有机化学乙酸乙酯的合成实验报告

有机化学乙酸乙酯的合成实验报告
有机化学乙酸乙酯的合成实验报告

中国石油大学(华东)现代远程教育

实验报告

课程名称:有机化学

实验名称:

实验形式:在线模拟+现场实践

提交形式:在线提交实验报告

学生姓名:学号:

年级专业层次:网络18春石油化工技术

学习中心:

提交时间: 2018 年 09 月 22 日

乙酸乙酯皂化反应实验报告

乙酸乙酯皂化反应速度常相数的测定 一、实验目的 1.通过电导法测定乙酸乙酯皂化反应速度常数。 2.求反应的活化能。 3.进一步理解二级反应的特点。 4.掌握电导仪的使用方法。 二、基本原理 乙酸乙酯的皂化反应是一个典型的二级反应: 325325CH COOC H OH CH COO C H OH --+??→+ 设在时间t 时生成浓度为x ,则该反应的动力学方程式为 ()()dx k a x b x dt - =-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为 2()dx k a x dt =- (8-2) 积分上式得: 1() x k t a a x =?- (8-3) 由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。如果k 值为常数,就可证明反应是二级的。通常是作 () x a x -对t 图,如果所的是直线,也可证明反应是二级 反应,并可从直线的斜率求出k 值。 不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。本实验用电导法测定x 值,测定的根据是: (1) 溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。 (2) 在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率

就等于组成溶液的电解质的电导率之和。 依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是 强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。如果是在稀溶液下进行反应,则 01A a κ= 2A a κ∞= 12()t A a x A x κ=-+ 式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数; 0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。由此三 式可以得到: 00( )t x a κκκκ∞ -=- (8-4) 若乙酸乙酯与NaOH 的起始浓度相等,将(8-4)式代入(8-3)式得: 01t t k ta κκκκ∞ -= ?- (8-5) 由上式变换为: 0t t kat κκκκ∞-= + (8-6) 作0~ t t t κκκ-图,由直线的斜率可求k 值,即 1m ka = ,1k ma = 由(8-3)式可知,本反应的半衰期为: 1/21 t ka = (8-7) 可见,两反应物起始浓度相同的二级反应,其半衰期1/2t 与起始浓度成反比,由(8-7)式可知,此处1/2t 亦即作图所得直线之斜率。 若由实验求得两个不同温度下的速度常数k ,则可利用公式(8-8)计算出反应的活化能a E 。

有机化学实验报告---肥皂之制备

肥皂之製備 食二丙 第十二組 梅婉如

肥皂之製備 一、實驗目的: 瞭解油脂的物理性質及化學性質、瞭解肥皂之製備及其性質、本實驗是用牛油和氫氧化鈉合成肥皂。也可使用回鍋油製作皂基這樣也不會造成嚴重的環境污染,若把回鍋油製成肥皂就可解決廢油問題。 二、實驗原理: 油脂與鹼(NaOH 或KOH)共熱生成肥皂和甘油的反應,稱為皂化反應。 肥皂是(soap)為長鏈脂肪酸之鹼金屬鹽類。肥皂可用RCOONa 或RCOOK 表示。例如:C17H35COONa(硬脂酸鈉)、C15H31COONa(軟脂酸鈉)等 這是一個皂化反應,由於牛油是脂類,所以與氫氧化鈉生成硬脂酸鈉,這是肥皂的一種。加入濃食鹽水的目的只是令肥皂溶解度降低,令它浮在溶液上,易於收集。

自然界中脂肪酸(Fatty acid)和甘油(Glycerol) 會形成脂肪酸之甘油酯(Glycerides;Glycerin esters)

常溫下 因此若 R = R' = R"簡單甘油脂 R ≠ R'≠ R"混甘油脂 簡單甘油酯有: (1)軟酯Palmitin(三軟脂酸甘油酯)﹣﹣(C15H31COO)3C3H5 (2)硬酯Stearin(三硬脂酸甘油酯)﹣﹣(C17H35COO)3C3H5 (3)月桂酯Laurin(三月桂脂酸甘油酯)﹣﹣(C11H23COO)3C3H5 (4)肉豆蔻酯Myristin (三肉豆蔻脂酸甘油酯) ﹣﹣(C13H27COO)3C3H5 (5)花生酯Arachidin(三花生脂酸) ﹣﹣(C19H39COO)3C3H5 上述為飽和酸酯 (6)油酯Olein(三油酸甘油酯)﹣﹣(C17H32COO)3C3H5 (7)亞油酯Linolein(三亞麻仁油酸甘油酯)﹣﹣(C17H30COO)3C3H5 (8)次亞油酯Linolenin(三次亞麻仁油酸甘油酯)-- (C17H28COO)3C3H5 (9)花生油酯Arachidonin(三花生油酸甘油酯)--(C19H30COO)3C3H5 上述為不飽和酸酯

有机化学实验报告模板

篇一:《有机化学实验报告模板》 有机化学实验报告 专业班级学号姓名 实验名称 实验时间年月日 学生姓名同组人姓名 第一部分实验预习报告 一、实验目的 二、实验原理(包括实验装置简图) 三、主要仪器设备、药品

四、主要试剂和产物的物理常数 第二部分实验报告 五、实验操作步骤及现象 六、实验原始数据记录与处理(产率计算) 七、结果与讨论 (其主要内容对测定数据及计算结果的分析、比较;如果实验失败了,应找出失败的原因;对实验过程中出现的异常现象进行分析;对仪器装置、操作步骤、实验方法的改进意见;实验注意事项;思考题的回答等等) 篇二:《有机化学试验报告模板》 有机化学试验报告模板 【例】溴乙烷的制备 一、实验目的【实验的基本原理;

需掌握哪些基本操作; 进一步熟悉和巩固的已学过的某些操作。】 了解以醇为原料制备饱和一卤代烃的基本原理和方法。 掌握低沸点化合物蒸馏的基本操作。进一步熟悉和巩固洗涤和常压蒸馏操作。二、反应原理及反应方程式 【本项内容在写法上应包括以下两部分内容文字叙述要求简单明了、准确无误、切中要害。 主、副反应的反应方程式。】用乙醇和NaBr-H2SO4为原料制备溴乙烷是典型的双分子亲核取代反应SN2反应,因溴乙烷的沸点很低,在反应时可不断从反应体系中蒸出,使反应向生成物方向移动。 主反应 NaBr + H2SO4CH3CH2OH + HBr HBr + NaHSO4CH3CH2Br + H2O

副反应 2 CH3CH2OH CH3CH2OHH2SO4 + 2 HBr CH3CH2OCH2CH3 + H2 OCH2H2 + H2OSO2 + H2O + Br2 三、实验所需仪器的规格、药品用量和原料及主、副产物的物理常数 【仪器的规格、药品用量按实验中的要求列出即可。】 【物理常数包括主要原料、主要产物与副产物的性状、分子量、熔点、沸点、相对密度、折光率、溶解度等,最好用表格形式列出,注意有单位的物理常数必须给出具体单位。查物理常数的目的不仅是学会物理常数手册的查阅方法,更重要的是因为知道物理常数在某种程度上可以指导实验操作。例如相对密度可以帮助判断在洗涤操作中哪个组分在上层,哪个组分在下层;溶解度可帮助正确地选择溶剂和选择后处理分离提纯方法。】具体(略) 四、实验装置图

乙酸乙酯皂化反应实验报告(详细参考)

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应 姓名成绩 班级学号 同组姓名实验日期 指导教师签字批改日期年月日

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为 (1)式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时

的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。 乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得: 重新排列得: (3) 因此,只要测不同时间溶液的电导值G t和起始溶液的电导值G0,然后 以G t对作图应得一直线,直线的斜率为,由此便求出某温 度下的反应速率常数k值。由电导与电导率κ的关系式:G=κ代入(3)式得: (4) 通过实验测定不同时间溶液的电导率κt和起始溶液 的电导率κ0,以κt,对作图,也得一直线,从直线的斜率也可求出反应速率数k值。如果知道不同温度下的反应速率常数k(T2)和k(T1),根据Arrhenius公式,可计算出该反应的活化能E和反应半衰期。 (5)

从茶叶中提取咖啡因 有机化学实验报告

有机化学实验报告 实验名称:从茶叶中提取咖啡因 学院:化工学院 专业:化学工程与工艺 班级: 姓名:学号 指导教师:房江华、李颖 日期:

一、实验目的: 1、学习从茶叶中提取咖啡因的原理和方法; 2、学习索氏提取器连续抽提方法,升华操作。 二、实验原理: 从茶叶中提取咖啡因,是用适当的溶剂(乙醇、氯仿、苯等)在索氏提取器中连续抽取,浓缩即得粗咖啡因。进一步可利用升华法提纯。咖啡因易溶于乙醇而且易升华。三、主要试剂及物理性质: 咖啡因属于杂环化合物嘌呤的衍生物。测定表明,茶叶中含咖啡因约1%~5%,还含有单宁酸,色素、纤维素、蛋白质等。含结晶水的咖啡因为白色针状结晶粉末。能溶于水、乙醇、丙酮、氯仿等,微溶于石油醚。在100℃时失去结晶水,开始升华,178℃以上升华加快。无水咖啡因的熔点为234.5℃。咖啡因具有刺激心脏、兴奋大脑神经和利尿作用,因此可用作中枢神经兴奋剂。 四、实验试剂及仪器:

五、仪器装置: 六、实验步骤及现象:

七、数据处理与实验结果:

产率=(m0/m)×100% 八、注意事项: ①索氏提取器防止堵塞; ②蒸发加热时不断搅拌,以防溅出; ③蒸馏时,烧瓶内的液体最好不要蒸干,否则不易倒出; ④蒸馏时,要注意火不能太大,否则,烧瓶内的溶液易暴沸出来; ⑤在整个升华过程中,要严格控制加热温度;若温度太高,将导致被烘物的滤纸炭化,一些有色物质也会被带出来,使产品发黄,影响产品的质量。 ⑥在虹吸时,水浴锅内的水应尽可能使水浸没平底烧瓶内的溶液,使反应速度加快。 ⑦称量产品时,由于产品质量较少,要用分析天平来称量。 ⑧蒸馏后,蒸出的乙醇要回收,产品也要回收。 ⑨蒸馏时,还要注意加入沸石。 九、实验讨论及误差分析: 本次试验,实验产率很低。 ①在进行虹吸时,水浴锅内水太少,虹吸速度慢,且要不断加水,未达到所要求的虹吸次数,茶叶水颜色就很浅了,而下层颜色比较重,有点堵塞,造成产品质量比较低。 ②在蒸馏过程中,由于液体较多,又没有控制好温度,加上沸石质量不太好,出现小程度暴沸,使液体进入锥形瓶中; ③在把加氧化钙的产品蒸成干粉时,如果占到蒸发皿上的黄绿色固体不完全搞下来,也会使产率偏低。

小度写范文《有机化学》课程实验报告范本模板

《有机化学》课程实验报告范本 姓名 学号 成绩 日期 同组姓名 指导教师 实验名称:糖类化合物的化学性质 一、实验目的: 加深对糖类化合物的化学性质的认识。 二、仪器与药品 仪器:试管、胶头滴管、酒精灯 药品:(1)试剂:5%α-萘酚乙醇溶液、浓硫酸、10%硫酸溶液、Benedict试剂、10%氢氧化钠溶液、红色石蕊试纸、苯肼试剂、1%碘溶液等。 (2)样品:2%葡萄糖溶液、2%蔗糖溶液、2%淀粉溶液、2%果糖溶液、2%麦芽糖溶液、糖尿病病人尿液、10%乳糖溶液、10%葡萄糖溶液、10%果糖溶液、10%麦芽糖溶液、1%糊精溶液、0.5%糖原溶液 三、实验原理及主要反应方程式 糖类化合物又称碳水化合物,通常分为单糖、双糖和多糖。 糖类物质与α-萘酚都能起呈色反应(Molish反应)。单糖、双糖、多糖均具有这个性质(苷类也具有这一性质)。因此,它是鉴定糖类物质的一个常用方法。 单糖及含有半缩醛羟基的二塘都具有还原性,多糖一般无还原性。具有还原性的糖叫做还原糖,能还原Fehling试剂、Benedict试剂和Tollens试剂。 蔗糖是二塘没有还原性,但在酸或酶的催化下,可水解为等分子的葡萄糖和果糖,因此其水解液具有还原性。蔗糖水解前后旋光方向发生改变, 因此蔗糖水解反应又称转化反应。用旋光仪可观察到旋光方向改变的情况。 还原糖存在变旋光现象,其原因在于α、β两种环状半缩醛结构通过开链结构互相转化,最终达到动态平衡。用旋光仪也可观察到变旋光现象。 单糖及具有半缩醛羟基的二糖,可与苯肼生成糖脎。糖脎有良好的黄色结晶和一定的熔点,根据糖脎的形状、熔点及形成的速度,可以鉴别不同的糖。 部分的多糖和碘(I2)液可起颜色反应,一般淀粉遇碘呈蓝色,而糊精遇碘呈蓝色、紫色、红色、黄色或不显色,糖原与碘一般呈红棕色,纤维素与碘不显颜色。 四、实验步骤 [注1]Molish实验的反应式如下:糖类物质先与浓硫酸反应生成糖醛衍生物,后者再与α-萘酚反应生成紫色络合物。 间苯二酚、麝香草酚二苯胺、樟脑可用来代替α-萘酚。其他能与糖醛衍生物缩合成有色物质的化合物,也都可以代替α-萘酚。 此颜色反应时很灵敏的,如果操作不慎,甚至偶尔将滤纸毛或碎片落入试管中,都会得正性结果。但是,正性结果不一定都是糖。例如,甲酸、丙酮、乳酸、草酸、葡萄糖醛酸、没食子鞣酸和苯三酚与α-萘酚试剂也能生成有色的环。1,3,5-苯三酚与α-萘酚的反应产物用水稀释后颜色即行消失。但负性结果肯定不是糖。 [注2]Benedict试剂的制备: 硫酸铜晶体(CuSO?5H2O4)17.3克,柠檬酸钠晶体 (C4H5O7Na?2H2O)173克,无水硫酸钠100克或Na2CO3?10H2O200克。

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法; 2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数; 3.熟悉电导仪的使用。 二、实验原理 (1)速率常数的测定 乙酸乙酯皂化反应时典型的二级反应,其反应式为: CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OH t=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0 速率方程式 2kc dt dc =- ,积分并整理得速率常数k 的表达式为: t 0t 0c c c c t 1k -?= 假定此反应在稀溶液中进行,且CH 3COONa 全部电离。则参加导电离子有Na + 、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反 应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。 令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则: t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:

∞+-?= κκκκt kc 1t 00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对t t 0κκ-作图,可得一直线,则直线斜率0 kc 1 m = ,从而求得此温度下的反应速率常数k 。 (2)活化能的测定原理: )11(k k ln 2 1a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。 三、仪器与试剂 电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支 氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤 1.标定NaOH 溶液及乙酸乙酯溶液的配制 计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。计算出配制与NaOH 等浓度的乙酸乙酯溶液100mL 所需化学纯乙酸乙酯的质量,根据不同温度下乙酸乙酯的密度计算其体积(乙酸乙酯的取样是通过量取一定量的体积),于ml 100容量瓶中加入约3/2容积的去离子水,然后用1mL 移液管吸取所需的乙酸乙酯加入容量瓶中,加水至刻度,摇匀。 2.调节恒温水浴调节恒温水浴温度为30℃1.0±℃。 3.电导率0K 的测定 用mL 20移液管量取去离子水及标定过的NaOH 溶液各mL 20,在干燥的100mL 烧杯中混匀,用少量稀释后的NaOH 溶液淋洗电导电极及电极管3次,装入适量的此NaOH 溶液于电极管中,浸入电导电极并置于恒温水浴中恒温。将

甲基橙的制备 有机化学实验报告

有机化学实验报告 实验名称:甲基橙的制备 学院:化工学院 专业:化学工程与工艺 班级: 姓名:学号 指导教师:房江华、李颖 日期: 一、实验目的: 1、通过甲基橙的制备学习重氮化反应和偶合反应的实验操作;

2、巩固盐析和重结晶的原理和操作。 二、实验原理: 三、主要试剂及物理性质: 四、实验试剂及仪器: 药品:对氨基苯磺酸()、5%氢氧化钠()、亚硝酸钠()、浓盐酸()、N,N二甲基苯胺()、冰醋酸()、10%氢氧化钠()、饱和氯化钠()、乙醇(少量) 仪器:电炉、烧杯、量筒、玻璃棒、滴管、表面皿、循环水真空泵。 五、仪器装置: 六、实验步骤及现象:

七、数据处理与实验结果: m=×M甲基橙/M对氨基苯磺酸=2×= 产率=(m0/m)×100% 八、注意事项: ①对氨基苯磺酸为两性化合物,酸性强于碱性,它能与碱作用成盐,而不能与酸作用成盐。 ②重氮化过程中,应严格控制温度,反应温度若高于5℃,生成的重氮盐易水解为酚,降低产率。 ③若试纸不显色,需补充亚硝酸钠溶液。 ④重结晶操作要迅速,否则由于产物呈碱性,在温度高时易变质,颜色变深,用乙醇洗涤的目的是使其迅速干燥。 ⑤N,N二甲基苯胺是有毒物品,要在通风柜内进行,并且尽量少占用仪器。 ⑥在第二次准备抽滤,甲基橙结晶时,有鳞片状甲基橙析出可以搅拌使整个烧杯中液体都

冷却。 ⑦N,N二甲基苯胺有毒,实验时应小心使用,接触后马上洗手。 九、实验讨论及误差分析: ①结晶出晶体颗粒小时,抽滤会浪费较多时间; ②在第一次抽滤甲基橙产品之前,由于搅拌时糊到整个烧杯上,在抽滤时还留有部分不能进行抽滤操作,可能使产品减少; ③重氮化过程严格控制温度在5℃以下,产率较高。

乙酸乙酯皂化反应实验报告精选doc

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为

(1) 式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。

乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得:

乙酸乙酯皂化反应

乙酸乙酯皂化反应 一、实验目的 1. 用电导法测定乙酸乙酯皂化反应的反应级数、速率常数和活化能 2. 通过实验掌握测量原理和电导率一的使用方法 二、实验原理 1. 乙酸乙酯皂化反应为典型的二级反应,其反应式为: CH3COOC2H5+NaOH→CH3COONa+C2H5OH A B C D 当C A,0=C B,0其速率方程为: -dC A/dt=kC A2 积分得: 由实验测得不同时间t时的C A 值,以1/C A 对t作图,得一直线,从直线斜率便可求出K的值。 2. 反应物浓度CA的分析 不同时间下反应物浓度C A可用化学分析发确定,也可用物理化学分析法确定,本实验采用电导率法测定。 对稀溶液,每种强电解质的电导率与其浓度成正比,对于乙酸乙酯皂化反应来说,溶液的电导率是反应物NaoH与产物CH3CooNa两种电解质的贡献: 式中:Gt—t时刻溶液的电导率;A1,A2—分别为两电解质的电导率与浓度关系的比例系数。反应开始时溶液电导率全由NaOH贡献,反应完毕时全由CH3COONa贡献,因此 代入动力学积分式中得: 由上式可知,以Gt对 作图可得一直线,其斜率等于 ,由此可求得反应速率常数k。

3. 变化皂化反应温度,根据阿雷尼乌斯公式: ,求出该反应的活化能Ea。 三、实验步骤 1. 恒温水浴调至20℃。 2. 反应物溶液的配置: 将盛有实验用乙酸乙酯的磨口三角瓶置入恒温水浴中,恒温10分钟。用带有刻度的移液管吸取V/ml乙酸乙酯,移入预先放有一定量蒸馏水的100毫升容量瓶中,再加蒸馏水稀释至刻度,所吸取乙酸乙酯的体积 V/ml可用下式计算: 式子:M =88.11, =0.9005, 和NaOH见所用药品标签。 3. G0的测定: (1)在一烘干洁净的大试管内,用移液管移入电导水和NaOH溶液(新配置)各15ml,摇匀并插入附有橡皮擦的260型电导电极(插入前应用蒸馏水淋洗,并用滤纸小心吸干,要特别注意切勿触及两电极的铂黑)赛还塞子,将其置入恒温槽中恒温。 (2)开启DDSJ-308A型电导仪电源开关,按下"ON/OFF"键,仪器将显示产标、仪器型号、名称。按“模式”键选择“电导率测量”状态,仪器自动进入上次关机时的测量工作状态,此时仪器采用的参数已设好,可直接进行测量,待样品恒温10分钟后,记录仪器显示的电导率值。 (3)将电导电极取出,用蒸馏水林洗干净后插入盛有蒸馏水的烧杯中,大试管中的溶液保留待用。 4. Gt的测定; (1)取烘干洁净的混合反应器一支,其粗管中用移液管移入15ml新鲜配置的乙酸乙酯溶液,插入已经用蒸馏水淋洗并用滤纸小心吸干(注意:滤纸切勿触及两级的铂黑)带有橡皮塞的电导电极,用另一只移液管于细管移入15ml已知浓度的NaOH溶液,然后将其置于20摄氏度的恒温槽中恒温。 注意:氢氧化钠和乙酸乙酯两种溶液此时不能混合。

有机化学实验实验报告

实验一有机化学实验基本操作 实验目的: 1、使学生明白进入有机化学实验学习,必须阅读有机化学实验的一般知识的内容及安全实验是有机化学实验的基本要求; 2、仪器的清点和玻璃仪器的清洗、安装。 教学内容: 一、实验室的安全、事故的预防与处理 1、实验室的一般注意事项 2、火灾、爆炸、中毒及触电事故的预防 3、事故的处理和急救 二、有机化学实验常用仪器、设备和应用范围 1、玻璃仪器 2、金属用具 3、其它仪器设备 三、有机实验常用装置的安装练习 1、回流装置 2、蒸馏装置 3、气体吸收装置 4、搅拌装置 四、仪器的清洗、干燥和塞子的配置 1、仪器的清洗 2、仪器的干燥 3、塞子的配置和钻孔 五、实验预习、记录和实验报告 六、实验产率的计算 实验二萃取和洗涤 实验目的: 1、学习萃取法的基本原理和方法; 2、学习分液漏斗的使用方法。 实验原理: 萃取和洗涤是利用物质在不同溶剂中的溶解度不同来进行分离的操作。萃取和洗涤在原理上是一样的,只是目的不同。从混合物中抽取的物质,如果是我们需要的,这种操作叫做

萃取或提取;如果是我们不要的,这种操作叫做洗涤。

萃取是利用物质在两种不互溶(或微溶)溶剂中溶解度或分配比的不同 来达到分离、提取或纯化目的的一种操作。 实验仪器及药品: 仪器:分液漏斗、试管 药品:0.01%I2—CCl4溶液、1%KI—H2O溶液 实验操作步骤:(本次实验为间歇多次萃取操作) 一、多次萃取操作步骤及注意事项 1、选择容积较液体体积大一倍以上的分液漏斗,把活塞擦干,在活塞上 均匀涂上一层润滑脂,使润滑脂均匀分布,看上去透明即可。 2、检查分液漏斗的顶塞与活塞处是否渗漏(用水检验),确认不漏水时方可使用。 3、将被萃取液和萃取剂依次从上口倒入漏斗中,塞紧顶塞(顶塞不能涂润滑脂)。 4、取下分液漏斗,并前后振荡,然后再将漏斗放回铁圈中静置。 5、待两层液体完全分开后,打开顶塞,再将下层液体自活塞放出至接受瓶: 6、将所有的萃取液合并,加入过量的干燥剂干燥。 7、然后蒸去溶剂,根据化合物的性质利用蒸馏、重结晶等方法纯化。 本次实验成败关键: 1、分液漏斗的使用方法正确(包括振摇、“放气”、静置、分液等操作) 2、准确判断萃取液与被萃取液的上下层关系 安全事项:CCl4蒸气对人体有伤害,请注意安全。 萃取实验:(用KI—H2O溶液从I2—CCl4溶液中萃取I2) 1、一次萃取 (1)准确量取10ml0.01%的I2—CCl4溶液,放入分液漏斗中,再加入40ml1%KI—H2O溶液进行萃取操作,分去KI—H2O溶液层,取I2—CCl4层3ml于编号为1的试管中备用。 (2)准确量取10ml0.01%的I2—CCl4溶液,放入分液漏斗中,再加入20ml1%KI—H2O溶液进行萃取操作,分去KI—H2O溶液层,取I2—CCl4层3ml于编号为2的试管中备用。 2、多次萃取 取10ml0.01%的I2—CCl4溶液分别每次用20ml1%KI—H2O溶液进行二次萃取操作,分离后,取经二次萃取后的I2—CCl4层3ml于编号为3的试管中备用。 3、完成下列工作 (1)将盛有3ml0.01%的I2—CCl4溶液的试管(编号为4)分别与编号为1、2、3的试管的颜色进行比较,写出结果。 (2)通过比较总结所用萃取剂量、萃取次数与萃取效应的关系。 实验三蒸馏练习 实验目的: 1、了解蒸馏和测定沸点的意义; 2、掌握圆底烧瓶、直型冷凝管、蒸馏头、真空接受器、锥型瓶等的正确使用方法,初步掌握蒸馏装置的装配和拆卸技能;3、握正确进行蒸馏、分馏操作和的要领和方法。 实验原理:纯粹的液体有机化合物在一定的压力下具有一定的沸点,利用有机化合物沸点不同可将不同的化合物分离。 实验装置:(见图)

有机化学实验报告范本

Screen and evaluate the results within a certain period, analyze the deficiencies, learn from them and form Countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 有机化学实验报告

编号:FS-DY-85284 有机化学实验报告 一、实验目的 学习重结晶法提纯固态有机物的原理和方法; 掌握抽滤操作方法; 二、实验原理 利用混合物中各组分在某种溶剂中的溶解度不同,而使它们相互分离; 一般过程: 1、选择适宜的溶剂: ① 不与被提纯物起化学反应; ②温度高时,化合物在溶剂中的溶解度大,室温或低温时溶解度很小;而杂质的溶解度应该非常大或非常小; ③溶剂沸点较低,易挥发,易与被提纯物分离; ④价格便宜,毒性小,回收容易,操作安全; 2、将粗产品溶于适宜的热溶剂中,制成饱和溶液:如溶

质过多则会成过饱和溶液,会有结晶出现;如溶剂过多则会成不饱和溶液,会要蒸发掉一部分溶剂; 3、趁热过滤除去不溶性杂质,如溶液颜色深,则应先用活性炭脱色,再进行过滤; 4、冷却溶液或蒸发溶液,使之慢慢析出结晶,而杂质留在母液中或杂质析出,而提纯的化合物则留在溶液中; 5、过滤:分离出结晶和杂质; 6、洗涤:除去附着在晶体表面的母液; 7、干燥结晶:若产品不吸水,可以放在空气中使溶剂自然挥发;不容易挥发的溶剂,可根据产品的性质采用红外灯烘干或真空恒温干燥器干燥,特别是在制备标准样品和分析样品以及产品易吸水时,需将产品放入真空恒温干燥器中干燥; 三、主要试剂及物理性质 乙酰苯胺(含杂质):灰白色晶体,微溶于冷水,溶于热水; 水:无色液体,常用于作为溶剂; 活性炭:黑色粉末,有吸附作用,可用于脱色; 四、试剂用量规格 含杂质的乙酰苯胺:2.01g;

有机化学实验报告:环己酮的制备

环己酮的制备 华南师范:cai 前言: 环己酮,无色透明液体,分子量98.14 密度0.9478 g/mL 熔点?16.4 °C 沸点155.65 °C 在水中微溶;在乙醇中混溶。带有泥土气息,含有痕迹量的酚时,则带有薄荷味。不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具有强烈的刺鼻臭味。环己酮有致癌作用。环己酮是重要化工原料,是制造尼龙、己内酰胺和己二酸的主要中间体。也是重要的工业溶剂。也用作染色和褪光丝的均化剂,擦亮金属的脱脂剂,木材着色涂漆,可用环己酮脱膜、脱污、脱斑。 醇的氧化是制备醛酮的重要方法之一。本实验通氧化环己醇制备环己酮,氧化剂可以用铬酸或次氯酸,由于铬酸和它的盐价格比较贵,且会污染环境,用次氯酸或漂白粉来氧化醇可以避免这些缺点,产率也高。所以本实验采用次氯酸做氧化剂。 其他重要数据: 环己醇,有樟脑气味的无色粘性液体,熔点25.2℃沸点:160.9 ℃相对密度0.9624 环己酮和水形成恒沸点混合物,沸点95℃,含环己酮38.4%,溜出液中还有乙酸,沸程94~100℃。 反应方程式: [O] OH O 1、实验部分 1.1实验设备和材料 实验仪器:搅拌器、滴液漏斗、温度计、250mL三颈烧瓶、酒精灯、锥形瓶、冷凝管、蒸馏烧瓶、接液管、分液漏斗 实验药品:环已醇、次氯酸钠、冰醋酸、无水碳酸钠、无水硫酸镁、氯化铝、沸石、氯化钠、碘化钾淀粉试纸 1.2实验装置 反应装置蒸馏装置分液装置 1.3实验过程

混合反应:向装有搅拌器、滴液漏斗和温度计的250mL三颈烧瓶中依次加入5.2mL(5 g,0.05mol)环已醇和25mL冰醋酸。开动搅拌器,在冰水浴冷却下,将38mL次氯酸钠水溶液(约1.8mol/L)通过滴液漏斗逐滴加入反应瓶中,并使瓶内温度维持30~35℃,加完后搅拌5min,用碘化钾淀粉试纸检验应呈蓝色,否则应再补加5mL次氯酸钠溶液,以确保有过量次氯酸钠存在,使氧化反应完全。在室温下继续搅拌30min,加入饱和亚硫酸氢钠溶液至反应液对碘化钾淀粉试纸不显蓝色为至。 蒸馏粗产品:向反应混合物中加入30mL水、3g氯化铝和几粒沸石,在石棉网上加热蒸馏至馏出液无油珠滴出为至。 除杂干燥:在搅拌下向馏出液分批加入无水碳酸钠至反应液呈中性为止,然后加入精制食盐使之变成饱和溶液,将混合液倒入分液漏斗中,分出上层有机层;用无水硫酸镁干燥,过滤得到产物。 2 结果与讨论 2.2 产率与产量 产量:产物为淡黄色液体3.2g 产率:3.2/4.9=65.3% 2.3环己酮的沸点为156℃,而在蒸馏得粗产品中,温度为98℃即可蒸出产品的原因分析 环己酮的沸点为156℃,但环己酮能与水形成共沸物,从而降低了环己酮的沸点,温度在98℃即可蒸出产物,但含有杂质。通过对粗产品除杂,可以得到较纯的环己酮,此时再蒸馏环己酮,温度即可达到环己酮的沸点156℃。 2.4加入次氯酸充分反应后,溶液呈乳白色的原因分析 加入次氯酸充分反应后,溶液本应是无色透明溶液,而此时溶液仍呈乳白色,是因为加入次氯酸钠过多。次氯酸钠在有机试剂中溶解度比较低,当次氯酸钠过多时,容易析出,从而使溶液呈乳白色。 2.5提高产率的因素分析

有机化学分馏实验报告doc

有机化学分馏实验报告 篇一:分馏实验报告 广东工业大学 学院专业班组、学号姓名协作者教师评定 实验题目分馏 一、实验目的 了解分馏的原理与意义,分馏柱的种类和选用方法。学习实验室里常用分馏的操作方法。二、分馏原理 利用普通蒸馏法分离液态有机化合物时,要求其组分的沸点至少相差30℃,且只有当组分间的沸点相差110℃以上时,才能用蒸馏法充分分离。所谓分馏(Fractional Distillation)就是蒸馏液体混合物,使气体在分馏柱内反复进行汽化、冷凝、回流等过程,使沸点相近的混合物进行分离的方法。即:沸腾着的混合物蒸汽进行一系列的热交换而将沸点不同的物质分离出来。实际上分馏就相当于多次蒸馏。当分馏效果好时,分馏出来的(馏液)是纯净的低沸点化合物,留在烧瓶的(残液)是高沸点化合物。 影响分馏效率的因素有:①理论塔板;②回流比;③柱的保温。 实验室常用的分馏柱为Vigreux柱(或刺式分馏柱、维氏分馏柱、韦氏分馏柱、维格尔分馏柱)。使用该分馏柱的优点是:仪器装配简单,操作方便,残留在分馏柱中的液体

少。三、实验仪器与药品 电热套、圆底烧瓶、分馏柱、温度计、冷凝管、接液管、丙酮。 能与水、甲醇、乙醇、乙醚、氯仿、吡啶等混溶。能溶解油脂肪、树脂和橡胶。五、实验装置 六、实验步骤(一)填表及作图 1、在圆底烧瓶内放置40ml混合液(体积比:丙酮∶水=1∶1)及2粒沸石,按简单分馏装置图2-11安装仪器。 2、开始缓缓加热,并控制加热程度,使馏出液以1-2s/D 的速度蒸出。将初馏出液收集于量筒中,观察并记录柱顶温度及接受器A的馏出液总体积。继续蒸馏,(从5ml开始)记录每增加1ml馏出液时的温度及总体积。注意温度突变时位置。 曲线,讨论分馏效率。数据记录: (二)纯化丙酮 (1)待圆底烧瓶冷却后,加入馏液,补加2粒沸石。安装好分馏装置。(2)收集56~62℃以下的馏液。此馏液为纯丙酮。 馏液总体积ml,回收率=馏液总体积/40= %。(3)观察62~98℃的馏液共滴。 产品:丙酮,无色易挥发和易燃液体,有微香气味。讨论:(很重要,请填写!)

1乙酸乙酯皂化反应试题

实验一乙酸乙酯皂化反应 简答题 1.在乙酸乙酯皂化反应中,为什么所配NaOH和乙酸乙酯必须是稀溶液? 2.为何乙酸乙酯皂化反应实验要在恒温条件下进行,且氢氧化钠和乙酸乙酯溶液在混合前 还要预先恒温? 3.电导xx常数如何校正? 4.为什么乙酸乙酯皂化反应可用电导结果测其不同时刻的浓度变化?测定时对反应液 的浓度有什么要求?为什么? 5.在乙酸乙酯皂化反应中,若反应起始时间计时不准,对反应速度常数K有何影响?为什么? 6.乙酸乙脂皂化反应中,反应起始时间必须是绝对时间吗?为什么? 7.对乙酸乙酯皂化反应,当a=b时,有x=K(G 0-G t ),c=K(G 0-G ∞)。若[NaOH]≠[酯]时应怎样计算x和c值? 8.某人使用电导率仪时,为快而保险起见老在最大量程处测定,这样做行吗?为什么?测量 水的电导率时,能否选用仪器上ms.cm-1量程来测量,为什么?

9.电导率测量中,由于恒温槽性能不佳,温度逐渐升高,由此导致不同浓度时的K c 值将发生什么变化? 10.在乙酸乙酯造化反应实验过程中,我们先校正电极常数,后测定水以及溶液的电导率,请叙述原因、操作过程以及目的? 11.在乙酸乙酯皀化实验中为什么由 0.0100mol·dm-3的NaOH溶液测得的电导率可以认为是κ 0? 12.在乙酸乙酯皀化实验中为什么由 0.0100mol·dm-3的CH 3COONa溶液测得的电导率可以认为是κ ∞? 13.在乙酸乙酯皀化实验中如果NaOH和乙酸乙酯溶液为浓溶液时,能否用此法求k值,为什么? 14.乙酸乙酯皂化反应实验中,乙酸乙酯溶液应在使用前现配,目的是什么? 15.乙酸乙酯皂化反应实验中,反应体系的电导率随温度变化情况如何? 16.在乙酸乙酯皀化实验中铂电极的电极常数是如何确定的? 17、在乙酸乙酯皀化实验中电导率仪面板上温度补偿旋钮有何用途?怎样使用? 18.乙酸乙酯皂化反应是通过利用测定反应体系在不同时刻的电导或者电导率来跟踪产物和反应物浓度的变化,试问,溶液的电导或者电导率和反应物或者产物的浓度之间是什么样的关系?

《有机化学》课程实验报告范本

《有机化学》课程实验报告范本 有机化学课程实验报告范本姓名学号成绩日期同组姓名指导教师实验名称糖类化合物的化学性质 一、实验目的加深对糖类化合物的化学性质的认识。 二、仪器与药品仪器试管、胶头滴管、酒精灯药品(1)试剂5-萘酚乙醇溶液、浓硫酸、10硫酸溶液、试剂、10氢氧化钠溶液、红色石蕊试纸、苯肼试剂、1碘溶液等。 (2)样品2葡萄糖溶液、2蔗糖溶液、2淀粉溶液、2果糖溶液、2麦芽糖溶液、糖尿病病人尿液、10乳糖溶液、10葡萄糖溶液、10果糖溶液、10麦芽糖溶液、1糊精溶液、0.5糖原溶液三、实验原理及主要反应方程式糖类化合物又称碳水化合物,通常分为单糖、双糖和多糖。 糖类物质与-萘酚都能起呈色反应(反应)。单糖、双糖、多糖均具有这个性质(苷类也具有这一性质)。 因此,它是鉴定糖类物质的一个常用方法。 单糖及含有半缩醛羟基的二塘都具有还原性,多糖一般无还原性。具有还原性的糖叫做还原糖,能还原试剂、试剂和试剂。 蔗糖是二塘没有还原性,但在酸或酶的催化下,可水解为等分子的葡萄糖和果糖,因此其水解液具有还原性。蔗糖水解前后旋光方向发生改变,因此蔗糖水解反应又称转化反应。用旋光仪可观察到旋光方向改变的情况。

还原糖存在变旋光现象,其原因在于、两种环状半缩醛结构通过开链结构互相转化,最终达到动态平衡。用旋光仪也可观察到变旋光现象。 单糖及具有半缩醛羟基的二糖,可与苯肼生成糖脎。糖脎有良好的黄色结晶和一定的熔点,根据糖脎的形状、熔点及形成的速度,可以鉴别不同的糖。 部分的多糖和碘(2)液可起颜色反应,一般淀粉遇碘呈蓝色,而糊精遇碘呈蓝色、紫色、红色、黄色或不显色,糖原与碘一般呈红棕色,纤维素与碘不显颜色。 四、实验步骤注1实验的反应式如下糖类物质先与浓硫酸反应生成糖醛衍生物,后者再与-萘酚反应生成紫色络合物。 间苯二酚、麝香草酚二苯胺、樟脑可用来代替-萘酚。其他能与糖醛衍生物缩合成有色物质的化合物,也都可以代替-萘酚。 此颜色反应时很灵敏的,如果操作不慎,甚至偶尔将滤纸毛或碎片落入试管中,都会得正性结果。但是,正性结果不一定都是糖。例如,甲酸、丙酮、乳酸、草酸、葡萄糖醛酸、没食子鞣酸和苯三酚与-萘酚试剂也能生成有色的环。 1,3,5-苯三酚与-萘酚的反应产物用水稀释后颜色即行消失。但负性结果肯定不是糖。 注2试剂的制备硫酸铜晶体(524)17.3克,柠檬酸钠晶体(45722)173克,无水硫酸钠100克或23102200克。

实验六 乙酸乙酯皂化反应

实验六 乙酸乙酯皂化反应 【目的要求】 1. 用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2. 学会用图解法求二级反应的速率常数,并计算该反应的活化能。 3. 学会使用电导率仪和恒温水浴。 【实验原理】 乙酸乙酯皂化反应是个二级反应,其反应方程式为: CH 3COOC 2H 5 +Na ++ OH - → CH 3COO - + Na ++C 2H 5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a ,则反应速率表示为 2)(d d x a k t x -= (1) 式中,x 为时间t 时反应物消耗掉的浓度,k 为反应速率常数。将上式积分得 kt x a a x =-) ( (2) 起始浓度a 为已知,因此只要由实验测得不同时间t 时的x 值,以x /(a -x )对t 作图,若所得为一直线,证明是二级反应,并可以从直线的斜率求出k 值。 乙酸乙酯皂化反应中,参加导电的离子有OH -、Na +和CH 3COO -,由于反应体系是很稀的水溶液,可认为CH 3COONa 是全部电离的,因此,反应前后Na +的浓度不变,随着反应的进行,仅仅是导电能力很强的OH -离子逐渐被导电能力弱的CH 3COO -离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G 0为t =0时溶液的电导,G t 为时间t 时混合溶液的电导,G ∞为t = ∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH 3COO -浓度成正比,设K 为比例常数,则 t =t 时, x =x , x =K (G 0-G t ) t = ∞时, x →a , a =K (G 0-G ∞) 由此可得: a -x =K (G t -G ∞) 所以a -x 和x 可以用溶液相应的电导表示,将其代入(2)式得: kt G G G G a t t =--∞ 01 重新排列得: ∞+-?=G t G G ak G t t 01 (3)

实验十 二级反应乙酸乙酯皂化反应

实验十 二级反应乙酸乙酯皂化反应 一、实验目的 1.了解二级反应的特点。 2.掌握电导率法测定反应速率常数和活化能。 二、实验原理 乙酸乙酯与碱的反应称为皂化反应,它是一个典型的二级反应。其反应式为: 325325C H C O O C H N aO H C H C O O N a C H O H +→+ 当两种反应物初始浓度相同时 0t =, 0C 0C 0 0 t t =, 0C x - 0C x - x x t =∞ , 0 0 0C 0C 设:两种反应物的起始浓度均为C 0,在时间t 时生成物的浓度为x ,则反应速率方程为: 2 0() dx k C x dt =- (1) 式中:k 为速率常数;t 为时间。 将(1)式积分得: 00() x k tC C x = - (2) 若以00() x C C x -对t 作图,可得一直线,由直线的斜率可求速率常数k 。但由 于难以测定t 时刻的x 值,故本实验采用电导率法测定皂化反应过程中的电导率。由电导率随时间的变化规律来代替浓度的变化。这主要是因为,随着皂化反应的进行,溶液中电导能力强的OH -离子逐渐被导电能力弱的Ac -离子所取代。使溶液的电导率逐渐减小,溶液中CH 3COOC 2H 5和C 2H 5OH 的导电能力都很小,可以忽略不计。因此,溶液电导率的变化是和反应物浓度变化相对应的。 在电解质稀溶液中,可近似认为电导率κ与浓度C 有如下的正比关系,并且溶液的电导率等于各电解质离子电导之和 m C κ=Λ 上式中Λm 为摩尔电导率,Λm 在恒定温度的稀溶液中,可近似看作为一常数,于是可写成κ=fC : 设:0t =, 溶液的电导率 0κ t t =, 溶液的电导率 t κ

相关文档
最新文档