高可靠电子设备可靠性仿真试验技术应用研究_张蕊

高可靠电子设备可靠性仿真试验技术应用研究_张蕊
高可靠电子设备可靠性仿真试验技术应用研究_张蕊

可靠性大作业

汽车制动系统可靠性分析 摘要:随着经济的发展,汽车数量迅速增长,同时道路交通事故就严重影响人们的安全,人人谈虎变色。作为道路交通事故发生的非人为因素中选取所占比例最大的汽车制动系统故障,减小这种因素引起的故障成为保障道路交通安全中的至关重要的一部分。本文运用系统工程的可靠性分析的方法对此类故障进行研究分析。同时基于故障树分析法开展了对汽车制动系统的可靠性分析,通过对系统零部件的故障因素,故障原因和故障种类进行定性的分析,为汽车制动系统的设计和维修提供了理论依据,对提高汽车制动系统的可靠性及减少因汽车制动系统而导致的道路交通事故起到了积极的指导作用。 关键词:道路交通事故汽车制动系统可靠性分析故障树分析法 引言: 自从1885年卡尔本茨(Karl Benz)在曼海姆制出了第一辆汽车以来,道路交通安全则成为所有人共同关心的话题。纵观道路交通事故发生的原因,除了与道路的使用者——人的因素、道路本身的因素、道路交通环境因素有关外,还与道路上行驶的车的因素有关。其中减少人为因素引起的事故需要所有交通参与者的仔细观察和相互谦让。而减少非人为因素造成的道路安全事故则成为减少道路交通事故保证驾驶安全的最重要的一部分。车辆是组成道路交通的三大因素之一,与交通安全有着密切的关系。虽然在交通事故原因的统计中,人为原因占很大比例,直接因汽车问题所引起的事故不足10%,但这并不意味着车辆对安全的影响不大。而在这些非人为因素中,汽车制动系统发生故障占60%-70%。因此,对汽车制动系统进行可靠性分析,提高汽车制动系统的可靠度,可以减少道路交通事故的发生,减少不必要的损失,也保证了所有交通参与者的安全。对于保护国家集体的财产安全,维护交通秩序,提高道路交通能力具有极其重要的意义]1[。 1995年机械故障事故统计表 故障种类制动失效制动不良转向失效灯光不良其他 事故次数3545 54421299688 2520

我所认知的电子设备可靠性工程

我所认知的电子设备可靠性工程 04091102班04091061 石坚 摘要:说到到可靠性工程,由于这学期在学校开了个鸡排店,用到了油炸的机器,接触到了有关可靠性设计的部分。所以选了电子设备可靠性工程这门选修课,以便进一步了解机器的可靠性设计,尤其是和我们专业有关的电子设备的可靠性。可靠性是指产品在规定的条件下和规定的时间内完成规定功能的能力。任何产品不论是机械、电子,还是机电一体化产品都有一定的可靠性,产品的可靠性与实验、设计和产品的维护有着极大的关系。通过自己的亲身经历,觉得可靠性是个很重要的参数,而随着社会的进步和科学技术的发展,人们对电子设备、电子器件的可靠性更是要求越来越高。本文就电子元器件的可靠性,包括电子元器件在不同条件下的不同特征,元件失效的规律,发生故障的概率等做了简单的论述。 引言:可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。可靠性技术基于两个重要的理论基础:失效物理和概率统计,同时,它产生了两个重要的应用领域,即系统可靠性和元器件可靠性。在元器件可靠性领域又进一步可分为元器件固有可靠性和使用可靠性。前者主要研究元器件的设计和制造过程中的可靠性,后者侧重研究在电子系统研制过程中如何选好、买好、用好和管好元器件,防止、控制引入过应力而损坏可靠元器件和接收、使用可靠性不能满足要求得元器件。根据电子行业界分析,60%以上的生产故障是由于元器件失效引起的,70%以上的市场返修也是因为器件失效引起的。国内外地有关资料表明:在电子元器件的失效中,由于选择或使用不当等人为因素导致失效的比列高达失效数的50%以上。 一.提高电子产品的可靠性意义重大 提高产品的可靠性,可以防止故障和事故的发生,尤其是避免灾难性的事故发生,从而保证人民生命财产安全。1986年1月28日,美国航天飞机“挑战者”号由于1 个密封圈失效,起飞76s 后爆炸,其中7 名宇航员丧生,造成12 亿美元的经济损失;1992年,我国发射“澳星”时,由于一个小小零件的故障,使“澳星”发射失败,造成了巨大的经济损失和政治影响。

电子产品可靠性试验-环境试验要点

一、可靠性理论基础 二、试验(GB) 一.总则:GB2421-2008 电工电子产品环境试验 本系列标准不涉及环境试验样品性能要求,环境试验期间和试验以后,试验样品的容许性能限值由被试验样品的相关规范规定。 基准标准大气压:20℃,101.3KPa 测量与试验标准大气压:15℃-30℃,25%RH-75%RH,86KPa-106KPa。 自由空气条件:无限大空间,空气运动只受散热试验样品本身影响,样品辐射能量全部由周围空气吸收。 散热试验样品与非散热试验样品界定:在自由空气条件和试验标准大气压下,温度稳定后测得的试验样品温度与环境温度是否大于5℃。 环境温度:是采用在试验样品之下0mm - 5 0mm的一个水平面上面,而且与试验样品和试验箱壁等距离处或者距离试样品1 m处若干温度。( 二者取温度值小的) 的平均值。应采取适当措施防止热辐射影响这些温度的测量。 热稳定:试验样品表面温度与最后所测表面温度之差<3℃(非散热试验样最后所测表面温度即试验箱温度;散热试验样品则需多次测量才能确定) A: 低温。 B: 高温 C: 恒定湿热。 D: 交变湿热 E: 冲撞( 例如冲击和碰撞) 。 F: 振动。 G: 稳态加速度。 H: 待定( 原分配在贮存试验) 。 J : 长霉。 K: 腐蚀性大气( 例如盐雾) 。 L: 砂尘。 M: 高气压或低气压 N: 温度变化。 P : 待定( 原分配在“可燃性”试验) Q: 密封( 包括板密封,容器密封与防止流体浸入和漏出的密封) 。 R: 水( 例如雨水、滴水) 。 S : 辐射( 例如太阳辐射,但不包括电磁辐射) T: 锡焊( 包括耐焊接热) 。 U: 引出端强度( 元件的)。 V: 待定( 原分配在“噪声”. 但“噪声诱发的振动”将归于试验F g ,即“振动”系列试验之一) 。W: 待定。 X:作为字头与另一个大写字母一起用于新增加的试验方法命名。例如试验XA:在清洗剂中浸渍 Y: 待定。 Z:用于表示综合试验与组合试验。方法如下:Z后面跟一斜杠和一组综合实验或组合试验相关的大写字母。例如Z/AM:试验低温和低气压综合试验。 综合试验:≥2种试验环境同时作用于试验样品。组合实验:依次连续暴露≥2种试验环境分别进行试验 试验顺序(s e q u e n c e o f t e s t s)试验样品被依次暴露到两种或两种以上试验环境中的顺序。 1 各次暴露之间的时间间隔通常对试验样品不产生明显影响 2 各次暴露之间通常要进行预处理和恢复 3 通常在每次暴露之前和之后进行检测,前一项暴露的最后检测就是下项暴露的初始检测 受控恢复条件:实际试验温度±1℃(15℃-30℃),73%RH-77%RH,86KPa-106KPa。(测量前如果要求对试验样品进行干燥,除有关规范另有规定外,应在下述的条件下干燥6 h。标准干燥条件55±2℃/<20%) 恢复条件: 条件试验后,在检测之前:试验样品应在检测环境温度下稳定;当样品试验后电气参数变化很快,应按受控恢

汽车可靠性技术(大作业)

一、简答题(每题15分,共45分) 1、汽车可靠性定义四因素的具体内涵是什么? 答:汽车可靠性是指汽车产品(总成或零部件)在规定的条件和规定的时间内,完成规定的功能的能力。 其中,汽车产品指整车、总成、零部件,主要指的是发动机、底盘、车身、电器设备等。规定时间指:汽车使用量的尺度,可以足时间单位(小时、天数、月数、年数),也可以是行驶里程数、工作循环次数等。在汽车运用工程中,保用期、第1次大修里程、报废周期等都是重要的特征时间。 规定条件包括:汽车产品的工作条件,即气候、道路状况、地理位置等环境条件;汽车产品的运用条件,即载荷性质、载运种类、行驶速度;汽车产品的维修条件,即维修方式、维修水平、保养制度;汽车产品的管理条件,即存放环境、管理水平、驾驶员技术水平。规定功能指:汽车设计任务书、使用说明书、订货合同以及国家标准规定的各种功能、性能和要求。 2.简述可靠性预测的步骤。 答:任何预测都有两个过程:归纳和推论过程。可靠性预测的基本步骤如下: (1)确定预测目的、预测对象及预测类型(短期、中期、长期); (2)搜集整理资料(有关发展资料、历史资料); (3)选择预测技术; (4)建立预测模型,包括数学模型(表达式、参数)或概率模型(各种可能结果的概率分布); (5)评价模型。对建立的预测模型进行检验; (6)利用模型进行预测,与实测结果比较,修正预测模型。 3、简述检验的一般工作程序。 答:检验的一般工作程序包括以下阶段: (1)准备阶段 在这阶段,主要工作内容有:决定检查单位,决定检查项目,决定试验方法,决定质量判定标准,决定在生产过程那个阶段检查,决定全检、抽检还是无试验检查,决定质量指标,选择抽样表(计数、计量和抽样类型)。 (2)实施阶段 在这阶段,主要工作内容有:决定批的构成,决定抽样方法,决定批处理方法。 (3)整理阶段 在这阶段,主要工作内容有:决定检查结果的记录方法,决定检查结果的处理方法。 二、论述题(25分) 1.请阐述频数直方图、频率直方图、频率密度直方图和频率密度曲线及区别和联系。 答:频数直方图是以样本数据表征的质量特性值为横坐标,以频数为纵坐标作出的描述数据分布规律的图形。 频率直方图是将频数直方图的纵坐标改为频率做出的频率直方图,其形状与频数直方图应完全一样。 频率密度直方图是将频率直方图纵坐标改为频率密度、横坐标不变后获得的直方图,形状也

电子产品可靠性试验

电子产品可靠性试验 第一章 可靠性试验概述 1 电子产品可靠性试验的目的 可靠性试验是对产品进行可靠性调查、分析和评价的一种手段。试验结果为故障分析、研究采取的纠正措施、判断产品是否达到指标要求提供依据。具体目的有: (1) 发现产品的设计、元器件、零部件、原材料和工艺等方面的各种缺陷; (2) 为改善产品的完好性、提高任务成功性、减少维修人力费用和保障费用提供信息; (3) 确认是否符合可靠性定量要求。 为实现上述目的,根据情况可进行实验室试验或现场试验。 实验室试验是通过一定方式的模拟试验,试验剖面要尽量符合使用的环境剖面,但不受场地的制约,可在产品研制、开发、生产、使用的各个阶段进行。具有环境应力的典型性、数据测量的准确性、记录的完整性等特点。通过试验可以不断地加深对产品可靠性的认识,并可为改进产品可靠性提供依据和验证。 现场试验是产品在使用现场的试验,试验剖面真实但不受控,因而不具有典型性。因此,必须记录分析现场的环境条件、测量、故障、维修等因素的影响,即便如此,要从现场试验中获得及时的可靠性评价信息仍然困难,除非用若干台设备置于现场使用直至用坏,忠实记录故障信息后才有可能确切地评价其可靠性。当系统规模庞大、在实验室难以进行试验时,则样机及小批产品的现场可靠性试验有重要意义。 2 可靠性试验的分类 2.1 电子装备寿命期的失效分布 目前我们认为电子装备寿命期的典型失效分布符合“浴盆曲线”,可以划分为三段:早期失效段、恒定(随机或偶然)失效段、耗损失效段。可参阅图1.2.1。 早期失效段,也称早期故障阶段。早期失效出现在产品寿命的较早时期,产品装配完成即进入早期失效期,其特点是故障率较高,且随工作时间的增加迅速下降。早期故障主要是由于制造工艺缺陷和设计缺陷暴露产生,例如原材料缺陷引起绝缘不良,焊接缺陷引起虚焊,装配和调整不当引起参数漂移,元器件缺陷引起性能失效等。早期失效可通过加强原材料和元器件的检验、工艺检验、不同级别的环境应力筛选等严格的质量管理措施加以暴露和排除。 恒定失效段,也称偶然失效段,其故障由装备内部元器件、零部件的随机性失效引起,其特点是故障率低,比较稳定,因此是装备主要工作时段。 耗损失效段,其特点是故障率迅速上升,导致维修费用剧增,因而报废。其故障原因主要是结构件、元器 件的磨损、疲劳、老化、损耗等引起。 2.2 试验类型及其分布曲线的变化 针对电子装备寿命期失效分布的三个阶段,人们在设计制造和使用装备时便有针对地采取措施,以提高可靠性和降低寿命周期的费用。在设计制造阶段,要尽量减少设计缺陷和制造缺陷,即便如此仍然会存在早期失效和随机失效。为此,承制方需要运用工程试验的手段来暴露和消除早期失效,降低随机失效的固有水平。通过这些措施,可以改变产品的寿命分布曲线的形状,可参阅图1.2.2。在耗损阶段,用户可通过维修和局部更新的手段延长装备的使用寿命。 图 1.2.2 示意了两组产品寿命失效率分布曲线,图中表明产品B 的可靠性水平比产品A 的优良,因为B 的恒定失效率比A 的低,B 的早期失效段比A 的短。如果曲线A 和B 是同一种产品的不同阶段的失效率分布,则表明该产品经过了可靠性增长试验,取得成效,因此曲线B 的恒定失效率大为 失效率 早期 耗损 失效 偶然失效段 失效 时间 图1.2.1 电子装备寿命期失效分布的浴盆曲线示意

电子产品可靠性试验国家标准清单

电子产品可靠性试验国家标准清单 GB/T 15120、1-1994 识别卡记录技术第1部分: 凸印 GB/T 14598、2-1993 电气继电器有或无电气继电器 GB/T 3482-1983 电子设备雷击试验方法 GB/T 3483-1983 电子设备雷击试验导则 GB/T 5839-1986 电子管与半导体器件额定值制 GB/T 7347-1987 汉语标准频谱 GB/T 7348-1987 耳语标准频谱 GB/T 9259-1988 发射光谱分析名词术语 GB/T 11279-1989 电子元器件环境试验使用导则 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 2689、1-1981 恒定应力寿命试验与加速寿命试验方法总则 GB/T 2689、2-1981 寿命试验与加速寿命试验的图估计法(用于威布尔分布) GB/T 2689、3-1981 寿命试验与加速寿命试验的简单线性无偏估计法(用于威布尔分布) GB/T 2689、4-1981 寿命试验与加速寿命试验的最好线性无偏估计法(用于威布尔分布) GB/T 5080、1-1986 设备可靠性试验总要求 GB/T 5080、2-1986 设备可靠性试验试验周期设计导则 GB/T 5080、4-1985 设备可靠性试验可靠性测定试验的点估计与区间估计方法(指数分布)

GB/T 5080、5-1985 设备可靠性试验成功率的验证试验方案 GB/T 5080、6-1985 设备可靠性试验恒定失效率假设的有效性检验 GB/T 5080、7-1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案GB/T 5081-1985 电子产品现场工作可靠性有效性与维修性数据收集指南 GB/T 6990-1986 电子设备用元器件(或部件)规范中可靠性条款的编写指南 GB/T 6991-1986 电子元器件可靠性数据表示方法 GB/T 6993-1986 系统与设备研制生产中的可靠性程序 GB/T 7288、1-1987 设备可靠性试验推荐的试验条件室内便携设备粗模拟 GB/T 7288、2-1987 设备可靠性试验推荐的试验条件固定使用在有气候防护场所设备精模拟 GB/T 7289-1987 可靠性维修性与有效性预计报告编写指南 GB/T 9414、1-1988 设备维修性导则第一部分: 维修性导言 GB/T 9414、2-1988 设备维修性导则第二部分: 规范与合同中的维修性要求 GB/T 9414、3-1988 设备维修性导则第三部分: 维修性大纲 GB/T 9414、4-1988 设备维修性导则第五部分: 设计阶段的维修性研究 GB/T 9414、5-1988 设备维修性导则第六部分: 维修性检验 GB/T 9414、6-1988 设备维修性导则第七部分: 维修性数据的收集分析与表示 GB/T 12992-1991 电子设备强迫风冷热特性测试方法 GB/T 12993-1991 电子设备热性能评定

仿真试验报告

编号:密级 可靠性仿真试验报告 (第一轮) 送试单位 : 送试单位地址: 产品型号名称: 试验日期 : 2017年月日

结论: 2017年10月,模块在中国电子科技集团公司第二十研究所实验室按照《模块可靠性仿真试验大纲》进行了可靠性仿真试验,主要结论如下: 1)受试产品整机热设计合理,相对71℃平台环境,机箱平均温升为10℃。 2)受试产品整机振动设计合理,模块标称频率为100MHz,与标称频率测 量预期结果相符合。 3)模块热设计相对薄弱,存在热集中区,局部温度最高达90℃,模块上 的1个元器件温度均较高。 4)模块振动设计相对薄弱,存在1问题。 5)模块的温度相对较高,长时间工作发生故障概率较大。 6)受试产品中工作小时内失效概率大于63.2%的器件包括:通用接收模块 的。 7)受试产品平均首发故障时间预计值为XX小时(共对1个模块进行了预 计,其中平均首发故障时间预计值为XX小时)。 8)共发现薄弱环节1个,其中模块0个、器件1个。 9)其它需要说明的结论 以下空白 2017年10月日 编写: 校对: 审核: 批准: 说明:报告只对本次试验有效。未经本实验室许可,不得部分复印。 联系 方式

目录 1 试验目的 (5) 2 试验依据 (5) 3 受试产品说明 (5) 4 任务安排 (6) 4.1 任务分工 (6) 4.2 试验时间、地点及人员 (6) 5 试验流程 (6) 6 试验条件 (7) 6.1 试验环境条件(试验剖面) (7) 6.2 环控条件 (8) 7 试验设备 (8) 7.1 计算机软件 (8) 7.2 测试设备及仪表 (8) 8 仿真分析 (9) 8.1 信息收集 (9) 8.2 数字样机建模 (9) 8.3 应力分析 (16) 8.4 故障预计 (24) 8.5 可靠性评估 (26) 9 试验结论 (26) 图1 可靠性仿真试验流程 (6) 图3 振动谱型图 (8) 图4 受试产品CAD数字样机 (9) 图6 受试产品FEA数字样机 (12) 图13 受试设备故障预计模型 (24) 图14 XX模块的潜在故障点位置 (26) 表1 受试产品组成 (5) 表2 受试产品技术状态 (5) 表3 任务分工 (6) 表4 温度应力条件表 (7) 表5 振动应力量级表 (7) 表6 计算机软件表 (8) 表7 测试设备及仪表 (8) 表8 CAD数字样机组成说明表 (10) 表9 CFD数字样机组成说明表 (10) 表10 热分析箱体部件材料对应表 (11) 表11 FEA数字样机组成说明表 (12) 表12 振动分析材料对应表 (13) 表13 各模块主要发热器件试验数据与仿真数据对比 (14) 表14 模态对比(无约束状态) (15) 表15 振动响应对比(实际安装状态)............................................. 错误!未定义书签。

电子产品可靠性测试规范

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性的质量 要求。 2.范围 本文件适用本公司所有产品。 3.内容 3.1 实验顺序 除客户特殊要求外,试验样品进行试验时,一般按下表的顺序进行: 3.2实验条件 3.2.1 实验条件:

3.2.2 试验机台误差: a.温度误差:高温为+/-2℃,低温为+/-3℃. b.振动振幅误差:+/-15%. c.振动频率误差:+/-1Hz. 3.2.3 落地试验标准 3.2.3.1 落地试验应以箱体四角八边六面(任一面底部相连之四角、与此四角相连之八边, 六面为前、后、左、右、上、下这六个面)按规定高度垂直落下的方式进行。 重量高度 0~10kg以内75cm 10~20kg以内60 cm 20kg以上53 cm 3.2.3.2 注意事项: 5.2.3.2.1 箱内样品及包材在每个步骤后进行外观与功能性检验。 5.2.3.2.2 跌落表面为木板。 3.2.4 推、拉力试验方法和标准 3.2. 4.1、目的:为了评定正常生产加工下焊锡与焊盘或焊盘与基材的粘结质量。 3.2. 4.2、DIP类产品,需把元件用剪钳剪去只留下元件脚部分(要求留下部分 可以自由通过元件孔),且须把该焊盘与所连接的导线分开,然后固定 在制具上用拉力机以垂直于试样的力拉线脚(如下图),直到锡点或焊 盘拉脱为止,然后即可在拉力计上读数。 拉力方向 焊锡 焊盘

(图1) 3.2. 4.3、SMT类产品,片式元件用推力计以如下图所示方向推元件。推至元件或焊盘脱落后在推 拉力计上读数。并把结果记录在报告上。 三极管推力方向如下图所示,推至元件或焊盘脱落后在推拉力计上读数,并记录。 3.2. 4.4、压焊类产品,夹住排线(FFC或FPC)以如下图所示方向做拉力,拉至FFC或FPC 断或焊锡与焊盘脱离(锡点脱离)或焊盘与基材脱离(起铜皮),把结果记录在报告 上。 3.2. 4.5、产品元器件抽样需含盖全面规格尺寸。产品各抗推、拉力标准为;

汽车试验场可靠性道路试验的仿真分析.

[2]白建波,张小松,李舒宏等. 基于RS-485 总线的高精度恒温恒湿空调测控系统[J].电气传动,2005,35(8: 44-46. [3]聂玉强,李安桂. 中央空调系统高效节能技术分析与应用[J].重庆建筑大学学报: 中国电力出版,2010.21(14:56-57. [4]张桂芝. 恒温恒湿空调控制中存在的问题及对策[J].科技创新与应用, 2014.15:83 [5]苏建锋. 恒温恒湿空调不同工况下的自动控制[J].工程技术科技资讯,2011.26:57 汽车试验场可靠性道路试验的仿真分析 冯栋闫彦朋 (071000长城汽车股份有限公司技术中心河北保定) 摘要:汽车可靠性试验是进行汽车研发的重要环节之一,也是评估该产品的性能、使用期限的重要方法。文中从简述汽车可靠性试验办法入手,分析各个路况里程分配、车辆载荷等情况,并采用虚拟实验软件进行仿真分析,为深入进行汽车可靠性研究提供有效依据。 随着我国经济的不断发展,我国的汽车工业也经历了飞跃性的发展,虽然我国汽车工业起步比较晚,但发展速度较快,从整体上还与欧美汽车发达国家有一定的差距。汽车的可靠性试验是汽车发展中必不可少的环节,也会汽车道路试验重要的部分之一,该实验不仅可以检验产品是否合格,也可以为修改和优化设计提供合理的参考。使用虚拟试验场软件对汽车的可靠性展开试验,综合相关材料,对汽车的寿命展开分析和评估,为汽车产品提供有效的服务。 1. 简述汽车可靠性试验办法

汽车可靠性道路试验依照交通部门试验场相关规范展开,可靠性、耐久性选取的实验道路包含搓板路、扭曲路、卵石路。实际实验的过程中,派专业人员做驾驶员,设定相同的速度行驶在不相同的大路上,本次试验使用美国的NICOLET32通道数据采集器展开数据的采集工作。采样的频率设置为10kHz,试验对中央通道、右侧及左侧的B 柱底部三个部位的X、Y、Z加速度值,左右两侧B 柱处对于冲击的相应基本相同,测试数据根据驾驶人员测信号为目标信号。实际试验时,测试路面平整,测试车辆整体性能较好,车速设置为50km/h。 2. 合理分配试验里程 汽车可靠性试验是为考核汽车的耐久性和可靠性的重要手段,本文的以某汽车公司的EQ1074G 载货汽车为研究对象,对该汽车的可靠性强化路面及普通路面的行驶情况展开分析,研究车辆处在不同位置的变形量、试验道路的行驶要求及仿真性展开测试,为汽车的可靠性研究提供重要依据。本次试验采用15000km 为里程展开试验,该里程包含试验场内12000km,山路3000km。根据强化系数15折算,15000km可靠性试验相当于用户实际采用225000km。本次试验所行驶的实验包含石块路、长坡路、高 速路、普通路面,不同道路在试验中拥有的里程及比例如表1。 试验里程试验路面15000km 比例(%) 长波路221.401.43石叠路136.900.80高速路面900.06.01山区路面 3000.017.023. 轮胎气压及试验道路行驶要求 那些载货汽车因装载质量变化加大,所以轮胎气压也会随之得到相对应的改变,不然在空载时将严重影响乘客的舒适性能。在实际应用中,车辆如果长时间放置气压不可避免会降低,试验的过程中,可以根据厂家要求气压把轮胎气压设置为半载和满载两种状态。根据所设计的试验场道,本次研究车辆行驶路线如图1循环进行。

电子产品可靠性设计总结V1.1.0

电子产品可靠性设计总结V1.1.0 一、 印制板 ㈠,数据指标 1,印制板最佳形状是矩形(长宽比为3:2或4:3),板面大于200*150mm时应考虑印制板所承受的机械强度。 2,位于边沿附近的元器件及走线,离印制板边沿至少2mm,以防止打耐压不过。 3,焊盘尺寸以金属引脚直径加上 0.2mm 作为焊盘的内孔直径。例如,电阻的金属引脚直径为 0.5mm,则焊盘孔直径为 0.7mm,而焊盘外径应该为焊盘孔径加1.2mm,最小应该为焊盘孔径加1.0mm。 4,常用的焊盘尺寸 焊盘孔直径/mm 0.4 0.5 0.6 0.8 1.0 1.2 1.6 2.0 焊盘外径/mm 1.5 1.5 2.0 2.0 2.5 3.0 3.5 4 5,元器件之间的间距要合适,以防止焊接时互相遮挡,导致无法焊接。 6,走线和元器件与边界孔、固定孔之间的距离要足够的大,以防止无法添加平垫和螺丝,也可防止可耐压时不能通过。 7,PCB板的尺寸要与相关的壳子相匹配,固定孔之间的位置也要与要关的壳体固定位置相适合。 8,尽量用贴片元件,尺可能缩短元件的引脚长度。(地线干扰) ㈡,设计方法 1,保证PCB板很好的接地。(信号辐射) 2,屏蔽板尽量靠近受保护物体,而且屏蔽板的接地必须良好。(电场屏蔽) 3,易受干扰的元器件不能离得太近。(元件布局) ㈢,注意事项 1,以每个功能电路为核心,围绕这个核心电路进行布局,元件安排应该均匀、整齐、紧凑,原则是减少和缩短各个元件之间的引线和连接。 2,使用敷铜也可以达到抗干扰的目的,而且敷铜可以自动绕过焊盘并可连接地线。填充为网格状,以散热。 3,包地。对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 4,严格确保元器件的焊盘大小足以插入元器件。各个元件间的距离不能太近导致元器件无法放下或无法焊接。 5,尽量少用过孔。 6,画完印制板图后,看看每个元器件的标号的方向正否统一。 7,元器件的标号不能画在其它元器件的焊盘内,也不能被其它原器件挡住。 8、接口应有文字说明其接口功能定义。 9、安装孔周围应不能走线,防止螺丝与信号线短接。 二、 PCB走线 ㈠,数据指标

电子设备可靠性工程报告

电子设备可靠性工程报告 班级:05091101班 学号:05091010号 姓名:杨永旺 摘要:本学期选修了电子设备可靠性工程,对这项科学有了更深的了解,进一步了解了本学科在工业生产和科学研究上的重要性。从学习的专业上进一步应用到今后的工作中。电子科学与技术专业中,我们要有更多的可靠性分析,对于研究和生产中,需要对研究的成果进行进一步的分析,得出可行性结论,才能在更好地生产,才能验证产品真正的性能。集成电路当中存在很多不确定因素,需要我们进行可行性分析,进行可靠性验证。随着电子工业的飞速发展,电子设备和系统的可靠性问题越来越重要。我国在可靠性研究方面虽起步较晚,但从发达国家的经验中,也从自己的教训中充分认识到可靠性研究工作的重要性,近年来开展了大量的基础工作,已经为电子产品的设计人员提供了进行可靠性设计的条件。作为电子科学与技术专业的学生我们有必要进一步升入了解电子机械的可靠性技术。 引言:可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。从集成电路的诞生开始,可靠性的研究测试就成为IC设计、制程研究开发和产品生产中的一个重要部分。Jack Kilby在1958年发明了集成电路,第一块商用单片集成电路在1961年诞生;1962年9月26日,第一届集成电路方面的专业国际会议在美国芝加哥召开。当时会议名称为“电子学失效物理年会”;1967年,会议名称改为“可靠性物理年会”;1974年又改为“国际可靠性物会议”(IRPS) 并延续至今。IRPS已经发展成集成电路行业的一个盛会,而可靠性也成为横跨学校研究所及半导体产业的重要研究领域。 在世界各国中,美国的可靠性工程发展居领先地位,特别是它的军用标准对各国的影响极大。同时随着我国科学技术的发展,可靠性工程在我国的发展也逐步加快,在国际上占有一席之地。我国集成电路也在进一步发展,但是在这一过程中可靠性的问题也进一步凸显,下面我们经进一步针对我国的电子电路可靠性的发展与应用进一步进行论述,从而从中发现些问题,为以后的工作提供给一些帮助! 提高产品的可靠性有以下几方面的重要意义。 (1)提高产品的可靠性,可以防止故障和事故的发生,尤其是避免灾难性的事故发生,从而保证人民生命财产安全。1986年1月28日,美国航天飞机“挑战者”号由于1个密封圈失效,起飞76s后爆炸,其中7名宇航员丧生,造成12亿美元的经济损失;1992年,我国发射“澳星”时,由于一个小小零件的故障,

电子产品的可靠性试验研究及方法

电子产品的可靠性试验研究及方法 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。 1、引言 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。产品的可靠性不高将会给生产带来 很大损失,随着控制系统的大型化,一个系统所用的电子元件越来越多,只要其中一 个元件发生故障,一般都会导致整个系统发生故障,由此产生的经济损失将远远超过 一个元件本身的价值,所以元件的可靠性越来越重要。电子产品是否适应预定的环境 和满足可靠性指标,必须通过可靠性试验进行鉴定或考核;有时还需通过试验来暴露 产品在设计和工艺中存在的问题,通过故障分析确定主要的故障模式和发生的原因, 进而采取改进措施。所以可靠性试验不仅是可靠性活动的重要环节,也是进一步提高 产品可靠性的有效措施。 2、电子产品可靠性特点 电子产品的可靠性变化一般都有一定的规律,其特征曲线如图1所示,由于其形状象浴盆,通常称之为“浴盆曲线”。从图1可以看出,在产品试验和设计初期,由 于设计制造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率高, 通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品进入稳定的偶然失 效期;使用一段时间后,由于器件耗损、整机老化以及维护等原因,产品进入了耗损 失效期。这就是可靠性特征曲线呈“浴盆曲线”型的原因。 通常我们定义,在多次实验中,某随机事件出现的次数叫做该事件的频数。如在M次试验中,事件A出现的频数是M,则事件A出现的相对频数是M / N。在状态不变的条件下,在多实践中,事件A出现的相对频数就反映了该事件A出现的可能性。它 是事件A出现的一个大概的百分率,称为事件A概率,记为P(A)。 P(A)=M / N (N很大)(1)

汽车可靠性道路试验仿真研究

汽车可靠性道路试验仿真研究 发表时间:2019-03-13T16:27:20.490Z 来源:《新材料·新装饰》2018年8月下作者:刘源于振洋 [导读] 我国是一个汽车进口大国,汽车进口量远远大于出口量。由于历史上的种种原因,错过两次工业革命,导致我国工业底子薄弱,汽车制造起步比较晚,没有西方国家对汽车的经验多。 (长城汽车股份有限公司,河北保定 071000) 摘要:我国是一个汽车进口大国,汽车进口量远远大于出口量。由于历史上的种种原因,错过两次工业革命,导致我国工业底子薄弱,汽车制造起步比较晚,没有西方国家对汽车的经验多。经过这几十年来的追赶,我国的汽车与进口车相比还是有一些差距,想要赶上乃至超过传统造车企业,除需要不断探索研发新技术以外,对汽车的可靠性试验也非常重要。本文对汽车可靠性道路试验做简单探讨。 关键词:汽车可靠性;道路试验;研究 引言 在测试汽车性能的试验中,为找出汽车设计或结构强度的不足之处,要通过汽车模拟道路驾驶,进行道路试验,因为汽车的设计和强度要求,不可能通过仅行驶几十公里测出,这些试验数据往往是通过长时间试验检测得出,因其试验时间长,这会影响新汽车的出售,作为汽车公司,这往往是不合理的。因此就需要将各种复杂恶劣道路条件,加在道路试验中,缩短试验周期。 1.汽车可靠性道路试验的目的 汽车可靠性道路试验是对汽车性能评估的一种重要手段,通过汽车可靠性道路试验,测量汽车零件的故障率,找到容易发生故障的部位;汽车最重要的部分属于动力部分,汽车可靠性道路试验,也是对汽车发动机的检测,通过试验,分析汽车计算扭矩,每公里耗油量,以及对其传动系统的检测,计算其效率,传动特性;另外各种复杂道路条件的试验,也是对车身结构,车辆设计的合理性考察,避免设计上的失误。因此汽车可靠性道路试验对研发部门寻找汽车薄弱点具有积极意义,同时也指明了下一步的研发方向,为下一代汽车研发做参考。 2.汽车可靠性道路试验种类 根据汽车行业的一般分类方法,大致可分为试验场地、试验条件、试验对象、试验破坏情况等几类,其中这四个大类又细分几个小类别,例如,试验场地又可以分为试车场试验,现场试验和试验室试验。按照产品研发的进程,试验人员对汽车选择合适的试验方法。根据路面状况的差别又可以选择山路试验,泥泞路段试验,高速路试验等。下面简单介绍几种试验类型。 2.1山路试验 按照有关标准,其对山路试验的路面平整度,最大坡度,连续坡度长度,平均坡度等做出规定,一般企业或者团队选择路面平整度2级,最大坡度20%,连续坡度长度1.4千米,平均坡度8%的路和路面上下起伏,s型弯道的另一段路组成。山路试验比较考核车辆的输出马力,制动能力,和车身强度是汽车可靠性道路试验中复杂困难的路段之一,通过此试验可有有效检测出,汽车马力输出情况,制动器摩擦片的损耗情况,以及制动鼓的状况,对与自动挡汽车,山路试验对于其制动性能最好的考核。当要进行山路试验时,要准备得当,注意安全,山路试验是最容易导致车辆出故障的路段,其试验一定要在保证安全的前提下开展。在上坡路时,要考验汽车的爬坡能力,就不应该对其档位限制,选择较高的车速;下坡试验时,按照规定,被测车辆应选择比上坡时高一个档,采用制动器制动,按照规定,每行驶1000km时,需要对制动器拆卸,做一次测量, 2.2普通行驶试验 顾名思义高速路试验是对汽车传动系统的考核,路面状况模拟高速路段,采用水泥混凝土铺设路面,相比于山路试验,高速路试验路面状况要好的多,其模拟汽车在一般路面的行驶过程,故汽车运行平稳,故障率低,因其加速,减速较为频繁,其对减速器,传动系统,会有较大的负荷,主要考验汽车传动系统。 2.3高速环路试验 高速环路试验基本和普通行驶试验差不多,但是其路面状况比较恶劣,部分路段总有砂石路,凹凸路,泥土路等强化内容,相比于普通行驶试验,高速环路试验比较容易使车辆发生故障。在进行试验时,最大车速不超过160km/h。车速按照104——140km/h,66—— 104km/h,44——66km/h划分。在试验时首先对轮胎气压测试,在试验过程中,平均行驶车速大于等于最高车速的百分之九十。试验是,需要用最高车速行驶保持半个小时以上,由于这种道路比普通路面测试更加恶劣,增加了故障概率,缩短了测试时间。 2.4强化路试验 所谓强化路试验,是车辆在破损路面的行驶试验,模拟车辆在各种极端状况下的行驶状况,强化路试验路段由各种不同状况的路段组成,强化路试验是道路可靠性试验中一种比较重要的试验,其不同路面状况对汽车速度的要求也不一样,因此在进行试验时,要针对不同的路面状况选择合适的速度范围。一般情况下,车速保持30——40km/h比较适宜,此试验比较考核车辆结构强度,车辆各个部件的结合状况,以及松紧程度,其对车辆的稳定性,个别车辆的减震性能的一种试验。按照标准,当车辆测试里程达到1000km时,应对车辆拆卸检查,观察制动系统磨损情况,另外各个部件的损伤也应该进行检查,观察是否有疲劳破坏,裂纹等各种损坏,并记录下损坏状况。 3.道路模拟仿真试验 随着信息技术,传感技术的进步,通过一系列数据组合,对汽车行驶状况进行模拟,使得汽车可靠性的部分道路试验可以在电脑上进行。这样,在车辆设计阶段,试验人员通过将部分车辆参数变动,就可以得到相关的结果,使得在设计阶段,就可以对车辆性能进行测试,这无疑对汽车设计提供了极大的便利,同时也节约了设计成本,缩短了研发时间,同时也避免了出现一些错误。很多人对于计算机仿真模拟试验持有不信任态度,认为计算机模拟结果不准确,不能完全反映现实状况,但是通过实际的试验数据对比,我们不难发现,真实数据与模拟数据之间的误差不超过15%,这也说明了,计算机模拟结果是可以借鉴的,在某些方面是可以信任的。 4.道路试验气象条件 对汽车的试验设计应贴近现实生活,这样测出来的试验数据才有意义,在现实生活中,不可能每天都是晴天,同样的,在设计试验时,也应该考虑雨、雪、高温、低温等天气对车辆的影响,雨天试验主要体现在对车辆涉水深度试验,测的车辆最大涉水深度,以及各个

汽车电子可靠性测试项目全to

进军国际AM/OEM市场汽车电子可靠度验证势在必行 2009/5? ISO16750攸关汽车电子装置验证要求,因此国内业者欲跨足汽车电子后装(AM)或者原始设备制造商(OEM)市场,对本身开发产品所需之环境可靠度验证不可轻忽。 ISO16750道路车辆电机电子设备环境条件/试验?? ISO16750标准共分为五个部分,除第一部分通则之外,其余四个部分分别为电力负载、机械负载、气候负载及化学负载,另外,针对其电源系统分可适用于12伏特(乘客车)及24伏特(商用车)两类,而碍于篇幅限制,本文将仅针对使用占比较大之乘客车(PassengerCar)12伏特系统来分别依据四项负载要求做说明。? 此标准适用于安装在车辆特定位置上或内之汽车电子系统或组件,主要描述可能造成之潜在环境应力与特定试验要求。? 测试条件不一而足?? 通则主要定义第二至第五部分测试条件,以下将针对操作模式、功能状态分类、环境试验条件及试验编码制度作简单介绍。其中操作模式定义三种模式,包括为电子装置测试在无电源要求情形下,电子装置仿真关闭引擎后,利用电瓶电力供应操作情形,以及电子装置以发电机/引擎电力操作下测试。 至于安装位置区分为以下五种: ?引擎室 包含车体、车架、引擎内/外、变速箱内外等。 ?乘客室 包含暴露于直接太阳辐射及暴露于辐射热(太阳辐射除外)等。 ?行李厢/装载厢(载货空间) 包含车体、车架、轮弧、车底、行李箱盖等。 ?安装在外部/凹处内 包含车体、车架、车底、行李箱盖等。 ?其他安装位置 对于无标准规格之特殊环境条件位置,如排气系统等。 另外,试验后之功能判定等级则分为以下五种:? ?等级A 试验期间与试验后,电子装置所有功能符合原有设计。 ?等级B 试验期间电子装置所有功能皆可执行,但其中一或多项可能超出规格。在试验后,所有功能自动回复到正常范围内,惟记忆功能必须保持在等级A。 ?等级C

电子产品的可靠性试验

电子产品的可靠性试验 评价分析电子产品可靠性而进行的试验称为可靠性试验。试验目的通常有如下几方面: 1. 在研制阶段用以暴露试制产品各方面的缺陷,评价产品可靠性达到预定指标的情况; 2. 生产阶段为监控生产过程提供信息; 3. 对定型产品进行可靠性鉴定或验收; 4. 暴露和分析产品在不同环境和应力条件下的失效规律及有关的失效模式和失效机理; 5. 为改进产品可靠性,制定和改进可靠性试验方案,为用户选用产品提供依据。 对于不同的产品,为了达到不同的目的,可以选择不同的可靠性试验方法。可靠性试验有多种分类方法. 1. 如以环境条件来划分,可分为包括各种应力条件下的模拟试验和现场试验; 2. 以试验项目划分,可分为环境试验、寿命试验、加速试验和各种特殊试验; 3. 若按试验目的来划分,则可分为筛选试验、鉴定试验和验收试验; 4. 若按试验性质来划分,也可分为破坏性试验和非破坏性试验两大类。 5. 但通常惯用的分类法,是把它归纳为五大类: A. 环境试验 B. 寿命试验 C. 筛选试验 D. 现场使用试验 E.鉴定试验 1. 环境试验是考核产品在各种环境(振动、冲击、离心、温度、热冲击、潮热、盐雾、低气压等)条件下的适应能力,是评价产品可靠性的重要试验方法之一。 2. 寿命试验是研究产品寿命特征的方法,这种方法可在实验室模拟各种使用条件来进行。寿命试验是可靠性试验中最重要最基本的项目之一,它是将产品放在特定的试验条件下考察其失效(损坏)随时间变化规律。通过寿命试验,可以了解产品的寿命特征、失效规律、失效率、平均寿命以及在寿命试验过程中可能出现的各种失效模式。如结合失效分析,可进一步弄清导致产品失效的主要失效机理,作为可靠性设计、可靠性预测、改进新产品质量和确定合理的筛选、例行(批量保证)试验条件等的依据。如果为了缩短试验时间可在不改变失效机理的条件下用加大应力的方法进行试验,这就是加速寿命试验。通过寿命试验可以对产品的可靠性水平进行评价,并通过质量反馈来提高新产品可靠性水平。 3. 筛选试验是一种对产品进行全数检验的非破坏性试验。其目的是为选择具有一定特性的产品或剔早期失效的产品,以提高产品的使用可靠性。产品在制造过程中,由于材料的缺陷,或由于工艺失控,使部分产品出现所谓早期缺陷或故障,这些缺陷或故障若能及早剔除,就可以保证在实际使用时产品的可靠性水平。 可靠性筛选试验的特点是: A. 这种试验不是抽样的,而是100%试验; B. 该试验可以提高合格品的总的可靠性水平,但不能提高产品的固有可靠性,即不能提高每个产品的寿命; C. 不能简单地以筛选淘汰率的高低来评价筛选效果。淘汰率高,有可能是产品本身的设计、元件、工艺等方面存在严重缺陷,但也有可能是筛选应力强度太高。淘汰率低,有可能产品缺陷少,但也可能是筛选应力的强度和试验时间不足造成的。通常以筛选淘汰率Q和筛选效果β值来评价筛选方法的优劣:合理的筛选方法应该是β 值较大,而Q值适中。 上述各种试验都是通过模拟现场条件来进行的。模拟试验由于受设备条件的限制,往往只能对产品施加单一应力,有时也可以施加双应力,这与实际使用环境条件有很大差异,因而未能如实地、全面地暴露产品的质量情况。现场使用试验则不同,因为它是在使用现场进行,故最能真实地反映产品的可靠性问题,所获得的数据对于产品的可靠性预测、设计和保证有很高价值。对制定可靠性试验计划、验证可靠性试验方法和评价试验精确性,现场使用试验的作用则更大。 鉴定试验是对产品的可靠性水平进行评价时而做的试验。它是根据抽样理论制定出来的抽样方案。在保证生产者不致使质量符合标准的产品被拒收的条件下进行鉴定试验。 1 .可靠性设计的意义 ①可靠性贯穿于电子产品的整个寿命周期,从产品的设计、制造到安装、使用、维护的个阶段都有一个可靠性问题。但首先要抓好可靠性设计。产品可靠性的定量指标应该在设计过程就得到落实,为产品的固有可靠性奠定良好的基础。反之,一个忽视可靠性设计的产品,必然是“先天不足,后患无穷”,在使用过程中大部会暴露出一系列不可靠问题。据统计,由于设计不当而影响产品可靠性的程度占各种不可靠因素的首位。所以,我们必须扭转只搞性能指标设计,忽视可靠性设的倾向,在产品研制、设计阶段,认真开展可靠性设计,为产品固有可靠性奠定基础。②随着科学技术的进步和经济技术发展的需要,电子产品日益向多功能、小型化、高可靠方向发展。功能的复杂化,使设备应用的元器件、零部件越来越多,对可靠性要求也越来越高。每一个元器件的失效,都可能使设备或电子系统发生故障。

相关文档
最新文档