍物,或者碰撞行人或其他车辆危险时,更需要在尽可能短的距离内将车速降低到最低,甚至为零。如果汽车不具备这一性能,高速行驶就不可能实现。

汽车在下长坡时,在重力作用下,有不断加速到危险程度的倾向,此时应当将车速限制在一定的安全性以内,并保持稳定。

此外对已停驶的汽车,应使其可靠的驻留在原地不动。

上述使行驶中的汽车减速甚至行车,使下坡行驶的汽车速度保持稳定,以及使已静止的汽车保持不动,这些作用叫做制动。保证这些性能的系统叫制动系统因此对汽车制动系统的研究,开发是汽车工业的一个非常重要的课题,如何改善汽车的制动效能,改善制动器的结构使一个重要环节。

本人所设计的车型为五十铃轻型货车制动系统,在结构上做了一些改进,采用了自动调节间隙结构,即自动调节制动器摩擦片与制动鼓的间隙,来保证在摩擦片磨损的情况下,汽车的制动效果仍然符合设计要求。

由于本人缺乏设计经验,及实践经验不足,在设计过程中会出现不少错误,希望各位老师给予指教。

1.1 本次制动系统设计的意义

在交通运输中,公路运输日益成为主要的交通运输形式。高速公路的快速发展使汽车运输速度加快。但是,在提高车速的同时,汽车应能够及时地制动,减速,停车。特别是在人流、车流比较大的道路上行车,安全行驶是最重要的前提条件。对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以便驾驶员能根据道路和交通情况,利用装在汽车上的一系列专门装置,迫使路面在汽车车轮上施加一定的与汽车行驶方向相反的外力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力称为制动力,用于产生制动力的一系列专门装置称为制动系统。

制动系统的作用:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下稳定驻车;使下坡行驶的汽车速度保持稳定。制动系直接影响着汽车行驶的安全性和停车的可靠性。

本设计通过合理的结构分析,制动器形式的确定,并进行了科学合理的计算及结构设计,缩短了制动距离、保证制动系统具有良好的制动效能的热稳定性与水稳定性以及良好的操纵稳定性,对保证制动系统工作可靠具有理论与实际意义。

1.2 本次制动系统应达到的目标

1)具有良好的制动效能

2)具有良好的制动效能的水稳定性

3)制动时汽车操纵稳定性好

4)制动效能的热稳定性好

5)摩擦副磨损后,应有能消除因磨损而产生间隙的机构,且调整间隙工作容易,设置自动调整间隙机构

1.3 本次制动系统设计内容

1 前后制动器设计

1)参数计算(同步附着系数、制动器制动力矩、制动器效能因数、踏板力、温升、制动主缸轮缸直径等)

2)结构设计

2 制动主缸设计

主缸参数计算、结构设计

3 制动管路布置设计,实现双管路布置

4 应用MATLAB进行制动力分配分析

基本要求:

1)前后鼓式制动器2)AUTOCAD或CAXA画图

1.4 汽车制动系统的组成

1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中产生制动能量的部分称为制动能源。人的肌体也可作为制动能源。

2)控制装置——包括产生制动动作和控制制动效果的各种部件,如制动踏板、制动阀等。

3)传动装置——包括将制动能量传输到制动器的各个部件,如制动主缸和制动轮缸等。

4)制动器——产生阻碍车辆的运动或运动趋势的力的部件。

较为完善的制动系统还具有制动力调节装置、报警装置、压力保护装置等附加装置。

1.5制动系统类型

1)按制动系统的功用分类

(1)行车制动系统——使行驶中的汽车减低速度甚至停车的一套专门装置。

(2)驻车制动系统——使已停驶的汽车驻留原地不动的一套装置。

(3)第二制动系统——在行车制动系统失效的情况下保证汽车仍能实现减速或停车的一套装置。

(4)辅助制动系统——在汽车下长坡时用以稳定车速的一套装置。

2)按制动系统的制动能源分类

(1)人力制动系统——以驾驶员的肌体作为唯一制动能源的制动系统。

(2)动力制动系统——完全依靠发动机动力转化成的气压或液压进行制动的制动系统。

(3)伺服制动系统——兼用人力和发动机动力进行制动的制动系统。

按照制动能量的传输方式,制动系统又可分为机械式、液压式、气压式和电磁式等。同时采用两种传能方式的制动系统可称为组合式制动系统。

1.6 制动系工作原理

一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上又装有一般是非金属的摩擦片。制动底板上还装有液压制动轮缸,用油管与装在车架上的液压制动主缸相连通。主缸中的活塞可由驾驶员通过制动踏板来操纵。

制动系统不工作时,制动鼓的内圆面与制动蹄摩擦片的外圆面之间保持由一定的间隙,使车轮和制动鼓可以自由转动。制动系统看图1-6

要使行驶中的汽车减速,驾驶员应踩下制动踏板,通过推杆和主缸活塞,使主缸内的油液在一定压力下流入轮缸,并通过两个轮缸活塞推动两制动蹄绕支撑销转动,上端向两边分开而以其摩擦片压紧在制动鼓的内圆面上。这样,不旋转的制动蹄就对旋转的制动鼓作用一个摩擦力矩,其方向与车轮行驶方向相反。制动鼓将该力矩传到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的圆周力,同时路面也对车轮作用着一个向后的反作用力,即制动力。制动力由车轮经过车桥和悬架传给车架及车身,迫使整个汽车产生一定的减速度,制动力越大,则汽车减速度越大。当放开制动踏板时,复位弹簧将制动蹄拉回复位,摩擦力矩和制动力消失,制动作用即行终止。

1-6制动系统图

第2章汽车制动系统方案确定

汽车制动系统的设计是一项综合性、系统性的设计,它涉及到制动系统的整体设计和零件设计,设计要求中既体现了对整体的要求,又有对各零件各自性能的要求。

对制动系整体性能,除了上面所说的以外,还有使用性能良好,故障少等要求。对零部件除了能实现各自功能外,还要求它与其他组装起来的配合能力,协作能力良好,因此,在制动系统设计前,应先提出制动系统综合设计方案。

2.1 汽车制动器形式的选择

1)制动器按其直接作用对象的不同可分为车轮制动器和中央制动器。前者的旋转元件固定装在车轮或半轴上,即制动力矩直接作用在两侧车轮上。后者的制动力矩必须经过驱动桥在分配到两侧车轮上。车轮制动器一般用于行车制动,也有兼用第二制动和驻车制动的。中央制动器用于驻车制动,其优点式制动力矩须经过驱动轴放大后传到车轮。因而容易满足操纵手力小的要求,但在应急制动时往往造成传动轴超载。现在,由于车速高,对应急制动的可靠性要求更严格。在中、高级轿车及总重在15T以下的货车上,多在后轮制动器上附加手动机械驱动机构,也不再设置中央制动器。

2)制动器所用张开式装置的型式可分为液压轮缸、非平衡式凸轮式、平衡凸轮式、楔块式机械张开机构

3)制动系按制动能量的传输方式制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。本次设计的轻型货车采用的是液压式制动系统。

4)一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器就其摩擦副的结构型式可分为鼓式和盘式带式三大类。他们的区别在于前者的摩擦副中的旋转元件为制动鼓,其圆柱面为工作表面;后者的摩擦副中的旋转元件为圆盘壮制动盘,其端面为工作表面。带式之用做中央制动器。

本次设计轻型货车制动器为双鼓式液压轮缸式制动器

2.2 鼓式制动器的优点及其分类

鼓式制动器具有自刹作用:由于刹车时令蹄片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度,刹车时蹄片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别只有大型车采用气动辅助,而小型车采用真空辅助来帮助刹车。鼓式制动器制造技术要求比较低,因此制造成本要比碟式刹车低。所以本次设计所采用的制动器为鼓式制动器。

鼓式制动器有内张型和外束型两种。前者的制动鼓以内圆为工作表面,应用广泛。后者制动鼓的工作表面则是外圆柱面,应用较少。

鼓式制动器按蹄的类型还分为领从蹄式制动器如图a,双领蹄式如图b,双向双领蹄式如图c,双从蹄式如图d,单向自增力式如图e,双向自增力式制动器如图f。比较各种制动器的效能因数于摩擦系数可知:增力式制动器效能最高、双领蹄次之、领从蹄又次之、而双从蹄效能最低。但若就效能因数稳定性而言,名词排列正好相反,双从蹄最好,增力式最差。

双领蹄式制动器正向效能相当高,但倒车时则变成双从蹄式,效能大降。很多中级轿车的前轮制动器采用双领蹄式,这是由于这类汽车前进制动时前轴的动轴荷及附着力大于后轴,倒车制动时则相反,正与这种制动器的特点相适应。

双向双领蹄式制动器在前进和倒退制动时效能不变,故广泛应用于中,轻型货车及部分轿车的前后轮。但用作后轮制动器时需另设中央制动器。

双领蹄式制动器荷双向双领蹄式制动器中有两个轮缸。双领蹄式制动器两蹄片各有其固定支点,并用各具有一个活塞的两个轮缸张开蹄片。双向双领蹄式制动器,两蹄片浮动。用各有两个活塞的轮缸张开双蹄片。与双领蹄式制动器比较,双向双领蹄式制动器的特点式制动鼓无论朝哪个方向转动,制动效能都不变。

增力式制动器的两蹄片之间相互连接,两蹄都式领蹄,次领蹄的轮缸张开后的作用效果很西欧啊或次领蹄的轮缸不存在张开。然而由主领蹄的自行增势作用所造成且比主领蹄张开力后大得多的支点反力F传到次领蹄的下端,成为次领蹄的张开力,采用增力式制动器后,及时制动驱动机构中不用伺服装置,也可以借很西欧啊的踏板力得到很大的制动力矩。但因其效能大不稳定且效能因数太高容易发生制动自馈,故设计时应妥善选择几何参数,吧效能因数限制在一定程度,且需选用摩擦性能稳定的摩擦片。

单向增力时制动器在倒车制动时效能大为降低,之有少数轻,中型货车和轿

车用作前轮制动器。

此外,双领蹄式制动器,由于其结构呈中心对称,因而领蹄对鼓作用的合力恰好相互平行,属于平衡式制动器。领从蹄与其他型式制动器均不能保证这种平衡,是非平衡式制动器。非平衡式制动器将对轮毂轴成造成附加径向载荷而且领蹄或次领蹄摩擦片表面单位压力大于从蹄磨损较严重,为使衬片寿命均衡可将从蹄式的衬片包角适当减小。

由于本次设计的是轻型货车制动器,汽车在制动时轴荷要前移原理前轮的制动力应大于后轮,如果后轮制动力大于前轮且先制动于后轮即后轮先抱死时汽车将出现制动跑偏或侧滑现象,这将极易造成严重的交通事故!所以本次设计前轮选用双增力式鼓式制动器,后轮选用领从蹄式鼓式制动器。

2.3 盘式制动器的缺点

盘式制动器的缺点:

1)效能较低。故用于汽车制动时所需制动促动管路压力较高。一般用于伺服装置

2)难以完全防止尘污和锈蚀

3)兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂。

盘式制动器又称为碟式制动器,这种制动器兼作驻车制动器时,所需附加的手驱动机构比较复杂,摩擦片的耗损量较大,成本贵,衬块工作面小,磨损快,使用寿命短,需要用高材质的衬块,需要的制动液压高,必须要有助力装置的车辆才能使用,所以只能适用于轿车和一些微型车上,不适合用于货车上,因此我们选用鼓式制动器。

2.4 制动驱动机构的结构形式

制动驱动机构用于将驾驶员或其它力源的力传给制动器,使之产生需要的制动转矩。

制动系统工作的可靠性在很大程度上取决于制动驱动机构的结构和性能。所以首先保证制动驱动机构工作可靠性;其次是制动力的产生和撤除都应尽可能快,充分发挥汽车的制动性能;再次是制动驱动机构操纵轻便省力;最后是加在踏板上的力和踩下踏板的距离应该与制动器中产生的制动力矩有一定的比例关系。保证汽车在最理想的情况下产生制动力矩。

根据制动力源的不同,制动驱动机构一般可以分为简单制动、动力制动和伺服制动三大类。

2.4.1简单制动系

简单制动系即人力制动系,是单靠驾驶员作用于制动踏板上或手柄上的力作为制动力源,而力的传递方式又有机械式和液压式两种。

机械式的靠杆系或钢丝绳传力,结构简单,造价低廉,工作可靠,但机械效率低,传动比小,润滑点多,且难以保证前后轴制动力的正确比例和左右轮制动力的均衡所以在汽车的行车制动装置中已被淘汰。因为这种方式结构简单、经济性好,工作可靠等优点广泛地应用于中,小型汽车的驻车制动器中。

液压制动用于行车制动装置。制动的优点是作用滞后时间短(0.1s~0.3s),工作压力大(可达10MPa~12MPa),缸径尺寸小,可以安装在制动器内部作为制动蹄的张开机构或制动块的压紧机构,而不需要制动臂等传动件。这样就减少了非黄载质量。液压制动也有器缺点。主要是过度受热后会有一部分制动液液化,在管路中形成气泡,严重影响液压传输,使制动系效能降低,甚至完全失效,液压制动广泛应用在轿车,轻型货车及一部分中型货车上。

2.4.2动力制动系

动力制动即利用发动机的动力转化而成,并表现为气压或液压形式的势能作为汽车制动的全部力源,驾驶员施加于踏板或手柄上的力仅用于回路中的控制元件的操纵。从而可式踏板力较小,同时又又适当的踏板行程。

(1)气压制动系

气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3s~0.9s),因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件——继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为0.5MPa~0.7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。

(2)气顶液式制动系

气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。它兼有液压制动和气压制动的主要优点。由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为9t—11t的中型汽车上也有所采用。

(3)全液压动力制动系

全液压动力制动系除了具有一般液压制动系统的优点外,还具有操纵轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。但其结构复杂、精密件多,对系统的密封性要求也较高,并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上。

2.4.3伺服制动系

伺服制动系是在人力液压制动系中增加由其他能源提供的助力装置,使人力与动力并用。在正常情况下,其输出工作压力主要由动力伺服系统产生,而在伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。因此,在中级以上的轿车及轻、中型客、货车上得到了广泛的应用。

按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服

制动系之分。其伺服能源分别为真空能(负气压能)、气压能和液压能。

综上所述,经过比较与分析,本次设计轻型货车采用液压传动。

2.5 制动管路的形式选择

为了提高制动驱动机构的工作可靠性,保证行车安全,制动管路一般都采用分立系统,即全车的所有行车制动器的液压或气压管路分属于两个或更多的相互隔绝的回路。这样,即使其中一个回路失效后,另一个回路仍然可以起作用。一般多设计成双回路。

下图为双轴汽车的液压式制动驱动机构的双回路系统的5种分路方案图。选择分路方案时,主要是考虑其制动效能的损失程度、制动力的不对称情况和回路系统的复杂程度等。

(a)(b)(c)(d)(e)

图2—2双轴汽车液压双回路系统的5种分路方案图

1—双腔制动主缸2—双回路系统的一个回路3—双回路系统的另一分路图2—2(a)为一轴对一轴II型,前轴制动器与后桥制动器各用一各回路。其特点是管路布置最为简单,可与传统的单轮缸鼓式制动器相配合使用,成本较低,目前在各类汽车特别使商用车上用的最广泛。对于这种形式,若后轮制动回路失效,则一旦前轮抱死即极易丧失转弯制动能力。对于采用前轮驱动因而前轮制动强于后轮的乘用车,当前制动回路失效而单用后桥制动时,制动力将严重不足,并且,若后桥负荷小于前轴负荷,则踏板力过大时易使后桥车轮抱死而汽车侧滑。

图2—2(b)X型的结构也很简单,直行制动时任一回路失效,剩余的总制动力都能保持正常值的50%,但是,一旦某一管路破损造成制动力不对称,此时

前轮超制动力大的一边绕主销转动,使汽车丧失稳定性。因此这种方案适用于主销偏移距为(达20mm)的汽车上,这时,不平衡的制动力使车轮反向转动,改善了汽车稳定性。

图2—3(c)一轴版对半轴HI型。两侧前制动器的半数轮缸和全部后轮制动器轮缸属一个回路,其余的前轮缸属另一回路。

图2—4(d)半轴一轮对半轴一轮LL型。两个回路分别对两侧前轮制动器的半数轮缸和一个后轮制动器器作用。

图2—5(e)双半轴对双半轴HH型。每个回路均只对每个前、后制动器的半数轮缸器作用。这种形式的双回路制动效能最好。

HI,LL,HH型的结构均比较复杂。LL型与HH型在任一回路失效时,前、后制动力的比值均与正常情况下相同,剩余的总制动力可达到正常值的50%左右。HI型单用一轴半回路时剩余制动力较大,但此时与LL型一样,紧急制动情况下后轮极易先抱死。

综合各个方面的因素和比较各回路形式的优缺点。本次设计选择了半轴一轮对半轴一轮(LL)型回路。

2.6 液压制动主缸方案的设计

为了提高汽车的行驶安全性,现代汽车的行车制动装置均采用双回路制动系统。双回路制动系统的制动主缸为串列双腔制动主缸,因此用与单回路制动系的单腔制动主缸已被淘汰。制动主缸由灰铸铁制造,也可以采用低碳钢冷挤成形;活塞可用灰铸铁,铝合金或中碳钢制造。

主缸的作用是将驾驶员踩到制动踏板上的压力传递到四个车轮的制动器以使汽车停车。主缸将驾驶员在踏板上的机械压力转变为液压力,在车轮制动器处液压力转(变为机械力。主缸利用液体不可压缩原理,将驾驶员的踏板运动传送到车轮制动器。主缸由储液罐和主缸体构成。储液罐提供主缸工作的制动液。现在的所有储液罐都是分体设计,即两个独立的活塞有两个独立的储液区域。分体设计分别为前轮和后轮,或一个前轮一个后轮的液压系统供液,以防一个液压系统失效影响另一个液压系统。本次设计采用的制动主缸为串列双腔制动主缸。

如图所示,该主缸相当于两个单腔制动主缸串联在一起而构成。储蓄罐中的油经每一腔的进油螺栓和各自旁通孔、补偿孔流入主缸的前、后腔。在主缸前、后工作腔内产生的油压,分别经各自得出油阀和各自的管路传到前、后制动器的轮缸。

主缸不制动时,前、后两工作腔内的活塞头部与皮碗正好位于前、后腔内各

自得旁通孔和补偿孔之间。

当踩下制动踏板时,踏板传动机构通过制动推杆15推动后腔活塞12前移,到皮碗掩盖住旁通孔后,此腔油压升高。在液压和后腔弹簧力的作用下,推动前腔活塞7前移,前腔压力也随之升高。当继续踩下制动踏板时,前、后腔的液压继续提高,使前、后制动器制动。

撤出踏板力后,制动踏板机构、主缸前、后腔活塞和轮缸活塞在各自的回位弹簧作用下回位,管路中的制动液在压力作用下推开回油阀流回主缸,于是解除制动。

若与前腔连接的制动管路损坏漏油时,则踩下制动踏板时,只有后腔中能建立液压,前腔中无压力。此时在液压差作用下,前腔活塞7迅速前移到活塞前端顶到主缸缸体上。此后,后缸工作腔中的液压方能升高到制动所需的值。若与后腔连接的制动管路损坏漏油时,则踩下制动踏板时,起先只有后缸活塞12前移,而不能推动前缸活塞7,因后缸工作腔中不能建立液压。但在后腔活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。

由此可见,采用这种主缸的双回路液压制动系,当制动系统中任一回路失效时,串联双腔制动主缸的另一腔仍能工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大提高了工作的可靠性。

第3章 制动系统主要参数的确定

3.1 轻型货车主要技术参数

设计参数:

整车质量:满载:3600kg ,空载:1750kg

质心位置:a=1.40m b=1.30m hg=0.85m(空载)hg=0.83m (满载)

轴距:L=2.7m

轮距: B=1.6m

轮胎规格:245/70R16 r e =16×25.4+245×0.7×2=749.4mm

根据汽车实用技术手册车轮滚动半径r=750+5-(245+5)×2=255mm

轮辋直径为16×25.4=406mm

汽车最高行驶速度:V m ax a =150km/h

3.2 同步附着系数的0?的确定

轿车制动制动力分配系数β采用恒定值得设计方法。

欲使汽车制动时的总制动力和减速度达到最大值,应使前、后轮有可能被制动同步抱死滑移,这时各轴理想制动力关系为

F 1μ+F 2μ=?G

F 1μ/ F 2μ=(L 2-?

G )/(L 1-?hg )

式中:F 1μ:前轴车轮的制动器制动力

F 2μ:后轴车轮的制动器制动力

G :汽车重力

L 1:汽车质心至前轴中心线的距离

L 2:汽车质心至后轴中心线的距离

hg :汽车质心高度

由上式可知,前后轮同时抱死时前、后轮制动器制动力是?的函数,如图所示,图上的I 曲线即为轿车的前后轮同时抱死的前后轮制动器制动力的分配曲线

(理想的前后轮制动器制动力分配曲线)。如果汽车前后轮制动器制动力能按I 曲线的要求匹配,则能保证汽车在不同的附着系数的路面制动时,前后轮同时抱死。

然而,目前大多数汽车的前后制动器制动力之比为定值。常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动力分配系数,并以符号β 来表示,即

β= F 1μ/ F 2μ

当汽车在不同?值的路面上制动时,可能有以下3种情况。

1)当?<0?时,β线在I 线下方,制动时总是前轮先抱死。这是一种稳定工况,但在制动时汽车有可能丧失转向能力,附着条件没有充分利用。

2)当?>0?时,β线在I 线上方,制动时总是后轮先抱死,因而容易发生后轴侧滑使汽车失去方向稳定性。

3)当?=0?时,前、后轮同时抱死,是一种稳定的工况,但也失去转向能力。 前、后制动器的制动器制动力分配系数影响到汽车制动时方向稳定性和附着条件利用程度。要确定β值首先要选取同步附着系数0?。

3.3 前、后轮制动力分配系数β的确定由于我国道路条件还较差,车速也不可能设计太高,推荐同步系数的选择轿车0?=0.55~0.8一般货车取0?=0.45-0.7 本次轻型货车设计取取0?=0.7 取?=0.6

3.3 前、后轮制动力分配系数β的确定

根据公式:制动力分配系数β=(b+0??hg )/L

得:β=(1300+0.7?830)/2700=0.69

式中 0?:同步附着系数

b :汽车重心至后轴中心线的距离

L :轴距

hg :汽车质心高度

3.4 鼓式制动器主要参数的确定

1)制动鼓直径D

轿车D/Dr=0.64~0.74 货车D/Dr=0.70~0.83

这里选D/Dr=320/16×25.4=0.78mm R=160mm

由于给定轻型货车的轮胎规格为245/70R16

所以,前后轮制动鼓直径D=320mm

2)摩擦衬片宽度b 和 包角θ

b/D=0.18 b/320=0.18 b=57.6 取60mm

制动鼓半径R 确定后,摩擦衬片的宽度b 和包角θ便决定了衬片的摩擦面积Ap ,Ap 越大则制动时所受单位面积的正压力和能量负荷越小,从而磨损特性越好Ap 随汽车总重而增加,给定的轻型总重量Ga=3600×9.8/1000=35.28KN 查汽车设计书得Ap=150~250 (cm 2)

Ap=Rb θ=160×60×123×π/180=205.98 cm 2符合要求

选取前轮摩擦衬片包角θ

1=102°θ2=123° 摩擦衬片起始角θ

01=48° θ02=30° 后轮摩擦衬片包角θ=90° 摩擦衬片起始角θ0=90°—θ/2=90°—90°/2=45°

3)制动器中心到张开力P 作用线的距离e

在保证轮缸或制动凸轮能够布置于制动鼓内的条件下,应使距离e 尽可能大,以提高制动效能。e=90mm

4)制动蹄支承点位置坐标a 和c

A 取0.73R=118mm c=0.82 R=132mm

5)整车制动性能

同步附着系数0?按公式计算

0?=(L β-b)/hg

L---轴距

Hg —重心高

β--制动分配系数

β=(b+0??hg )/L

得:β=(1300+0.7?830)/2700=0.69

0?=(2700?0.69-1300)/830=0.67

6)适应性系数ε

适应性系数ε也称附着系数利用率,它表示整车最大可能利用的制动力矩与附着力之比,既表征在各种道路上附着重量利用的程度。可用下式计算。即当前轮首先抱死时

ε=L 2/ L 2+(0?-?)hg

当??0?时,即当后轮首先抱死时:

ε=L 1/ L 1+(?-0?)hg

??0?时,取?=0.7,ε=L 1/ L 1+(?-0?)hg=2700/2700+0.03?830=0.99

??0?时,取?=0.6,ε=L 2/ L 2+(0?-?)hg=2700/2700+0.07?830=0.97

可见当??0?时ε更大一些。

7)制动器的温升计算

制动时,由于制动鼓和摩擦片之间作用,产生了大量的热。在紧急制动时,因时间短,热量来不及散到大气中去,几乎全被制动鼓所吸收使之温度升高。

实践表明,从速度Va=30km/h 紧急制动到完全停车制动鼓的温升不应超过15°

其温升按下式计算:

t=1/108458?4.19?(G

a v a 2/ncg)=1/108458?4.19?(36000?302

/0.482?4?6=6.1°

合格

3.5 制动器制动力矩的确定

为保证汽车有良好的制动效能和稳定性,应合理的确定前、后轮制动器制动力矩。对于选取较大0?的各类汽车,应从保证汽车制动时的稳定性出发,来确定各轴的最大制动力矩。当?>0?时,相应的极限制动强度q <?,故所需的后轴和前轴的最大制动力矩为

T m ax 2f =Z e r ?1=L

G (a-qhg )?r e T m ax 1f =max 21f T ββ

-

其中q =a ?/a+(?-0?)hg=1200×0.8/1200+(0.8-0.7) ×830=0.748

轮胎规格:245/70R116

2r e =16×25.4+245×0.7×2=749.4mm r e =374.7mm

则后轴制动力矩T m ax 2f =L

G (a-qhg )?r e =36000/2700(1400-0.7×830) ×0.8×374.7=3100000Nm m

一个后轮的制动力矩= T m ax 2f /2=1550000 Nmm

前轴制动力矩T m ax 1f =max 21f T ββ

-=0.69/0.31×3100000=6900000 Nmm

一个前轮的制动力矩= T m ax 1f /2=3450000 Nmm

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计 制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。 鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动鼓位于制动轮内侧,刹车时制动块向外张开,摩擦制动鼓的内侧,达到刹车的目的。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求进行设计。首先根据给定车型的整车参数和技术要求,确定制动器的结构形式、驱动形式及制动器主要参数,然后计算制动器的制动力矩、制动效能因数、制动减速度、制动温升等,并在此基础上进行制动器主要零部件的结构设计,如制动鼓、制动蹄、制动底板等。最后,完成装配图和零件图的绘制。 1.1选题背景与意义 随着汽车性能的提高,对汽车安全性能的要求也越来越高。制动器是汽车制动系统中最重要的安全部件,对汽车的安全性有着重要的作用,因此对制动器的设计进行分析研究有着重要的意义。鼓式制动器作为现代汽车广泛使用的具有较高制动效能的制动器,尽管对其的设计研究取得了一定的成绩,但是对传统鼓式制动器的设计仍然有着不可替代的基础性和研发性作用,也可以为后续设计提供理论参考。这样,在以后的设计研究当中,不仅可以延续鼓式制动器的优点,还能在此基础上设计出制动性能更好的制动器,满足汽车的安全性和乘员舒适性,提高汽车的整体性能。 1.2研究现状 长期以来,为了充分发挥鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提高。 如以某汽车前轮鼓式双领蹄式制动器的制动蹄为研究对象,进行了受力分析并建立了力学模型,使用Pro/E建立了CAD模型,运用ANSYS进行了有限元

大学生方程式赛车制动系统设计和优化

大学生方程式赛车制动系 统设计和优化 Prepared on 22 November 2020

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear , this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

载货汽车汽车动力总成匹配及总体设计

长春大学 课程设计说明书 题目名称载货汽车动力总成匹配与总体设计 院(系)机械与车辆工程学院 课程名称汽车设计 班级车辆10401班 学生姓名赵阳 指导教师王静 起止日期2013.12.16~2013.12.27

设计要求及参数 设计要求: 设计一辆用于长途城际运输,最大总质量不超过31t,额定载重为16t,最高车速为100km/h的重型载货汽车(售价不高于对标竞争车型)。 设计参数 整车尺寸(长*宽*高)11976mm*2395mm*3750mm 轴数/轴距4/(1950+4550+1350)mm 额定载质量16000kg 整备质量12000kg 公路行驶最高车速100km/h 最大爬坡度≥30%

第1章 整车主要目标参数的初步确定 1.1 发动机的选择 1.1.1 发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。参考该题目中的参 数,按要求设计的载货汽车最高车速是u a =100km/h ,那么发动机的最大功率应该 大于或等于以该车速行驶时,滚动阻力功率与空气阻力功率之和,即 )76140 3600(1max 3max max a D a T e u A C u gf m P +≥η (1-1) 式中,Pemax 是发动机的最大功率(KW );ηT 是传动系效率(包括变速器、辅 助变速器传动轴万向节、主减速器的传动效率),ηT =95%*95%*98%*96%=84.9%, 传动系各部件的传动效率参考了机械工业出版社的《汽车设计课程设计指导书》 表1-1得;Ma 是汽车总质量,Ma=28000kg ;g 是重力加速度,g=9.8m/s 2 ;f 是滚 动阻力系数,由试验测得,在车速不大于100km/h 的情况下可认为是常数。取 f=0.008,参考《汽车设计课程设计指导书》表1-2得;C D 是空气阻力系数,一 般中重型货车可取0.8~1.0,这里取C D =0.9;A 是迎风面积(㎡),取前轮距B1* 总高H ,A=2.395×3.75㎡。 221.875.3395.29.0m m A C D =??= 故 KW KW P 2.19710076140 75.3395.29.010********.08.928000849.013emax =???+???≥ )( 也可以利用比功率的统计值来确定发动机的功率值。 如选取功率为197.2KW 的发动机,则比功率为 t /043.7t /28000 2.1971000m 1000a emax KW KW P =?=

制动器设计说明书

制动器设计说明书

摘要 制动器可以分两大类,工业制动器和汽车制动器,汽车制动器又分为行车制动器(脚刹)和驻车制动器。在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 臂架式盘式制动器是一种新型的主要适用于起重运输机械的制动装置。本论文着重介绍了其特点、关键零部件的选择或设计计算方法、主要性能参数及一些台架试验结果。除此之外还着重介绍了制动臂、松闸器等关键部件的设计参数及注意事项,同时细节方面对于制动器的静力矩也做了详细的计算设计。 Abstract Brakes can be divided into two categories, industrial brakes and automotive bra kes, automotive brake is divided into brake (foot brake) and the parking brake. In the driving process, generally used brake (foot brake), to facilitate the p rocess of deceleration in the forward stop, not just the car to remain intact. If the traffic Zhidongshiling when using the parking brake. When the car comple tely stopped, it has to use the parking brake (hand brake), to prevent the vehi cle front and rear slip slide. After stopping the general addition to the parki ng brake, the uphill hanging in a stall to stall (after the slide to prevent), downhill to hang in the reverse gear (to prevent forward slip.) Mechanical moving parts to stop or slow down the resistance of the moment must be applied as the brake torque. Braking torque is the design, selection based o n the brake, the size of the pattern and work by the mechanical requirements of the decision. Friction material used on brake (brake parts) directly affects t he performance of the braking process, and the main factors affecting the perfo rmance of the working temperature and the temperature rise speed. Friction mate rial should have high and stable friction coefficient and good wear resistance. Metallic and nonmetallic friction materials sub-categories. The former are com monly used cast iron, steel, bronze, and powder metallurgy friction materials, which have leather, rubber, wood and asbestos. Disc brake arm frame is a new major for the braking device handling equipment. This paper focuses on its characteristics, key components of the selection or d esign methods, the main performance parameters and some bench test results. Hig hlights in addition to the brake arm, loose brake components, etc. The key desi gn parameters and considerations, while the details of the static torque for th e brake has also done a detailed calculation of design.

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

中型载货汽车总体设计说明书

中型载货汽车总体设计说明书 课 程 设 计 学院:机械与动力工程学院 班级:车辆一班 姓名:母兵魁 学号:3 指导教师:赵凯辉

目录 摘要 (1) 概述 (2) 设计任务书 (4) 第1章、汽车形式和主要参数的初步确定 (5) 一、汽车形式的选择 (5) 、汽车轴数 (6) 、驱动形式 (6) 、布置形式 (7) 二、汽车主要参数的选择 (7) 、汽车主要尺寸参数的确定 (7) 、轴荷分配 (10) 第2章整车主要性能参数的确定和计算 (11) 一、发动机的选择 (11) 发动机最大功率及其转速的确定 (11) 发动机最大转矩及其转速的确定 (12) 发动机主要参数 (13) 二、配置大柴BA6M1013-28E3发动机的整车性能计算 (16) 汽车动力性能计算 (16) 汽车的加速性能计算 (18) 三、轮胎的选择 (18) 四、汽车重要性能参数和车身造型图 (19) 五、变速器档位数的选择 (20) 第3章、总体布置 (20) 一、总体布置要求与分析 (20) 二、总体布置草图 (24)

设计总结 (26) 参考文献 (27)

摘要 汽车的总体设计是汽车设计工作中最重要的一环,它对汽车的设计的质量、使用性能和在市场上的竞争力有着决定性的影响。因为汽车性能的优劣不仅与相关总成及部件的工作性能有密切关系,而且在很大程度上还取决于有关总成及部件间的协调与参数匹配,取决于汽车的总体布置。 货车的总体设计主要包括货车的参数确定,发动机和轮胎的选择,总体布置和动力性的计算等一系列重要的步骤。其中参数的确定又包括了汽车的质量参数,主要尺寸和性能参数的计算等。而本次课程设计同时应用到了 EXCEL,proe、autocad等计算机辅助软件,再通过多次校核质心位置和各部分的总成以保证货车的轴荷分配合理。 关键词:货车总体设计;整备质量;动力性;燃油经济性。

轻型货车制动系统设计

摘要 制动系统是汽车中最重要的系统之一。因为随着高速公路的不断发展,汽车的车速将越来越高,对制动系的工作可靠性要求日益提高,制动系工作可靠的汽车能保证行驶的安全性。由此可见,本次制动系统设计具有实际意义。 本次设计主要是对轻型货车制动系统结构进行分析的基础上,根据对轻型货车制动系统的要求,设计出合理的符合国家标准和行业标准的制动系统。 首先制动系统设计是根据整车主要参数和相关车型,制定出制动系统的结构方案,其次设计计算确定前、后鼓式制动器、制动主缸的主要尺寸和结构形式等。最后利用计算机辅助设计绘制出了前、后制动器装配图、制动主缸装配图、制动管路布置图。最终对设计出的制动系统的各项指标进行评价分析。另外在设计的同时考虑了其结构简单、工作可靠、成本低等因素。结果表明设计出的制动系统是合理的、符合国家标准的。 关键词:轻型货车;制动;鼓式制动器;制动主缸;液压系统.

Abstract Braking system is one of the most important system in the automotive . because of the continuous development with the highway. The car will become more and more high-speed, braking system on the work of the increasing reliability requirements,Brake work of a reliable car,guarantee the safety of travelling,This shows that, The braking system design of practical significance. The braking system is one of important system of active safety. Based on the structural analysis and the design requirements of intermediate car’s braking system, a braking system design is performed in this thesis, according to the national and professional standards. First through analyzing the main parameters of the entire vehicle, the braking system design starts from determination of the structure scheme. SecondlyCalculating and determining the main dimension and structural type of the front、rear drum brake,brake master cylinder ans so on,Finally use of computer-aided design drawing draw the engineering drawings of the front and rear brakes, the master brake cylinder, the diagram of the brake pipelines. Furthermore, each target of the designed system is analyzed for checking whether it meets the requirements. some factors are considered in this thesis, such as simple structure, low costs, and environmental protection, etc. The result shows that the design is reasonable and accurate, comparing with the related national standards. Key words:light truck;brake;drum brake;master cylinder;hydraulic pressure system

制动系统计算说明书

制动器的计算分析 整车参数 2、制动器的计算分析 2.1前制动器制动力 前制动器规格为?310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。当工作压力为P=6×105Pa时,前制动器产生的制动力: F1=2*A c*L/a*BF*?*R/R e*P 桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为F1=3255kgf

以上各式中:A c—气室有效面积 L—调整臂长度 a—凸轮基圆直径 BF—制动器效能因数 R—制动鼓半径 R e—车轮滚动半径 ?—制动系效率 P—工作压力 2.2后制动器制动力 后制动器规格为?310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。当工作压力为P=6×105Pa时,前制动器产生的制动力: F2=2*A c*L/a*BF*?*R/R e*P 桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为 F2 =3467kgf

2.3满载制动时的地面附着力 满载制动时的地面附着力是地面能够提供给车轮的最大制动力,正常情况下制动气制动力大于地面附着力是判断整车制动力是否足够的一个标准。地面附着力除了与整车参数有关之外,还与地面的附着系数有关,在正常的沥青路面上制动时,附着系数?值一般在0.5~0.8之间,我们现在按照路面附着系数为0.7来计算前后地面附着力:F?前=G满1×?+G×? 2 =2200×0.7+6000×× =2002kgf F?后=G满2×?-G×? 2 3800×0.7-6000×× = =1487kgf

因为前面计算的前后制动器最大制动力分别为 F1=3255kgf F2=3467kgf 3、制动器热容量、比摩擦力的计算分析 3.1单个制动器的比能量耗散率的计算分析 前制动器的衬片面积A1=2×πR1××L1= 式中(L1=100mm摩擦片的宽度 w1=110°) 后制动器的衬片面积A2=2×πR2××L2= 式中(L2=100m m 摩擦片的宽度w2=) 比能量耗散率 e1=β= e2=β= 上式中:G—满载汽车总质量 V1—制动初速度,计算时取V1=18m/s β—满载制动力分配系数 t—制动时间,计算时取t=3.06s 鼓式制动器的比能量耗散率以不大于1.8W/mm2为宜,故该制动器的比能量耗散率满足要求。 3.2单个制动器的比摩擦力计算分析 计算时取制动减速度j=0.6g

轻型货车离合器设计说明书

汽车设计 第二章离合器设计 设计参数 车型:轻型货车 整车质量(Kg):3830 发动机最大扭矩/转速(N·m/rpm):220/2100 最大功率/转速(Kw/rpm):67/3000 车轮滚动半径:(mm):340 一、离合器的设计目的及原理概述 1.1离合器的设计目的 了解轿车离合器的构造,掌握轿车离合器的工作原理。了解从动盘总成的结构,掌握从动盘总成的设计方法,了解压盘和膜片弹簧的结构,掌握压盘和膜片弹簧的设计方法,通过对以上几方面的了解,从而熟悉轿车离合器的工作原理。 学会如何查找文献资料、相关书籍,培养自己的动手设计项目、自学的能力,掌握单独设计课题和项目的方法,设计出满足整车要求并符合相关标准、具有良好的制造工艺性且结构简单、便于维护的轿车离合器,为以后从事汽车方面的工作或工作中设计其它项目奠定良好的基础。 1.2离合器的工作原理 离合器通常装在发动机与变速器之间,其主动部分与发动机飞轮相连,从动部分与变速器相连。为各类型汽车所广泛采用的摩擦离合器,实际上是一种依靠

其主、从动部分间的摩擦来传递动力且能分离的机构。 离合器的主要功用是切断和实现发动机与传动系平顺的接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换档齿轮间的冲击;在工作中受到较大的动载荷时,能限制传动系所承受的最大转矩,以防止传动系个零部件因过载而损坏;有效地降低传动系中的振动和噪音。 1.3离合器的设计要求 1)在任何行驶条件下,既能可靠地传递发动机的最大转矩,并有适当的转矩储 备,又能防止过载。 2)接合时要完全、平顺、柔和,保证起初起步时没有抖动和冲击。 3)分离时要迅速、彻底。 4)从动部分转动惯量要小,以减轻换档时变速器齿轮间的冲击,便于换档和减 小同步器的磨损。 5)应有足够的吸热能力和良好的通风效果,以保证工作温度不致过高,延长寿 命。 6)操纵方便、准确,以减少驾驶员的疲劳。 7)具有足够的强度和良好的动平衡,一保证其工作可靠、使用寿命长。 二、离合器的结构方案分析 2.1车型、技术参数 车型:轻型载货汽车 整车质量(Kg):3830 发动机最大扭矩/转速(N·m/rpm):220/2100 最大功率/转速(Kw/rpm):67/3000 车轮滚动半径:(mm):340 2.2从动盘数的选择 对乘用车和最大质量小于6t的商用车而言,发动机的最大转矩一般不大,离合器通常只设一片从动盘。 2.3压紧弹簧和布置形式的选择 离合器压紧装置可分为周布弹簧式、中央弹簧式、斜置弹簧式、膜片弹簧式

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

货车总体设计说明书

摘要 汽车的总体设计是汽车设计工作中最重要的一环,它对汽车的设计的质量、使用性能和在市场上的竞争力有着决定性的影响。因为汽车性能的优劣不仅与相关总成及部件的工作性能有密切关系,而且在很大程度上还取决于有关总成及部件间的协调与参数匹配,取决于汽车的总体布置。 货车的总体设计主要包括货车的参数确定,发动机和轮胎的选择,总体布置和动力性的计算等一系列重要的步骤。其中参数的确定又包括了汽车的质量参数,主要尺寸和性能参数的计算等。而本次课程设计同时应用到了EXCEL,AutoCAD等计算机辅助软件,再通过多次校核质心位置和各部分的总成以保证货车的轴荷分配合理。 关键词:货车总体设计;整备质量;动力性;燃油经济性。

第1章汽车的总体设计 1.1 汽车总体设计的特点 汽车主要在宽度有限的道路上行驶,同时与汽车比较,还有人、自行车、摩托车等弱势群体也在使用同一道路,因此存在交通隐患。为了在有限的道路上容纳更多的车辆运行,减少交通事故以及从汽车造型和减轻质量等方面考虑,对汽车的外形尺寸需要予以限制。 1.2汽车总体设计的基本要求 (1)汽车的各项性能、成本等,要求达到企业在商品计划中所确定的指标。 (2)严格遵守和贯彻有关法规、标准中的规定,注意不要侵犯专利。 (3)尽量大可能地去贯彻三化,即标准化、通用化和系列化。 (4)进行有关运动学方面的校核,保证汽车有正确的运动和避免运动干涉。 (5)拆装与维修方便。 1.3汽车总体设计的一般顺序 (1)调查研究与初始决策;其任务是选定设计目标,并制定产品设计工作方针及设计原则,调查研究的内容应包括:老产品在服役中的表现及用户意见;当前本行业与相关行业的技术发展,特别是竞争对手的新产品与新技术;材料、零部件、设备和工具等行业可能提供的条件;本企业在科研、开发及生产方面所取得的新成果等等,它们对新产品设计是很有价值的。 (2)总体方案设计;其任务是根据领导决策所选定的目标及对开发目标制定的工作方针、设计原则等主导思想的设想,因此又称为概念设计或构思设计。为此要绘制不同的总体方案图(比例为1 :10 )供选择。在总体方案图上进行初步布置和分析,对主要总成只画出大轮廓而突出各方案间的主要差别,使方案对比简明清晰。经过方案论证选出其中最佳者。 (3)绘制总布置草图,确定整车主要尺寸、质量参数与性能指标以及各总成的基本型式。在总布置草图上要较准确地画出各总成及部件的外形和尺寸并进行仔细的布置,对轴荷分配和质心高度作计算与调整,以便较准确地确定汽车的轴距、轮距、总长、总宽、总高、离地间隙、货厢或车身地板高度等,并使之符合有关标准和法规;进行性能计算及参数匹配。

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

CA1041轻型车制动系统设计解析

参数 1.制动系统的主要参数及其选择 同步附着系数 对于前后制动器制动力为固定比值的汽车,只有在附着系数?等于同步附着系数 0?的路面上,前、后车轮制动器才会同时抱死,当汽车在不同?值的路面上制动时, 可能有以下三种情况[4]。 1、当0??<时 2、当0??>时 3、当0??=时 附着条件的利用情况可以用附着系数利用率ε(或称附着力利用率)来表示,ε可定义为 ? ?εq G F B == 制动强度和附着系数利用率 根据选定的同步附着系数0?,已知: L h L g 02?β+= 制动器最大的制动力矩 为保证汽车有良好的制动效能和稳定性,应合理地确定前、后轮制动器的制动力矩。

最大制动力是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力21Z Z 、 成正比。所以,双轴汽车前、后车轮附着力同时被充分利用或前、后轮同时抱死的制动力之比为: g g f f h L h L Z Z F F 01022121??-+= = 制动器所能产生的制动力矩,受车轮的计算力矩所制约,即 e f f r F T 11= e f f r F T 22= 对于选取较大0?值的各类汽车,应从保证汽车制动时的稳定性出发,来确定各轴的最大制动力矩。当0??>时,相应的极限制动强度?

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计 摘要汽车是现代人们生活中重要的交通工具其是由多个系统组成的,制动系统就是其中一个重要的组成部分。它既要使行驶中的汽车减速,又要保证车辆能稳定的停驻在原地不动。因此,汽车制动系对于汽车的安全行驶起着举足轻重的作用。在本次设计中,根据已有的 CA1046 车辆的数据对制动系统进行设计。其中对制动系统的组成、制动系统主要部件的方案论证、制动力矩的计算、鼓式制动器结构参数的设计、制动器相关部件的校核、制动主缸和制动轮缸的直径工作容积的计算、制动踏板力与踏板行程的计算等方面进行了设计分析。设计所附的多张图纸对设计的思想、制动系统的布置设计表达的非常清晰。希望在翻阅说明书的过程中能够结合图纸,这样就可以更加有效的理解设计的思想和意图。关键词:汽车;鼓式制动器;制动系统;制动力矩;制动主缸全套 CAD 图纸,加 153893706 ABSTRACT Automobile is the important transportation tools in the modern life. It iscompositive by many systems. The most important parts are the brake system. Thesystem made the autocar slowdown what’s more the automobile is stopped steadily.There by the brake system play an important part in security steer. In the designwhich based on the data of brake system used in CA1041. Decompose of the brakesystem is designed. And the main piece applied with CA1041 is demonstrated. Thebraking force and the parameters of drum brake’s configuration are included in thisdesign also. What’s more the validating of correlation parts in the brake system andthe diameter of the main crock of braking and the crock applied in brake wheel aredesigned . Meantime the its stroke volume are referred to The force effected thefootplate when braking and the travel of footplate and so on are analyzed . The drawings are very detail to explain the ideas of design and the dispositionfor the brake system . When you thumb the annotation text you can combine thedrawings which made you understand the ideas and meaning in this

货车总体设计说明书概述

目 录 摘要 ...................................................................................................................................................................... 1 第一章 载货汽车主要技术参数的确定 . (2) 1.1 汽车质量参数的确定 (2) 1.1.1 汽车载客量和装载质量 .......................................................................................................... 2 1.1.2 汽车整车整备质量预估 ........................................................................................................ 2 1.1.3 汽车总质量ma 的确定 ............................................................................................................ 2 1.1.4 汽车轴数和驱动形式的确定 .................................................................................................. 3 1.2汽车主要尺寸的确定 (3) 1.2.1汽车的外廓尺寸 ....................................................................................................................... 3 1.2.2汽车轴距L 的确定 ................................................................................................................... 3 1.2.3 汽车前轮距B1和后轮距B2 ................................................................................................... 4 1.2.4 汽车前悬L F 和后悬L R 的确定 ................................................................................................. 4 1.2.5 汽车的车头长度 ...................................................................................................................... 4 1.2.6 汽车车厢尺寸的确定 .. (4) 第二章 载货汽车主要部件的选择 (5) 2.1 发动机的选择 (5) 2.1.1 发动机型式的选择 (5) 2.1.2 发动机的最大功率 max e P (5) 2.1.3 发动机最大转矩max e T 及其相应转速T n 的选择 (7) 2.2 轮胎的选择 .......................................................................................................................................... 8 2.3 车架的选择 .......................................................................................................................................... 9 2.4 油箱 ...................................................................................................................................................... 9 2.5 离合器 .................................................................................................................................................. 9 2.6 万向传动轴 .......................................................................................................................................... 9 第三章 轴荷分配及质心位置计算 .. (10) 3.1 平静时的轴荷分配及质心位置计算 ................................................................................................ 10 3.2水平路面上汽车满载行驶时各轴的最大负荷计算 ......................................................................... 13 3.3.制动时各轴的最大负荷计算 ............................................................................................................ 14 第四章 传动比的计算和选择 (15) 4.1 驱动桥主减速器传动比0i 的选择 (15) 4.2 变速器传动比g i 的选择 ................................................................................................................ 15 4.2.1 变速器一档传动比的选择 . (15) 4.2.2 变速器的选择 (16) 第五章 汽车动力性能计算 (18) 5.1 驱动力与行驶阻力平衡计算 (18) 5.1.1 驱动力的计算 ........................................................................................................................ 18 5.1.2 行驶阻力计算 ........................................................................................................................ 19 5.1.3 驱动力与行驶阻力平衡图 . (19)

相关文档
最新文档