空调水系统设计样本

空调水系统设计样本
空调水系统设计样本

空调水系统设计

空调水系统流速的确定

一般, 当管径在DN100到DN250之间时, 流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时, 流速可再加大。进行计算是应该注意管径和推荐流速的对应。

当前管径的尺寸规格有: DN15、 DN20、 DN25、 DN32、 DN40、 DN50、 DN70、 DN80、 DN100、 DN125、DN150、 DN200、 DN250、 DN300、 DN350、 DN400、 DN450、 DN500、 DN600

注意: 一般, 选择水泵时, 水泵的进出口管径应比水泵所在管段的管径小一个型号。例如: 水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。

管内水流速推荐值( m/s)

水泵吸入口 1.2-2.1冷却水管 1.0-2.4

水泵压出口 2.4-3.6分水器 1.0-1.5

供回水干管 1.0-2.0集水器 1.0-1.5

供回水支管0.5-0.7排水管 1.2-2.0

供暖水流速度m/s

户式水机设计经验值

水管流速按1.8/S计算, 流量计算公式为: 管道截面积×1.8/s×3600(换算成小时)

空调水系统管件附件的安装1.水泵在系统的设计位置:

一般而言, 冷冻水泵应设在冷水机组前端,从末端回来的冷冻水经过冷冻水泵打回冷水机组; 冷却水泵设在冷却水进机组的水路上, 从冷却塔出来的冷却水经冷却水泵打回机组; 热水循环泵设在回水干管上, 从末端回来的热水经过热水循环泵打回板式换热器。

2.冷却塔上的阀门设计:

( 1) 冷却塔进水管上加电磁阀(不提倡使用手动阀)

( 2) 管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水,冬天易冻)

3.水质处理

a水过滤: 无论开式和闭式系统, 水过滤器都是系统设计中必须考虑的。当前常见的水过滤器装置有金属网状、Y型管道式过滤器, 直通式除污器等。一般设置在冷水机组、水泵、换热器、电动调节阀等设备的入口管道上

b闭式水系统: 冷、热水系统中必须设置软化水处理设备及相应的补水系统。

电子水处理仪的安装位置: 放置于水泵后面, 主机前面。

4.水泵前后的阀门

1水泵进水管依次接:蝶阀-压力表-软接

2水泵出水管依次接:软接-压力表-止回阀-蝶阀

5.分\集水器

多于两路供应的空调水系统, 宜设置集分水器。集分水器的直径应按总流量经过时的断面流速

( 0.5-1.0m/s) 初选, 并应大于最大接管开口直径的2倍; 分汽缸﹑分水器和集水器直径D的确定:

a按断面流速确定D分汽缸按断面流速8-12m/s计算; 分水器和集水器按断面流速0.1m/s计算。

b按经验公式估算来确定D, D=(1.5-3)D

MAX D

MAX

支管最大直径

c分\集水器之间加电动压差旁通阀和旁通管(管径一般取DN50)

d集水器的回水管上应设温度计.

6.各种仪表的位置

布置温度表, 压力表及其它测量仪表应设于便于观察的地方, 阀门高度一般离地1.2-1.5m,高于此高度时, 应设置工作平台。

压力表: 冷水机组、进出水管、水泵进出口及集分水器各分路阀门外的管道上, 应设压力表;

温度计: 冷水机组和热交换器的进出水管、集分水器上、集水器各支路阀门后、新风机组供回水支管, 应设温度计。

7.水系统的泄水与排气

a在水系统的最低点, 应设置排水管和排水阀门, 放水时间为2-3h。

b在水系统的最高点, 应设计集气罐, 在每个最高点( 当无坡度敷设时, 在水平管水流的终点) 设置放空器。

8.压差旁通阀的选择

在变水量水系统中, 为保证流经冷水机组中蒸发器的冷冻水流量恒定, 在多台冷水机组的供回水总管上设一条旁通管。旁通管上安有压差控制的旁通调节阀。最大的设计流量按一台冷水机组的冷冻水水量确定, 管径直接按冷冻水管最大允许流速选择。

9.机组的位置

两台压缩机突出部分之间的距离小于1.0m, 制冷机与墙壁之间的距离和非主要通道的距离不小于0.8m, 大中型制冷机组( 离心, 螺杆, 吸收式制冷机) 其间距为1.5-2.0m。制冷机组的制冷机房的上部最好预留起吊最大部件的吊钩或设置电动起吊设备。

空调水系统水泵选择的步骤

第一步: 水泵流量的确定

1.冷却水流量: 一般按照产品样本提供数值选取, 或按照如下公式进行计算, 公式中的Q为制冷主机制冷量

L(m3/h)= Q(kW)/( 4.5~5) ℃x1.163X(1.15~1.2)

2.冷冻水流量: 在没有考虑同时使用率的情况下选定的机组, 可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率, 建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/( 4.5~5) ℃x1.163

第二步: 水系统水管管径的计算

在空调系统中所有水管管径一般按照下述公式进行计算:

D(m)=√L(m3/h) /0.785x3600xV(m/s)

公式中: L----所求管段的水流量( 第一步已计算出)

V----所求管段允许的水流速

流速的确定: 一般, 当管径在DN100到DN250之间时, 流速推荐值为1.5m/s左右,当管径小于DN100时,

推荐流速应小于1.0m/s,管径大于DN250时, 流速可再加大。进行计算是应该注意管径和推荐流速的对应。

当前管径的尺寸规格有: DN15、 DN20、 DN25、 DN32、 DN40、 DN50、 DN65、 DN80、 DN100、 DN125、DN150、 DN200、 DN250、 DN300、 DN350、 DN400、 DN450、 DN500、 DN600

注意: 一般, 选择水泵时, 水泵的进出口管径应比水泵所在管段的管径小一个型号。例如: 水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。

第三步: 水泵扬程的确定

以水冷螺杆机组为例:

冷冻水泵扬程的组成

1.制冷机组蒸发器水阻力: 一般为5~7mH2O; ( 具体值可参看产品样本)

2.末端设备( 空气处理机组、风机盘管等) 表冷器或蒸发器水阻力: 一般为5~7mH2O; ( 据体值可参看产品样本)

3.回水过滤器阻力, 一般为3~5mH2O;

4.分水器、集水器水阻力: 一般一个为3mH2O;

5.制冷系统水管路沿程阻力和局部阻力损失: 一般为7~10mH2O;

综上所述, 冷冻水泵扬程为26~35mH2O, 一般为32~36mH2O。

注意: 扬程的计算要根据制冷系统的具体情况而定, 不可照搬经验值!

冷却水泵扬程的组成

1.制冷机组冷凝器水阻力: 一般为5~7mH2O; ( 具体值可参看产品样本)

2.冷却塔喷头喷水压力: 一般为2~3mH2O

3.冷却塔( 开式冷却塔) 接水盘到喷嘴的高差: 一般为2~3mH2O

4.回水过滤器阻力, 一般为3~5mH2O;

5.制冷系统水管路沿程阻力和局部阻力损失: 一般为5~8mH2O;

综上所述, 冷冻水泵扬程为17~26mH2O, 一般为21~25mH2O。

补水水泵扬程的计算:

◆补水水泵扬程为系统最高点距补水泵接管处的垂直距离和补水管路的沿程阻力损失和局部阻力损失。

◆沿程阻力损失和局部阻力损失一般为3~5mH2O。

空调风系统设计问题注意点

1、送、排风口的距离要适当。

排风口与送风口至少保持3米的距离以防气流短路

2、 选用合适的风阀。

从原则上讲, 系统风压平衡的误差在10%-15%以内, 能够不设调节阀, 但实际上仅靠调风管尺寸来调风压是很困难的, 因此, 要设风量调节阀进行调节。

①风管分支处应设风量调节阀。在三通分支处可设三通调节阀, 或在分支处设调节阀。

②明显不利的环路能够不设调节阀, 以减少阻力损失。

③在需防火阀处可用防火调节阀替代调节阀

④送风口处的百叶风口宜用带调节阀的送风口, 要求不高的可采用双层百叶风口, 用调节风口角度调节

风量。

⑤新风进口处宜装设可严密开关的风阀, 严寒地区应装设保温风阀, 有自动控制时, 应采用电动风阀。

3、风管的布置。

3.1要尽量减少局部阻力, 即减少弯管、三通、变径的数量

3.2弯管的中心曲率半径不要小于其风管直径或边长, 一般可用1.25倍直径或边长

3.3为便于风管系统的调节, 在干管分支点前后, 应预留测压孔。测压孔距前面的局部管件的距离应大于5b(b为矩形风管的长边或圆形风管的直径), 距后面的局部管件的距离应不小于2b。通风机出口处气流较稳定

整理版空调冷却水系统

空调冷却水系统空调冷却水系统设计默认分类 2010-01-21 15:17:46 阅读7 评论0 字号:大中小 摘要:空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 空调冷却水系统设计问题的探讨 摘要:空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 一、冷却塔的位置要考虑系统设备承压要求: 冷却水系统形式主要有两种:水泵前置式和水泵后置式,如图1、2。确定时要考虑水系统的承压能力。水系统的承压能力最大的地方是水泵出口,如图中的A点,系统承压有以下三种情况:系统停止运行时,水泵出口压力为系统静水压力h=Z;系统瞬时启动,但动压尚未形成时,水泵出口压力为系统静水压力和水泵全压之和h=Z+HP;正常运行时,水泵出口压力为该点静水压力与水泵静压之和h= Z+HP-v2/2g。冷水机组冷凝器耐压,目前国产机组一般为981KPa。水泵壳体的耐压取决于轴封的形式,水泵吸入侧压力在981KPa以上时,要使用机械密封。

冷却塔如果设在高层建筑主楼屋面,产生的压力高于机组的承压能力时,冷却水泵宜设在冷水机组的冷凝器出口,以降低冷凝器工作压力。有人会提出疑问:水泵入口负压过大,会产生气蚀。事实上, 冷却塔与冷水机组之间的高差,远大于管路阻力和冷凝器阻力,并且水泵还有一个容许吸上真空高度。 笔者的同学曾经设计一个工程,机房在地下,裙房屋顶为人员活动空间,业主要求在120米高的屋面安装冷却塔,系统最大承压要超过1.2MPa与水泵全压之和。这就造成产生的静压太高,冷凝器不能承受,同时对水泵轴封和软接头提出了更高要求。 解决方法一:选用能承受高静压的设备和管道配件,这将大大增加工程造价。 解决方法二:如图3,设两个冷却水箱、两套冷却水泵。一个高温冷却水箱、一个低温冷却水箱,一套冷却水泵从低温水箱抽水进入冷凝器后进入高温水箱,另一套冷却水泵从高温水箱抽水送入冷却塔,然后回流到低温水箱。但要注意:冷却塔处要采取一定的措施,避免停泵时水全部流入低温水箱。水箱要满足冷却塔到机房的充注水量,水箱的水位也不好控制;这样水泵的扬程太高(图中h高度的扬程浪费了),这不是一个经济的做法。 解决方法三:加板式热交换器隔绝高压,但冷却塔选用要有余量,如图4。 笔者认为,对于某些建设方的不合理的要求,设计人员不要迁就。此类工程最好把冷却塔放在放在裙楼上。 二、冷却水泵扬程的确定

水蓄冷方案汇总.doc

第一章工程概况简述 1.工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦,总建筑面积约:15000m2,空调面积:10000m2,建筑总高15m,其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2.设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供.主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5℃/12.5℃,白天为空调工况:供回水温度为7℃/12℃,冷却水供回水温度为32℃/37℃。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积 800m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为 4.5/12.5 ℃;放冷工况运行时,水池进/出水温度为12.5/4.5 ℃,均采用8 ℃温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90~0.95;考虑到保温层传热的影响,冷损失附加率一般取1.01~1.02。因此,本项目实际蓄冷量约为3200kWh(即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》 (GB 50019-2003) 《蓄冷空调工程技术规程》 (JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施——暖通空调?动力》(2003版) 《全国民用建筑工程设计技术措施——给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003)的有关规定,求得蓄冷—放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表:一期设计日尖峰冷负荷为1156RT,采用逐时负荷系数法,设计日逐时冷负荷分布如下: 表设计日各时段负荷值情况

水蓄冷方案汇总

第一章工程概况简述 1. 工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦, 总建筑面积约:15000m2空调面积:10000m2建筑总高15m其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2. 设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为 875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供?主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5 C /12.5 C,白天为空调工况:供回水温度为7C/12 C,冷却水供回水温度为32C /37C。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积800 m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为4.5/12.5 C;放冷工况运行时,水池进/出水温度为12.5/4.5 C,均采用8 C温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90?0.95 ;考虑到保温层传热的影响,冷损失附加率一般取1.01?1.02。因此,本项目实际蓄冷量约为3200kWh (即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》(GB 50019-2003) 《蓄冷空调工程技术规程》(JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施一一暖通空调?动力(>2003版) 《全国民用建筑工程设计技术措施一一给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003的有关规定,求得蓄冷一放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表: 一期设计日尖峰冷负荷为1156RT采用逐时负荷系数法,设计日逐时冷负荷分布如下:

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

空调管路系统的设计原则

一、空调管路系统的设计原则 空调管路系统设计主要原则如下: 1.空调管路系统应具备足够的输送能力,例如,在中央空调系统中通过水系统来确保渡过每台空调机组或风机盘管空调器的循环水量达到设计流量,以确保机组的正常运行;又如,在蒸汽型吸收式冷水机组中通过蒸汽系统来确保吸收式冷水机组所需要的热能动力。 2.合理布置管道:管道的布置要尽可能地选用同程式系统,虽然初投资略有增加,但易于保持环路的水力稳定性;若采用异程系统时,设计中应注意各支管间的压力平衡问题。 3.确定系统的管径时,应保证能输送设计流量,并使阻力损失和水流噪声小,以获得经济合理的效果。众所周知,管径大则投资多,但流动阻力小,循环水泵的耗电量就小,使运行费用降低,因此,应当确定一种能使投资和运行费用之和为最低的管径。同时,设计中要杜绝大流量小温差问题,这是管路系统设计的经济原则。 4.在设计中,应进行严格的水力计算,以确保各个环路之间符合水力平衡要求,使空调水系统在实际运行中有良好的水力工况和热力工况。 5.空调管路系统应满足中央空调部分负荷运行时的调节要求; 6.空调管路系统设计中要尽可能多地采用节能技术措施; 7.管路系统选用的管材、配件要符合有关的规范要求; 8.管路系统设计中要注意便于维修管理,操作、调节方便。 二、管路系统的管材 管路系统的管材的选择可参照下表选用:

三、供回水总管上的旁通阀与压差旁通阀的选择 在变水量水系统中,为了保证流经冷水机组中蒸发器的冷冻水流量恒定,在多台冷水机组的供回水总管上设一条旁通管。旁通管上安有压差控制的旁通调节阀。旁通管的最大设计流量按一台冷水机组的冷冻水水量确定,旁通管管径直接按冷冻水管最大允许流速选择,不应未经计算就选择与旁通阀相同规格的管径。 当空调水系统采用国产ZAPB、ZAPC型电动调节阀作为旁通阀,末端设备管段的阻力为0.2MPa时,对应不同冷量冷水机组旁通阀的通径,可按下表选用: 冷冻水压差旁通系统的选择计算 在冷冻水循环系统设计中,为方便控制,节约能量,常使用变流量控制。因为冷水机组为运行稳定,防止结冻,一般要求冷冻水流量不变,为了协调这一对矛盾,工程上常使用冷冻水压差旁通系统以保证在末端变流量的情况下,冷水机组侧流量不变。系统图如图一。

空调水系统的设计原则

空调水系统的设计原则 1、空调水系统的设计原则 空调水系统设计应坚持的设计原则是: 力求水力平衡; 防止大流量小温差; 水输送系数要符合规范要求; 变流量系统宜采用变频调节; 要处理好水系统的膨胀与排气; 要解决好水处理与水过滤; 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 a、技术要求 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 a、造成大流量小温差的原因 设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。 水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 a、避免大流量小温差的方法 考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为0.2-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 a、水系统的补水与排水 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,

空调水系统设计

空调水系统设计空调水系统流速的确定 一般,当管径在DN100到DN25C之间时,流速推荐值为1.5m/s左右,当管径小于DN10C时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。 目前管径的尺寸规格有:DN15、DN20 DN25 DN32 DN40 DN50 DN70 DN80 DN100 DN125 DN150 DN200 DN250 DN300 DN350 DN400 DN450 DN500 DN600 注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125那么所选水泵的进出口管径应为DN100 管内水流速推荐值(m/s) 水系统设计按经济流速选用的水流速推荐值

水系统的流量和单位长度阻力损失 局部阻力系数?

供暖水流速度 户式水机设计经验值 水管流速按1.8/S计算,流量计算公式为:管道截面积x 1.8/s X 3600(换算成小时) 空调水系统管件附件的安装 1 ?水泵在系统的设计位置: 一般而言,冷冻水泵应设在冷水机组前端, 从末端回来的冷冻水经过冷冻水泵打回冷水机组;冷却水泵设在冷却水进机组的水路上,从冷却塔出来的冷却水经冷却水泵打回机组;热水循环泵设在回水干管上,从末端回来的热水经过热水循环泵打回板式换热器。 2.冷却塔上的阀门设计:

(1)冷却塔进水管上加电磁阀(不提倡使用手动阀) (2)管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水, 冬天易冻) 3.水质处理 a 水过滤:无论开式和闭式系统,水过滤器都是系统设计中必须考虑的。目前常用的水过滤器装置有金属网状、Y型管道式过滤器,直通式除污器等。一般设置在冷水机组、水泵、换热器、电动调节阀等设备的入口管道上 b 闭式水系统:冷、热水系统中必须设置软化水处理设备及相应的补水系统。 电子水处理仪的安装位置:放置于水泵后面,主机前面。 4.水泵前后的阀门 1水泵进水管依次接:蝶阀-压力表-软接 2水泵出水管依次接:软接-压力表-止回阀-蝶阀 5.分集水器 多于两路供应的空调水系统,宜设置集分水器。集分水器的直径应按总流量通过时的断面流速(0.5-1.0m/s )初选,并应大于最大接管开口直径的2倍;分汽缸、分水器和集水器直径D的确定: a按断面流速确定D分汽缸按断面流速8-12m/s计算;分水器和集水器按断面流速0.1m/s计算。 b按经验公式估算来确定D, D=(1.5-3)D MAX D AX支管最大直径 c分集水器之间加电动压差旁通阀和旁通管(管径一般取DN50) d集水器的回水管上应设温度计. 6.各种仪表的位置 布置温度表,压力表及其他测量仪表应设于便于观察的地方,阀门高度一般离地1.2 - 1.5m,高于此高度时, 应设置工作平台。 压力表:冷水机组、进出水管、水泵进出口及集分水器各分路阀门外的管道上,应设压力表; 温度计:冷水机组和热交换器的进出水管、集分水器上、集水器各支路阀门后、新风机组供回水支管,应设温度计。 7.水系统的泄水与排气 a在水系统的最低点,应设置排水管和排水阀门,放水时间为2-3h。 b在水系统的最高点,应设计集气罐,在每个最高点(当无坡度敷设时,在水平管水流的终点)设置放空器。

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

空调水系统的设计原则

空调水系统的设计原则 水系统 1、空调水系统的设计原则 l 空调水系统设计应坚持的设计原则是: l ★力求水力平衡; l ★防止大流量小温差; l ★水输送系数要符合规范要求; l ★变流量系统宜采用变频调节; l ★要处理好水系统的膨胀与排气; l ★要解决好水处理与水过滤; l 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 l a、技术要求 l 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 l a、造成大流量小温差的原因 l ★设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。

l ★水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 l★在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 l la、避免大流量小温差的方法 l★考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 l当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 l a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 la、水系统的补水与排水 l 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,从而将管路系统中的空气由下往上通过排气阀和膨胀水箱排除。许多工程安装为图省工省料,将膨胀水箱的膨胀管就近与较高处的回水管相接,致使系统中的空气难以排除而招致供水压力长时间不稳定。

水蓄冷中央空调技术方案.doc

深圳市信义玻璃厂中央空调系统 技 术 经 济 分 析 深圳市安朗节能有限公司 2010年9月

目录 一、空调系统的特点 (2) 1.水蓄冷空调系统特点 (2) 2.常规电制冷冷水机组系统特点 (3) 3.风冷热泵系统特点 (3) 二、项目概况及经济技术条件 (5) 1.项目概况 (5) 2.电力政策 (5) 三、项目空调系统初期投资分析 (6) 1.常规电制冷+风冷热泵系统 (6) 2.水蓄冷系统初投资 (6) 四、项目空调系统机房运行费用分析 (7) 1.运行策略分析 (7) 2.运行费用计算 (8) 五、经济性分析 (9)

目前,本工程中央空调系统采用的是较为普遍的常规电制冷机组与风冷模块机供冷,虽然该系统十分简单,容易操作,但从其运行情况来看,却存在不节能,运行费用高,效果不好等缺点,现在根据甲方要求,对该系统进行改造,从而达到解决以上问题的目的,根据深圳市的电价政策等措施,推荐采用水蓄冷中央空调系统。 一、空调系统的特点 1.水蓄冷空调系统特点 水蓄冷空调是利用夜间低谷荷电力制冷储存在蓄能装置中,白天将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.利用蓄能技术移峰填谷,平衡电网负荷,提高电厂发电设备的利用率, 降低电厂电网的运行成本,节约电厂、电网的基础建设投入。 b.减少冷水机组容量,降低主机一次性投资;总用电负荷少,减少配电 容量与配电设施费。利用峰谷荷电价差,大大减少空调年运行费。c.使用灵活,过渡季节、节假日或者下班后部分办公室使用空调可由蓄 冷槽提供,无需开主机,节能效果明显。具有应急功能,提高空调系统的可靠性。 d.启动时间短,只需15-20分钟即可达到所需温度,而常规系统则需1 小时左右。 e.可实现大温差低温送风变风量空调系统,缩小送水(风)管的管径,

空调水系统设计

空调水系统设计 空调水系统流速的确定 一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。 目前管径的尺寸规格有: DN15、DN20、DN25、DN32、DN40、DN50、DN70、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600 注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。 管内水流速推荐值(m/s) 水泵吸入口 1.2-2.1冷却水管 1.0-2.4

水泵压出口 2.4-3.6分水器 1.0-1.5供回水干管 1.0-2.0集水器 1.0-1.5

供暖水流速度m/s

户式水机设计经验值 水管流速按1.8/S计算,流量计算公式为:管道截面积×1.8/s×3600(换算成小时)

空调水系统管件附件的安装 1.水泵在系统的设计位置: 一般而言,冷冻水泵应设在冷水机组前端,从末端回来的冷冻水经过冷冻水泵打回冷水机组;冷却水泵设在冷却水进机组的水路上,从冷却塔出来的冷却水经冷却水泵打回机组;热水循环泵设在回水干管上,从末端回来的热水经过热水循环泵打回板式换热器。 2.冷却塔上的阀门设计: (1)冷却塔进水管上加电磁阀(不提倡使用手动阀) (2)管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水,冬天易冻) 3.水质处理 a水过滤:无论开式和闭式系统,水过滤器都是系统设计中必须考虑的。目前常用的水过滤器装置有金属网状、Y型管道式过滤器,直通式除污器等。一般设置在冷水机组、水泵、换热器、电动调节阀等设备的入口管道上 b闭式水系统:冷、热水系统中必须设置软化水处理设备及相应的补水系统。 电子水处理仪的安装位置:放置于水泵后面,主机前面。 4.水泵前后的阀门

水蓄冷空调系统简介

目录 1、水蓄冷空调系统简介 1.1 水蓄冷空调系统原理 1.2 实施目的 1.3 水蓄冷空调系统特点 1.4 系统设计原则 1.5 蓄冷模式选择 1.6 中旅温泉珠海有限公司实施水蓄冷系统空调好处 2、水蓄冷空调设计方案 2.1 基本情况 2.2 建设蓄冷系统可行性 2.3制冷站主要设备配置 2.4 水蓄冷中央空调系统主要增加设备 2.5 蓄冷水池 2.6 设计计算依据 2.7 水蓄冷系统经济性分析 3、电费节约计算方法 4、合作模式 5、蓄冷水池 4.1 蓄冷设备 4.2 水池保温 6、水蓄冷控制系统 5.1 控制目的 5.2 控制功能

1、水蓄冷空调系统简介 1.1水蓄冷空调原理 水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。 1.2 实施目的 通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策,在实际的“谷制峰用”中,节约大量的空调电费,降低工厂的生产成本;也为节能环保做出了一定的贡献。 1.3 水蓄冷空调系统特点 水蓄冷空调代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.减少冷水机组容量,总用电负荷少,减少变压器配电容量与配电设施费。 b.利用峰谷荷电价差,大大减少空调年运行费。 c.使用灵活,节假日部分办公楼使用的空调可由蓄冷水槽直接提供,节能效果明显。 d.可以为较小的负荷(如只使用个别办公室)蓄冷水槽放冷定量供冷,而无需开主机。 e.具有应急功能,提高空调系统的可靠性。 f.上班前启动时间短,只需10—15分钟即可达到所需温度,常规系统约需1小时。 1.4系统设计原则 经济 水蓄冷系统设计须综合考虑影响初期投资及运行成本的各种因素,详尽研究系统的电费、峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。 本项目原空调系统部分已投入运行,设计时需考虑不增加空调主机能满足新增建筑的供冷需求,节约设备投入,实现“小马拉大车”。

对冷却水系统设计问题的探讨

对冷却水系统设计问题的探讨 空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 一、冷却塔的位置要考虑系统设备承压要求: 冷却水系统形式主要有两种:水泵前置式和水泵后置式。确定时要考虑水系统的承压能力。水系统的承压能力最大的地方是水泵出口,系统承压有以下三种情况:系统停止运行时,水泵出口压力为系统静水压力h=Z;系统瞬时启动,但动压尚未形成时,水泵出口压力为系统静水压力和水泵全压之和h=Z+HP;正常运行时,水泵出口压力为该点静水压力与水泵静压之和h=Z+HP-v2/2g。冷水机组冷凝器耐压,目前国产机组一般为981KPa。水泵壳体的耐压取决于轴封的形式,水泵吸入侧压力在981KPa以上时,要使用机械密封。 冷却塔如果设在高层建筑主楼屋面,产生的压力高于机组的承压能力时,冷却水泵宜设在冷水机组的冷凝器出口,以降低冷凝器工作压力。有人会提出疑问:水泵入口负压过大,会产生气蚀。事实上, 冷却塔与冷水机组之间的高差,远大于管路阻力和冷凝器阻力,并且水泵还有一个容许吸上真空高度。 笔者的同学曾经设计一个工程,机房在地下,裙房屋顶为人员活动空间,业主要求在120米高的屋面安装冷却塔,系统最大承压要超过1.2MPa与水泵全压之和。这就造成产生的静压太高,冷凝器不能承受,同时对水泵轴封和软接头提出了更高要求。 解决方法一:选用能承受高静压的设备和管道配件,这将大大增加工程造价。 解决方法二:设两个冷却水箱、两套冷却水泵。一个高温冷却水箱、一个低温冷却水箱,一套冷却水泵从低温水箱抽水进入冷凝器后进入高温水箱,另一套冷却水泵从高温水箱抽水送入冷却塔,然后回流到低温水箱。但要注意:冷却塔

中央空调水系统管道设计

中央空调水系统管道设 计 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

中央空调水系统管道设计 两管制:冷水系统和热水系统采用相同的供水管和回水管,只有一供一回两根水管的系统。 优点:两管制系统简单,施工方便; 缺点:不能用于同时需要供冷和供热的场所。 三管制:分别设置供冷管路、供热管路、换热设备管路三根水管;其冷水与热水的回水关共用。 优点:三管制系统能够同时满足供冷和供热的要求,管路系统较四管制简单; 缺点:比两管制复杂,投资也比较高,且存在冷、热回水的混合损失。 四管制:冷水和热水的系统完全单独设置供水管和回水管,可以满足高质量空调环境的要求。 优点:四管制系统能够同时满足供冷和供热的要求,并且配合末端设备能够实现室内温度和湿度精确控制的要求;由于冷水和热水在管路和末端设备中完全分离,有助于系统的稳定运行和减小设备的腐蚀;缺点:初投资高,管路布置复杂。 中央空调水系统同程异程式

同程式系统:经过每一并联环路的管长基本相等,如果通过每米长管路的阻力损失接近相等,则管网的阻力不需调节即可保持平衡。优点:同程式系统中系统的水力稳定性好,各设备间的水量分配均衡,调节方便。 缺点:同程式系统由于采用回程管,管道的长度增加,水阻力增大,使水泵的能耗增加,并且增加了初投资。 异程式系统:经过每一并联环路的管长均不相等。 优点:异程式系统简单,耗用管材少,施工难度小。 缺点:采用异程式的系统,各并联环路管长不等,常在每一个并联支路上安装流量调节装置。 中央空调冷凝水系统的设计 风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。 1、冷凝水管的布置 ①若邻近有下水管或地沟时,可用冷凝水管将空调器接水盘所接的凝结水排放至邻近的下水管中或地沟内。 ②若相邻近的多台空调器距下水管或地沟较远,可用冷凝水干管将各台空调器的冷凝水支管和下水管或地沟连接起来。

水蓄冷空调

中央空调水蓄冷系统的原理图 一、水蓄冷系统的原理 1、空调谁蓄冷的构成和原理流程图 水蓄冷的主要组成部分:制冷机组、蓄冷水池(蓄冷罐)、板式换热器、供冷水泵、蓄冷水泵、放冷水泵、冷却塔和冷却水泵。与常规制冷系统相比,水蓄冷系统比常规系统多蓄冷水池(蓄冷罐)、板式换热器、蓄冷水泵和放冷水泵等设备。 2、大温差水蓄冷典型系统的原理 系统的基本组成如图所示(可以部分地下或者全地下结构)。空调投入运转时,阀K热、K冷开启,K旁关闭。供冷泵的启停及其出口阀开度由楼宇的需冷量而定,冷水机和充冷泵的开停则由电价的时段划分而定,二者互不干扰。 2.1、充冷工况:电力低价时段,冷水机满载运转,其输出水量G1大於楼宇所需的冷冻水量

G2,余量G3=G1-G2自贮柜“冷端”输入经均流布水环槽注入贮柜底部。柜内冷冻水与回水的交界面上升,升达上布水环槽上缘,充冷过程终结。 2.2、放冷工况:楼宇所需冷冻水量G2大於冷水机出水量G1时,G3=G1-G2<0,自贮柜底部输出的冷冻水经供冷泵馈至楼宇,在换热升温后经K热返回贮柜上布水环槽。贮柜内,冷冻水与回水的界面下降。 3、水蓄冷空调的适用场合 水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所。适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。 与冰蓄冷技术相比,水蓄冷技术显著节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。 4、如何选择水蓄冷或冰蓄冷方式改造? 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 4.1、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰方式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 4.1.1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下, 选择制冷机的最佳平衡计算公式应为: Qc=Q/(N1+C f*N2) Qs= N2* C f *Qc, 式中 Q:以空调工况为基点时的制冷机制冷量(kw), Qs:蓄冰槽容量(KWH); N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)N. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一

空调水系统的设计原则

, 空调水系统的设计原则 水系统 1、空调水系统的设计原则 l 空调水系统设计应坚持的设计原则是: l ★力求水力平衡; l ★防止大流量小温差; l ★水输送系数要符合规范要求; l ★变流量系统宜采用变频调节; ( l ★要处理好水系统的膨胀与排气; l ★要解决好水处理与水过滤; l 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 l a、技术要求 l 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 l a、造成大流量小温差的原因 … l ★设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。 l ★水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而

不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 l★在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 l la、避免大流量小温差的方法 l★考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 l当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 ! l a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 la、水系统的补水与排水 l 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,从而将管路系统中的空气由下往上通过排气阀和膨胀水箱排除。许多工程安装为图省工省料,将膨胀水箱的膨胀管就近与较高处的回水管相接,致使系统中的空气难以排除而招致供水压力长时间不稳定。 l水系统的排水阀应设在系统的最低点(集水器或制冷机水管路最低点),以便检修时能将管路系统中的水全部排除。 la、水系统的排气 l安装在每层建筑物的风机盘管、新风机组回水管路末端最高点,均应装设自动排气阀。如支环路较长而使管路转弯较多时,或某些水管为躲避消防管、新风管和装设在吊顶内的较大断面电缆等而有上下转弯时,均应在转弯的最高点设置自动排气阀。旅馆水系统

中央空调水系统设计

中央空调水系统: (1)开式和闭式 开式系统:设有一个蓄水池,当水池容量较大时,具有一定的蓄冷能力。缺点是当末段设备与水池的高差较大时,要求水泵具有较大的扬程;在水泵停用后,管内直接与大气相通,加剧了管道内表面腐蚀,使管道的寿命缩短;系统末端设备的水利平衡较难实现。 闭式系统:系统中介质不与空气接触,对管路、设备的腐蚀性小。必须设置一定的定压设备,以保持建筑高端水管充满水,如采用膨胀水箱,水箱的水位应高出最高的系统水管1.5M以上,如采用气体定压罐,定压罐压力应高出系统内最低的静水压力点15kPa以上。 (2)同程和异程: 同程系统:各并联环路中水的流程基本相同,系统水路容易实现平衡,流量分配均匀。缺点是管路布置复杂,管路长,初投资费用大。 异程系统:管路布置简单,节省管路及其占用空间,初投资比同程系统低。缺点是水流量分配不均,系统很难实现平衡。 (3)水路计算: 在已知水流量和推荐流速下,确定水管管径及水流动阻力。 水系统水管管径的简易计算公式: 在空调系统中所有水管管径一般按照下述公式进行计算:

L(m3/h) D(m)= 0.785x3600xV(m/s) 公式中:L----所求管段的水流量 V----所求管段允许的水流速根据计算结果,可选取和公称直径数值最为接近的管径来确定所求管段的管径。 一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。(4)冷冻水系统设计: a: 冷冻水泵扬程的组成 .制冷机组蒸发器水阻力:一般为5~7mH2O;(具体可参看产品样本).末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O;(具体值可参看产品样本) .回水过滤器阻力,一般为3~5mH2O; .分水器、集水器水阻力:一般一个为3mH2O; .制冷系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O; 综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。 注意:扬程的计算要根据制冷系统的具体情况而定,不可照搬经验值! b.冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时

相关文档
最新文档