由空间直角坐标计算大地坐标的简便公式

由空间直角坐标计算大地坐标的简便公式
由空间直角坐标计算大地坐标的简便公式

大地测量学笔记

第一章 1.大地测量学是通过在广大的地面上建立大地控制网,精确测定大地控制网点的坐标,研究测定地球形状、大小和地球重力场的理论、技术与方法的学科。 2.大地测量的基本任务 (1)技术任务:精确测定大地控制点的位置及其随时间的变化也就是它的运动速度场,建立精密的大地控制网,作为测图的控制,为国家经济建设和国防建设服务。 (2)科学任务:测定地球形状、大小和重力场,提供地球的数学模型,为地球及其相关科学服务。 3.大地测量的作用 (1)为地形测图与大型工程测量提供基本控制; (2)为城建和矿山工程测量提供起始数据; (3)为地球科学的研究提供信息; (4)在防灾、减灾和救灾中的作用; (5)发展空间技术和国防建设的重要保障。 4.大地测量学的主要研究内容 大地测量、椭球测量学、天文测量大地重力学、卫星大地测量学、惯性大地测量学 第二章 1.大地水准面:设想海洋处于静止平衡状态时,将它延伸到大陆下面且保持处处与铅垂线正交的包围整个地球的封闭的水准面. 特点:重力方向不规则变化:原因是地表起伏不平、地壳内部物质密度分布不均匀 大地水准面处处与铅垂线正交,所以大地水准面是一个无法用数学公式表示的不规则曲面。 2.参考椭球:把形状和大小与大地体相近,且两者之间相对位置确定的旋转椭球称为参考椭球。参考椭球面是测量计算的基准面,椭球面法线则是测量计算的基准线。另外,水准面是外业观测时的基准面,铅垂线是外业观测时的基准线 3.总地球椭球:从全球着眼,必须寻求一个和整个大地体最为接近、密合最好的椭球,这个椭球又称为总地球椭球或平均椭球。总地球椭球满足以下条件: (1)椭球质量等于地球质量,两者的旋转角速度相等。 (2)椭球体积与大地体体积相等,它的表面与大地水准面之间的差距平方和为最小。 (3)椭球中心与地心重合,椭球短轴与地球平自转轴重合,大地起始子午面与天文起始子午面平行。 大地水准面与椭球面在某一点上的高差称为大地水准面差距,用N表示。 4.垂线偏差:同一测站点上铅垂线与椭球面法线不会重合。两者之间的夹角u称为垂线偏差 5.常用的坐标系统: 天球坐标系地球坐标系天文坐标系大地坐标系空间大地直角坐标系地心坐标系 站心坐标系高斯平面直角坐标系 6.高斯投影的特点: (1)高斯投影是正形投影的一种,投影前后角度相等。 (2)中央子午线投影后为一直线,且长度不变。距中央子午线越远的子午线,投影后弯曲越大,长度变形越大。 (3)椭球面除中央子午线外其他子午线投影后均向中央子午线弯曲,并向两极收敛,对称于中央子午线呵赤道。 (4)在椭球面上对称于赤道的纬圈,投影后仍为对称的曲线,并与子午线的投影曲线相互垂直且凹向两极。 7.时间系统

点到直线的距离公式教案

点到直线的距离公式教案 江苏省无锡市惠山区长安中学徐忠 一、教案背景 1.教材。 本课时选自江苏教育出版社的中等职业学校国家审定教材《数学》第7章解析几何第2节两直线的位置关系中的一节,是直线形解析几何内容的最后一个知识点。点到直线的距离公式是解析几何中计算距离的两个重要的基础公式之一。相对于另一个距离公式也就是两点间的距离公式,它需要有更强的综合知识的能力和计算能力,它既是学习曲线形解析几何内容的必备条件,也是直线形解析几何内容的难点。同时,本公式也体现了解析几何中的数学美,以及解析几何在解决数学问题中所展现的逻辑美。 2.学生。 本课时的教学对象是职业高中学生。作为中考成绩最差的一部分,这些学生学习能力弱,对基础知识的掌握和数学能力的运用方面都有很大的缺陷。他们的学习意志也不坚定,遇到困难很容易放弃。但他们对于能够理解和掌握的知识会表现出很大的兴趣。 二、课时分析 针对以上分析,对本课时作如下定位。 1.教学目标: (1)掌握点到直线的距离公式,初步使用公式解相关习题。 (2)锻炼学生的计算能力,培养良好的学习习惯。 (3)体会公式中的数学美;培养学生“数形结合”的数学思想。 2.重点:点到直线的距离公式。 3.难点:点到直线的距离公式的初步应用。 三、教学方法 1.教法。本课教法以讲授为主。采用“提出问题——解决问题”的过程来设计教学。通过 从简单到复杂,从特殊到一般,循序渐进,逐步深入地使学生理解本课主题。对基础比较薄弱的学生来说,这也是最容易接受的教学方式。 2.学法。本课学法以练习为主。在学生取得初步印象后,随时通过学生练习来加深理解, 巩固知识。学生练习是职高学生理解、掌握知识的重要途径,也是锻炼能力、培养良好学习习惯的有效方法。 四、教学过程 (一)知识准备 1.两点间的距离公式。 2.直线方程的一般形式。 3.两直线平行,则____;两直线垂直,则____。 4.点与直线的位置关系;两相交直线的交点坐标。 设计目标:复习已有知识,为新课作准备。 (二)问题提出 什么是点到直线的距离? 设计目标:理解点到直线的距离的几何意义,使学生重温“垂线段”这个名词。 (三)问题解决 1.当直线平行于坐标轴时的情况。例:求点A(2,-3)到下列直线的距离d: (1) y=7;(2) x +1=0. =7

数学运算解题常用六大公式.

数学运算解题常用六大公式 行测数学运算解题常用六大公式之往返运动问题公式 往返运动问题公式=2v1v2 / (v1+v2) (其中v1和v2分别代表往、返的速度) 【例1】(国家1999-39)有一货车分别以时速40km和60km往返于两个城市,往返这两个城市一次的平均时速为多少?() A. 55km B. 50km C. 48km D. 45km [答案]C [解析]设甲、乙两地间的距离为S,从甲地到乙地的速度为v1,从乙地到甲地的速度为v2, 则往返平均速度为v=2S/(t1+t2)=2S/ (S/v1+ S/v2)=2v1v2 /(v1+v2)=2×40×60 / (40+60)=4800/100=48。 [注释]往返运动问题核心公式:v=2v1v2 / (v1+v2)(其中v1和v2分别代表往、返的速度) 【例2】一辆汽车以10千米/时的速度从A地开往B地,它又以15千米/时的速度从B地返回A地,则汽车行驶的平均速度为多少千米/小时?() A. 11 B. 12 C. 13 D. 14 [答案]B [解析]根据往返运动问题核心公式:v=2v1v2 / (v1+v2)=2×10

×15/(10+15)=300/25=12。 【例3】(广东2004上-8)一辆汽车驶过一座拱桥,拱桥的上、下坡路程是一样的。汽车行驶拱桥上坡时的时速为6公里;下坡时的时速为12公里。则它经过该桥的平均速度是多少公里/小时?() A. 7 B. 8 C. 9 D. 10 [答案]B [解析]根据往返运动问题核心公式:v=2v1v2 /(v1+v2)=2×6×12/(6+12)=8。 【例4】(江苏2007B类-78) 在村村通公路的社会主义新农村建设中,有两个山村之间的公路都是上坡和下坡,没有平坦路。农车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时,已知农车在两个山村之间往返一次,需要行驶4小时,问两个山村之间的距离是多少千米?() A. 45 B. 48 C. 50 D. 24 [答案]B [解析]根据往返运动问题核心公式:v=2v1v2/(v1+v2)=2×20×30/(20+30)=24(千米/小时); 2S=v×4=24×4 S=48千米。 【例5】一人骑车从M地到N地速度为每小时12千米,到达N地后,立刻接到通知返回M地。为了使其往返于两地之间的平均速度为

地理坐标系及我国大地坐标系和高程系

地理坐标系及我国大地坐标系和高程系 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 大地控制的主要任务是确定地面点在地球椭球体上的位置。这种位置包括两个方面:一是点在地球椭球面上的平面位置,即经度和纬度;二是确定点到大地水准面的高度,即高程。为此,必须首先了解确定点位的坐标系。 1.地理坐标系 对地球椭球体而言,其围绕旋转的轴叫地轴。地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(图2-3)。其以本初子午线为基准,向东,向西各分了1800,之东为东经,之西为西经;以赤道为基准,向南、向北各分了900,之北为北纬,之南为南纬。 地理坐标系是指用经纬度表示地面点位的球面坐标系。在大地测量学中,对于地理坐标系统中的经纬度有三种描述:即天文经纬度、大地经纬度和地心经纬度。 (1)天文经纬度 天文经度在地球上的定义,即本初子午面与过观测点的子午面所夹的二面角;天文纬度在地球上的定义,即为过某点的铅垂线与赤道平面之间的夹角。天文经纬度是通过地面天文测量的方法得到的,其以大地水准面和铅垂线为依据,精确的天文测量成果可作为大地测量中定向控制及校核数据之用。 (2)大地经纬度 地面上任意一点的位置,也可以用大地经度L、大地纬度B表示。大地经度是指过参考椭球面上某一点的大地子午面与本初子午面之间的二面角,大地纬度是指过参考椭球面上某一点的法线与赤道面的夹角(图2-3)。大地经纬度是以地球椭球面和法线为依据,在大地测量中得到广泛采用。

《大地测量学基础》试题及部分答案

《大地测量学基础》试题 班级 _________ 学号________ 姓名________________ 成绩______________ 一?填空(20分,每题1分) 1?—大地测量学是一门地球信息学科,主要任务是测量和描绘地球并监测其变化,为人类活动提供关于地球的空间信息。它既是基础学科,又是应用学科。 2?重力位相等的面称为重力等位面,这也就是我们通常所说的水准面_。3?两个无穷接近的水准面之间的距离不是一个常数,这是因为重力加速度在水准面不同点上的数值是不同的。 4?设想与平均海水面相重合,不受潮汐、风浪及大气压变化影响,并延伸 到大陆下面处处与铅垂线相垂直的水准面称为大地水准面_,它是一个没有褶皱、无棱角的连续封闭曲面。由它包围的形体称为大地体_,可近似地把它看成是地球的形状。5? _似大地水准面—与大地水准面在海洋上完全重合,而在大陆上也几乎重合,在山区只有2?4m的差异。它尽管不是水准面,但它可以严密地解决关于研究与地球自然地理形状有关的问题。 6?垂直于旋转轴的平面与椭球面相截所得的圆,叫纬圈_。 7.由—水准面不平行—而引起的水准环线闭合差,称为理论闭合差。 8?以大地水准面为高程基准面,地面上任一点的_正高坐标_系指该点沿垂 线方向至大地水准面的距离。 9 ?我国规定采用_正常高_高程系统作为我国高程的统一系统。 10.坐标系统是由坐标原点位置、坐标轴的指向和__度_所定义的。 11 ? _大地基准_是指能够最佳拟合地球形状的地球椭球的参数及椭球定位和定向 12 ?过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的 平面叫做法截_面,该面与椭球面的交线叫法截_线。 13 ?与椭球面上一点的子午面相垂直的法截面同椭球面相截形成的闭合圈称为卯酉圈。 14?椭球面上两点间的最短程曲线叫做—大地_线,该线上各点的主法线与 该点的曲面法线重合。 15 .某一大地线常数等于椭球半径与该大地线穿越赤道时的大地方位角的 正弦乘积,或者等于该大地线上具有最大纬度的那一点的—平行圈一半径。16?通常将地面观测的水平方向归算至椭球面上,需要进行三差改正。这三项改正分别是—垂线偏差改正 _、_标高差改正_、_截面差改正_。

空间点到直线的距离公式

空间点到直线的距离公式 y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)空间点到直线距离点(x0, y0, z0),直线L(点向式参数方程):(x-xl)/m=(y-yl)/n=(z- zl)/p=t。 (1)式(1)的注释:点(xl, yl, zl)是直线上已知的一点,向 量(m, n, p)为直线的方向向量,t为参数方程的参数。空间直线 的一般式方程(两个平面方程联立)转换为点向式方程的方法, 请参考《高等数学》空间几何部分。设点(x0, y0, z0)到直线L 的垂点坐标为(xc, yc, zc)。因为垂点在直线上,所以有:(xc-xl)/m=(yc-yl)/n=(zc-zl)/p=t (2)式(2)可变形为:xc=m*t+xl, yc=n*t+yl, zc=p*t+zl、 (3)且有垂线方向向量(x0-xc, y0-yc, z0-zc)和直线方向向量(m, n, p)的数量积等于0,即:m*(x0- xc)+n*(y0-yc)+p*(z0-zc)=0 (4)把式(3)代入式(4),可消去未知 数“xc, yc, zc”,得到t的表达式:t=[m*(x0-xl)+n*(y0- yl)+p*(z0-zl)]/(m*m+n*n+p*p) (5)点(x0, y0, z0)到直线的距离d就是该点和垂点(xc, yc, zc)的距离:d=√[(x0-xc)^2+(y0-yc)^2+(z0-zc)^2] (6)其中xc, yc, zc可以用式(3)和式(5)代入消去。 第 1 页共 1 页

大地坐标和经纬度之间的换算-经纬度算坐标

大地坐标和经纬度之间的换算 地质工作中常要对进行大地坐标转经纬度和经纬度换大地坐标,我写一下一般的过程,希望对大家有点帮助. 大地座标-----→经纬度(地理坐标) 1,输入大地坐标数据,格式为Y空格X,输入到文本就行 如下,原始的大地坐标由一8位的Y和一个7位的X组成, 这组坐标数据中的Y的前两位为31,是分带号,一般使用的分带有三分带,六分带,这里的坐标是三分带的,记下Y前的这两位数,在原始数据中去除掉,现在数据变为,Y,6位,X,7位

保存这个TXT的文本文件。 2,打开MAPGIS,启动坐标投影变形程序 接下来选择投影转换>>>>用户文件投影转换 点打开文件,打开刚才的大地坐标的文本文件, 设置输入数据的格式,点击用户投影参数,并完成设置。 这里我们的大地座标为3度带的第31带,注意填好,坐标单位为米 好了以为设置输出的格式,我们要求输出的是经纬度,点结果转换参数,完成以下设置 我们输出的经纬度的单位应该是DDDMMMSS。SS注意 点写到文件,保存就大功告成了,注意保存的文件要写上.TXT的后缀 下面是计算出的结果文件 XP为经度,1234234。357就是123度42分34。357秒, YP为纬度,403950。225就是40度39分50。255秒(纬度没有最多90,所以没有三位数)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 经纬度——→大地座标 输入文件格式如下, 这里面的数据前面的为经度,格式为DDDMMSS,后面的为纬度,格式为DDMMSS 接下来的转换过程和大地坐标转换一样,只要将刚才的用户转换参数和结果转换参数交换即可, 要注意分带号的确定,如果你不知道分带号,就应该先计算分带号,算法是 经度/3得到的整数为三度带的分带号 经度/6得到的整数为六度带的分带号 其中的XP为地图上的Y坐标,记得在前面加上带号,其中的YP为地图上的X坐标

大地测量学试题参考答案

《大地测量学》试题参考答案 一、名词解释: 1、子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。 2、卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。 3、椭园偏心率:第一偏心率 a b a e 2 2- =第二偏心率 b b a e 2 2- =' 4、大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的坐标系。 P3 5、空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X 轴正交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。 P4 6、法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈。 P9 7、相对法截线:设在椭球面上任意取两点A和B,过A点的法线所作通过B点的法截线 和过B点的法线所作通过A点的法截线,称为AB两点的相对法截线。 P15 8、大地线:椭球面上两点之间的最短线。 9、垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方 向值应加的改正。 P18 10、标高差改正:由于照准点高度而引起的方向偏差改正。 P19 11、 截面差改正:将法截弧方向化为大地线方向所加的改正。 P20 12、起始方位角的归算:将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大 地方位角。 P22 13、勒让德尔定理:如果平面三角形和球面三角形对应边相等,则平面角等于对应球面角 减去三分之一球面角超。 P27 14、大地元素:椭球面上点的大地经度、大地纬度,两点之间的大地线长度及其正、反大 地方位角。 P28 15、大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地 主题解算。 P28 16、大地主题正算:已知P 1点的大地坐标,P 1 至P 2 的大地线长及其大地方位角,计算P 2 点的大地坐标和大地线在P 2 点的反方位角。 17、大地主题反算:如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角。 18、地图投影 : 将椭球面上各个元素(包括坐标、方向和长度)按一定的数学法则投影 到平面上。P38 19、高斯投影:横轴椭圆柱等角投影(假象有一个椭圆柱横套在地球椭球体外,并与某一 条子午线相切,椭球柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两 侧各一定范围内的地区投影到椭圆柱上,再将此柱面展开成投影面)。 P39 20、平面子午线收敛角:直角坐标纵轴及横轴分别与子午线和平行圈投影间的夹角。 21、方向改化:将大地线的投影曲线改化成其弦线所加的改正。 22、长度比:椭球面上某点的一微分元素与其投影面上的相应微分元素的比值。 P70 23、参心坐标系:依据参考椭球所建立的坐标系(以参心为原点)。 24、地心坐标系:依据总参考椭球所建立的坐标系(以质心为原点)。 25、站心坐标系:以测站为原点,测站上的法线(垂线)为Z轴(指向天顶为正),子午线 方向为x轴(向北为正),y轴与x,z轴垂直构成左手系。

点到直线的距离公式应用

点与直线问题 (1)点P (x 0,y 0)到直线Ax +By +C=0 的距离 (运用本公式要把直线方程变为一般 式) (2)两条平行线 之 间的距离 (运用此公式时要注意把两平行线方程 x 、y 前面的系数变为相同的) (3)点 P (x ,y )关于Q (a ,b )的对称点为P'(2a -x ,2b -y ) (4)直线关于点对称:在已知直线上任取两点A 、B,再分别求出A 、B 关于P 点的对称点A′、B′,然后由两点式可得所求直线方程. (5)点关于直线的对称点,要抓住“垂直”和“平分” 设 P (x 0,y 0),l :Ax +By +C=0(A 2+B 2≠0),若P 关于l 的对称点的坐标Q 为(x ,y ),则l 是PQ 的垂直平分线,即①PQ ⊥l ;②PQ 的中点在l 上, 解方程组可得 Q 点的坐标 例1 求点P = (–1,2 )到直线3x = 2的距离 解:22 |3(1)2|5330d ?--= =+ 例2 已知点A (1,3),B (3,1),C (–1, 0),求三角形ABC 的面积. 解:设AB 边上的高为h ,则 221 ||2||(31)(13)22 ABC S AB h AB =?=-+-=V AB 边上的高h 就是点C 到AB 的距离. AB 边所在直线方程为31 1331 y x --= -- 即x + y – 4 = 0. 点C 到x + y – 4 = 0的距离为h 2|104|5112 h -+-==+, 因此,15225 22S ABC =??= 例3 求两平行线 l 1:2x + 3y – 8 = 0 l 2:2x + 3y – 10 =0的距离. 解法一:在直线l 1上取一点P (4,0),因为l 1∥l 2,所以P 到l 2的距离等于l 1与l 2的距离,于是 22|243010|21313 23 d ?+?-==+ 解法二: 直接由公式22 |8(10)|21313 23d ---= =+ 例 4、求直线3x -y -4=0关于点P (2,-1)对称的直线l 的方程

小学数学所有图形计算公式

小学数学图形计算公式 1 正方形 C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积s:面积a:长b: 宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积a底h高 面积=底×高 s=ah 7 梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积C周长∏ d=直径r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r

(2)面积=半径×半径×∏ 9 圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

地理坐标系VS大地坐标系

地理坐标系VS大地坐标系 地理坐标:为球面坐标。参考平面地是椭球面。坐标单位:经纬度大地坐标:为平面坐标。参考平面地是水平面坐标单位:米、千米等。 地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面) 在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system), 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为 地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作 呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求 我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。Spheroid: Krasovsky_1940

Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描 述中,可以看到有这么一行: Datum: D_Beijing_1954 表示,大地基准面是D_Beijing_1954。 -------------------------------------------------------------------------------- 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。完整参数: Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

高数上册归纳公式篇(完整)

公式篇 目录 一、函数与极限 1.常用双曲函数 2.常用等价无穷小 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 2.n阶导数公式 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 4.参数方程求导公式 5.微分近似计算 三、微分中值定理与导数的应用 1.一阶中值定理 2.高阶中值定理 3.部分函数使用麦克劳林公式展开 4.曲率 四、定积分 1.部分三角函数的不定积分 2.几个简单分式的不定积分 五、不定积分 1.利用定积分计算极限 2.积分上限函数的导数 3.牛顿-莱布尼茨公式和积分中值定理 4.三角相关定积分 5.典型反常积分的敛散性 6.Γ函数(选) 六、定积分的应用 1.平面图形面积 2.体积 3.弧微分公式 七、微分方程 1.可降阶方程 2.变系数线性微分方程 3.常系数齐次线性方程的通解 4.二阶常系数非齐次线性方程(特定形式)的特解形式 5.特殊形式方程(选)

一、函数与极限 1.常用双曲函数( sh(x).ch(x).th(x) ) 2.常用等价无穷小(x →0时) 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 (凡是“余”求导都带负号) 2.n 阶导数公式 特别地,若n =λ

3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 函数的0阶导数可视为函数本身 4.参数方程求导公式 5.微分近似计算(x 很小时) (注意与拉格朗日中值定理比较) 常用: (与等价无穷小相联记忆)

三、微分中值定理与导数的应用 1.一阶中值定理 ()(x f 在],[b a 连续,),(b a 可导 ) 罗尔定理 ( 端点值相等)()(b f a f = ) 拉格朗日中值定理 柯西中值定理 (0)('≠x g ≠0 ) 2.高阶中值定理 ()(x f 在),(b a 上有直到)1(+n 阶导数 ) 泰勒中值定理 n R 为余项 (ξ在x 和0x 之间) 令00=x ,得到麦克劳林公式 3.部分函数使用麦克劳林公式展开(皮亚诺型余项)

国家大地坐标系与现行坐标系关系

2018-04-16 国家局测绘学报 《测绘学报》 1.采用2000国家大地坐标系对现有地图的影响 大地坐标系是测制地形图的基础,大地坐标系的改变必将引起地形图要素产生位置变化。一般来说,局部坐标系的原点偏离地心较大(最大的接近 200m),无论是1954年北京坐标系,还是1980西安坐标系的地形图,在采用地心坐标系后都需要进行适当改正。 计算结果表明,1954年北京坐标系改变为2000国家大地坐标系。在56°N~16°N和72°E~135°E范围内若不考虑椭球的差异,1954年北京坐标系下的地图转换到2000系下图幅平移量为:X平移量为-29~-62m,Y方向的平移量为-56~+84m。1980西安坐标系下的X平移量为-9~+43m,Y方向的平移量为+76~+119m。因此,坐标系的更换在1:25万以大比例尺地形图中点(含图廓点)的地理位置的改变值已超过制图精度,必须重新给予标记。 对于1:25万以小地形图,由坐标系更换引起图廓点坐标的变化以及图廓线长度和方位的变动在制图精度内,可以忽略其影响,对于1:25万比例尺地形图,考虑到实际成图精度,实际转换时也无需考虑转换。 根据实际计算表明,由于坐标系的转换引起的各种比例尺地形图任意两点的长度(包括图廓线的长度)和方位变动在制图精度以内,可以忽略不计。也就是说,采用地心坐标系时,只移动图幅的图廓点,而图廓线与原来的图廓线平行即可,且坐标系变更不改变图幅内任意两地物之间的位置关系。 2.WGS84坐标系与2000国家大地坐标系的关系 在定义上,2000国家大地坐标系与WGS84是一致的,即关于坐标系原点、尺度、定向及定向演变的定义都是相同的。两个坐标系使用的参考椭球也非常相近,唯有扁率有微小差异。而在实际点位表示时,仅考虑椭球的差异,两者的结果是一致的,但因2000国家大地坐标系的坐标定义在2000年那一时刻,而大多数应用实际上是不同时间进行定位,因地球上的板体是在不断运动的,不同时刻位于地球不同板块上站点的实际位置是在变化的,已经偏离了2000年的位置。 因此不同时间定位的得到的WGS84坐标不是严格意义下的2000国家大地坐标系。如基于当前框架当前历元(如2009年)坐标值与2000国家大地坐标系的相比,最大差0.6m。但对于1:1万以小比例尺的应用,可简单近似地认为是同一坐标系。 3.GNSS后处理定位结果与2000国家大地坐标系关系 用高精度GNSS定位软件处理后得到的各站点坐标是与观测时刻卫星星历定义的基准是一样的,卫星在不同时间段采用的是不同的ITRF框架,但不同框架最大的差异在cm量级,差异主要体现在板块运动引起的点位变化,站点位于不同的板块上,随板块一起运动,若按我国平均点运动速率为2-3cm/年,以10年计,点位相距定义时点坐标已变化了20-30cm。 因此GNSS后处理得到的站点坐标需顾及点位移动速率才能得到2000国家大地坐标系的坐标。

大地测量学试卷

武汉大学测绘学院 2007-2008学年度第一学期期末考试 《大地测量学基础》试卷(A)[200516101-8(必修)、200511401(选修)] 出题者刘宗泉、丁仕俊审核人 班级学号姓名成 绩 一、解释下列术语(每个2分,共10分) 大地水准面球面角超底点纬度高程异 常水准标尺零点差 二、填空(1-15小题每空1分;16题4分,共36分) 1、在地球自转中,地轴方向相对于空间的变化有______和_____。 2、时间的度量单位有______和______两种形式。 3、重力位是______和_____之和,重力位的公式表达式为_______。 4、椭球的形状和大小一般用_______来表示。 5、在大地控制网优化设计中把_____、______和_____作为三个主要质量控制标准。 6、测距精度表达式中,的单位是______,表示的意义是_____;的单位是______,表示的意义是_____。 7、利用测段往返不符值计算的用来衡量水准测量外业观测的精度指标用_____来表示,其意义是______。 8、利用闭合环闭合差计算的用来衡量水准测量外业观测的精度指标用_____来表示,其意义是______。 9、某点在高斯投影3°带的坐标表示为XA=3347256m, YA=37476543m,则该点在6°带第19带的实际坐标为xA=___________________, yA=___________________。 10、精密水准测量中每个测段设置______个测站可消除水准标尺______零点差的影响。 11、点P从B=0°变化到B=90°时,其卯酉圈曲率半径从______变化到_____。

点到直线的距离公式的七种推导方法

点到直线的距离公式的七种推导方法(转载) 很有用哦 已知点 00(,)P x y 直线:0(0,0)l Ax By C A B ++=≠≠求点P 到直线 l 的距离。(因为特殊直线很容易求距离,这里只讨论一般直线) 一、 定义法 证:根据定义,点P 到直线 l 的距离是点P 到直线 l 的垂线段的长,如图1, 设点P 到直线l 的垂线为 'l ,垂足为Q ,由 'l l ⊥可知 'l 的斜率为 B A 解得交点22 00002222 ( ,)B x ABy AC A y ABx BC Q A B A B ----++ 22222 000000 2222 222200002222 2222200000022222222||()()()()()()()()()B x ABy AC A y ABx BC PQ x y A B A B A x ABy AC B y ABx BC A B A B A Ax By C B Ax By C Ax By C A B A B A B ----=-+-++------=+++++++++=+= ++ +|PQ ∴= 二、 函数法 证:点P 到直线 l 上任意一点的距离的最小值就是点P 到直线l 的距离。在l 上取任意点 (,)Q x y 用两点的距离公式有,为了利用条件0Ax By C ++=上式变形一下,配凑系数处理得: 22220022222222000022 0000220000()[()()] ()B ()()B ()[()B()][()B()][()B()](B )(B 0)A B x x y y A x x y y A y y x x A x x y y A y y x x A x x y y Ax y C Ax y C +-+-=-+-+-+-=-+-+-+-≥-+-=++++= 当且仅当00()B A y y x -=-(x ) 时取等号所以最小值就是d = 三、不等式法 证:点P 到直线 l 上任意一点Q (,)x y 的距离的最小值就是点P 到直线l 的距离。由柯西不 等式:222222 000000()[()()][()B()](B )A B x x y y A x x y y Ax y C +-+-≥-+-=++ B 0,Ax y C ++=≥ 当且仅当00()B A y y x -=-(x ) 时取等号所以最小值就是d = 四、转化法 证:设直线 l 的倾斜角为 α过点P 作PM ∥ y 轴交l 于M 11(,) x y 显然 10 x x =所以 01Ax C y b +=- x

大地测量学习题

大地测量学习题 1.地球参考框架北京54 西安80 WGS-84 和地球参考框架的定义(由一 定量的已知精确坐标的基准点及四个基本参数决定的正常地球椭球, 并实现它的定位和定向。) 2.现代大地测量学的新特征 ⑴ 研究范围大(全球:如地球两极、海洋) ⑵ 从静态到动态,从地球内部结构到动力过程。 ⑶ 观测精度越高,相对精度达到10-8~10-9,绝对精度可到达毫 米。 ⑷ 测量与数据处理周期短,但数据处理越来越复杂。 3.大地测量学的基本内容(6点)。 (1)确定地球形状及外部重力场及其随时间的变化,建立统一的大 地测量坐标系,研究地壳变形,测定极移以及海洋水面地形及其变 化。 (2)研究月球及太阳系行星的形状及重力场。 (3)建立和维持具有高科技水平的国家和全球的天文大地水平控制 网和精密水准网以及海洋大地控制网。 (4)研究为获得高精度测量成果的仪器和方法。 (5)研究地球表面向椭球面或平面的投影数学变换及有关的大地测 量计算。 (6)研究大规模、高精度和多类别的地面网、空间网及其联合网的 数据处理的理论和方法,测量数据库建立及应用。 4.黄道:过天球中心与地球公转的平均轨道面平行的平面与天球相交 的大圆。 5.岁差:因地球自转轴的空间指向和黄道平面的长期变化而引起的春 分点移动现象 6.章动:地球瞬时自转轴在惯性空间不断改变方向的周期性运动 7.历元:所获数据对应的时刻也称为历元 8.协调世界时(UTC):以国际制秒(SI)为基准,用正负闰秒的方法保 持与世界时相差在一秒以内的一种时间 9.恒星时的计量依据以春分点为参考点计时 10.世界时的计量依据以真太阳为参考点计时 11.卫星定位系统时间计量依据是源自谐振信号周期 12.世界协调时的计量依据原子时秒长 13.大地基准:用于大地坐标计算的起算数据,包括参考椭球的大小、形状及其定位、定向参数 14.天球:天文学中引进的,以选定点(常为地球)为中心,以任意长为

点到直线的距离公式

课 题:7.3两条直线的位置关系(四) ―点到直线的距离公式 教学目的: 1. 2. 会用点到直线距离公式求解两平行线距离王新敞 3. 认识事物之间在一定条件下的转化,用联系的观点看问题王新敞 教学重点:点到直线的距离公式王新敞 教学难点:点到直线距离公式的理解与应用. 授课类型:新授课王新敞 课时安排:1课时王新敞 教 具:多媒体、实物投影仪王新敞 内容分析: 前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P 到直线l 的距离. 在引入本节的研究问题:点到直线的距离公式之后,引导学生分析点到直线距离的求解思路,一起分析探讨解决问题的各种途径,通过比较选择其中一种较好的方案来具体实施,以培养学生研究问题的习惯,分析问题进而解决问题的能力. 在解决两平行线的距离问题时,注意启发学生与点到直线的距离产生联系,从而应用点到直线的距离公式求解王新敞 教学过程: 一、复习引入: 1.特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行; (2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直王新敞 2.斜率存在时两直线的平行与垂直: 两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之, 如果它们的斜率相等,则它们平行,即21//l l ?1k =2k 且21b b ≠ 已知直线1l 、2l 的方程为1l :0111=++C y B x A , 2l :0222=++C y B x A )0,0(222111≠≠C B A C B A

大地坐标和经纬度之间的换算完整版

大地坐标和经纬度之间 的换算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

大地坐标和经纬度之间的换算 地质工作中常要对进行大地坐标转经纬度和经纬度换大地坐标,我写一下一般的过程,希望对大家有点帮助. 大地座标-----→经纬度(地理坐标) 1,输入大地坐标数据,格式为 Y空格X,输入到文本就行 如下,原始的大地坐标由一8位的Y和一个7位的X组成, 这组坐标数据中的Y的前两位为31,是分带号,一般使用的分带有三分带,六分带,这里的坐标是三分带的,记下Y前的这两位数,在原始数据中去除掉,现在数据变为,Y,6位,X,7位 保存这个TXT的文本文件。 2,打开MAPGIS,启动坐标投影变形程序 接下来选择投影转换>>>>用户文件投影转换 点打开文件,打开刚才的大地坐标的文本文件, 设置输入数据的格式,点击用户投影参数,并完成设置。 这里我们的大地座标为3度带的第31带,注意填好,坐标单位为米 好了以为设置输出的格式,我们要求输出的是经纬度,点结果转换参数,完成以下设置 我们输出的经纬度的单位应该是DDDMMMSS。SS注意 点写到文件,保存就大功告成了,注意保存的文件要写上.TXT的后缀 下面是计算出的结果文件 XP为经度,1234234。357就是123度42分34。357秒, YP为纬度,403950。225就是40度39分50。255秒(纬度没有最多90,所以没有三位数) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 经纬度——→大地座标 输入文件格式如下, 这里面的数据前面的为经度,格式为DDDMMSS,后面的为纬度,格式为DDMMSS 接下来的转换过程和大地坐标转换一样,只要将刚才的用户转换参数和结果转换参数交换即可, 要注意分带号的确定,如果你不知道分带号,就应该先计算分带号,算法是 经度/3得到的整数为三度带的分带号 经度/6得到的整数为六度带的分带号 其中的XP为地图上的Y坐标,记得在前面加上带号,其中的YP为地图上的X坐标

大地测量学基础思考题

《大地测量学基础》(第二版)复习思考题 (供同学复习时参考,不作为期末考试出题依据) ══════════════════════════════════ 第1章思考题 1、什么是大地测量学?它的地位和作用体现在哪几个方面? 2、普通测量学和大地测量学有何区别和联系?常规大地测量学和现代大地测量学主要有哪些分支?现代大地测量学有何特征? 3、了解大地测量的发展过程。 4、为什么说现代大地测量是以空间测量技术为代表的? ══════════════════════════════════ 第2章思考题 1、简述开普勒三大行星运动定律。 2、掌握岁差、章动、极移的基本概念和相关术语。 3、什么是国际协议原点?它的作用是什么? 4、研究时间的重要性?时间的两个含义?作为时间基准的周期运动应满足哪三项要求? 5、什么是大地水准面和大地体,大地水准面有何特点? 6、什么是总地球椭球体和参考椭球体?

7、什么是高程异常和大地水准面差距? 8、掌握大地坐标系和天文坐标系的定义。 9、质心和参心空间直角坐标系是怎样定义的? 10、什么是椭球定位和定向?局部定位和地心定位?定向满足的两个平行条件? 11、什么是参考椭球一点定位和多点定位? 12、什么是大地原点及大地起算数据? 13、熟悉1954北京坐标系,1980年国家大地坐标系、新1954年北京坐标系,WGS-84世界大地坐标系和CGCS200国家大地坐标系的基本情况。 14、掌握二维直角坐标变换的四参数公式和三维直角坐标变换的七参数公式。

══════════════════════════════════ 第3章思考题 1、什么是地球引力、离心力、重力?重力的单位是什么? 2、什么是位函数?引力位和离心力位的具体表达式如何? 3、什么是重力位和重力等位面?重力等位面的性质有哪些? 4、什么是正常重力位?为什么要引入正常重力位? 的正常重力公式?并搞清各项的意义,高出椭球面H米的正 5、顾及α和2 常重力如何计算? 6、地球大地基准常数的意义? 7、什么是水准面的不平行性?对几何水准测量影响如何? 8、掌握正高、正常高、力高的定义、基准面及计算公式。正高、正常高和大地高的关系如何?

相关文档
最新文档