乙二醇回收和再生系统

乙二醇回收和再生系统
乙二醇回收和再生系统

乙二醇回收和再生系统

MEG (Monoethylene Glycol) Regeneration

Inland technologies是乙二醇回收和再生系统的专业制造商. 生产基地分别位于加拿大和美国.

多年来, 我们管理, 回收, 再生来自很多行业的乙二醇废液, 包括汽车冷却剂, 飞机除冰液, 陆海石油和天然气管道和设备脱水. 到现在, 我们已经管理, 回收, 再生了12亿升的乙二醇废液.

Monoethylene Glycol (MEG) 乙二醇一般被应用在陆海石油和天然气管道和设备中防止水合物的形成和堵塞. 为了降低成本和减少乙二醇废液的排放数量, 乙二醇通常被回收和再生. 水合物经常产生在低温和高压的条件下, 因为水合物的形成, 从而使海底管道特别容易损坏( 海床温度经常处于4-10°C之间). 这时就需要不间断的注入乙二醇. 乙二醇被注入钻井平台和海岸上, 乙二醇被浓缩和再生, 再次应用于海底管道.

多年前, Inland 就已经研发和制造出一种二选一可交替回收和再生系统:

a. 乙二醇浓缩器(MEG Concentrator)

b. The Starcevic Dist illation System?乙二醇蒸馏系统(The Starcevic Distillation System?)

乙二醇浓缩器(MEG Concentrator), 应用于陆海石油和天然气行业. 是低资金投入, 低操作成本的系统, 可以把浓度1%-20%的乙二醇溶液浓缩到浓度50%-60%.

The Starcevic Distillation System?乙二醇蒸馏系统(The Starcevic Distillation System?), 是乙二醇浓缩器(MEG Concentrator)生产的浓度50%-60%乙二醇溶液的再浓缩系统, 可以把浓度50%-60%的乙二醇溶液浓缩到浓度98+%.

Inland的新型The Starcevic Distillation System?乙二醇蒸馏系统(The Starcevic Distillation System?), 是一个两阶乙二醇再生系统, 可以把浓度50%-60%的乙二醇溶液浓缩并得到到浓度98+%的纯级乙二醇. 它比其它可比系统节省20%的能耗, 并且每天可以生产7000升的产品, 这个产量是用于大多数陆海石油和天然气管道.

乙二醇浓缩器(MEG Concentrator) 和The Starcevic Distillation System?乙二醇蒸馏系统(The Starcevic Distillation System?) 可非常容易的和陆海石油和天然气行业的其它设备整合, 以满足和适合当地实际的操作条件, 规范限制, 以及环保要求.

乙二醇浓缩器

Glycol Concentrator

乙二醇浓缩器是Inland 公司乙二醇回收程序的一个重要组成部分. 该系统技术领先、成本效益高, 可从收集到的乙二醇中除去水分, 生产出浓度高达60% 的浓缩性乙二醇/水混合液. 浓缩液体通常被蒸馏再生, 以作为某些应用领域生产用原料, 如飞机除冰液、热传递, 润滑和发动机冷却液. 这些独立装置均以机械蒸汽压缩为基础.

该装置为橇装式,可在移动或固定式设备上使用。该系统具有非常突出的节能效果,与其它蒸馏或蒸发过程相比较, 大大节约了运作成本.

清洁蒸馏液

乙二醇浓缩器流出液系统装配的”洗涤器”, 可将乙二醇的浓度降低至1000mg/L 以下, 以达到最严格的环境排放要求. 在分两个阶段处理的情况下, 蒸馏液中的乙二醇可降低至100mg/L. 若需要更高纯度的水, 将使用膜系统处理.

易用性

该乙二醇浓缩器旨在实现在最少的维护和操作下运作. 电脑控制的操作系统已内置安全系统和安全检查, 进一步确保了操作的简便性能.

自首次开发以来, 乙二醇浓缩器已加工处理了近650,000,000升的乙二醇废液.

The Starcevic Distillation System? 乙二醇蒸馏系统

The Starcevic Distillation System?

Inland 开发制造Starcevic Distillation System? [SDS] 乙二醇蒸馏系统, 为各行业客户提供交钥匙乙二醇回收服务.

此可扩展系统是一个两阶设备, 能将浓度50%的原生乙二醇处理成纯度最高达99.8%的产液.

SDS 可结合获得专利认证的Inland 乙二醇浓缩器以及其它处理系统使用, 以提供闭环回收. 这包括利用再造乙二醇、DuraGly? 和其它乙二醇产品.

我们的再造乙二醇能满足或超过一系列工业市场的技术规范.

为获得高品质产液, 我们采用了多级工艺, 包括改进99.8% 的乙二醇, 以清除残余污染物.

特征

此系统的设计以提炼工业环境下使用过的乙二醇为基础, 能够轻易处理机场和其它场所的污染物.

? 该设备轮廓小, 高度仅【8.5m】, 可使用半便携式配置启动.

? 可采用多种燃料作为驱动动力, 包括生物燃料.

? 蒸馏水满足严格的环境方针.

? 排放标准满足或超过所有北美和欧洲法规.

加拉塔天然气田, 保加利亚

Galata Gas Field, Bulgaria

Inland 为位于黑海的加拉塔天然气田提供乙二醇回收和再生系统. 这个距离海岸线25公里的天然气田, 在冬季, 使用水合物脱除剂, 阻止因为天然气形成的水合物造成的管道堵塞.

加拉塔天然气田使用的水合物脱除剂是乙二醇(Mono-Ethylene Glycol [MEG]) , 乙二醇被注入管道. 并使用Inland的乙二醇浓缩器回收和再生湿的乙二醇产品, 浓缩后的乙二醇被再次注入管道, 循环使用.

环境保护

为了满足欧盟制定的环保操作要求, 所有排放污水必须低于25mg/L COD, 为了达到这个目的, 乙二醇浓缩器产生的蒸馏净水, 被再进通过反渗透系统进行净化.

特点

标准的乙二醇浓缩器排放的蒸馏净水中乙二醇的浓度约为1000 mg/L. 尽管这一乙二醇浓度要优于欧盟的排放雨雪污水中乙二醇的限量, 但是为了达到COD的排放标准, 标准的乙二醇浓缩器排放的蒸馏净水再次被3级反渗透系统净化.

Inland 乙二醇浓缩器使用热力循环, 系统高效, 而且节能. 非常适用于大中小型油气田.

基于天然气结构和海床温度(一般处于4-10°C之间), Inland 乙二醇浓缩器最佳适配于天然气产量为50 - 150 MMSCFD的天然气田.

加拉塔天然气田使用Inland 乙二醇浓缩器, 实现了高效节能, 降低整体项目运行成本的目标.

加拉塔天然气田对Inland 乙二醇浓缩器使用评估白皮书: (英文原件)

转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收对比分析 一、转轮热回收和乙二醇热回收工作原理 转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。 乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。 二、关键部件外形图 转轮热回收转轮:乙二醇热回收换热器 三、关键部件材质 转轮热回收转轮: 可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。 其特点如下: 1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式

分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。 2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。 3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。 乙二醇热回收换热器: 排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。 四、与空调系统配套情况 转轮热回收: 由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。 乙二醇热回收: 由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。 五、换热效率 转轮热回收: 中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达90%(焓换效率)。 乙二醇热回收: 间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。 下面就本工程单台机组冬季运行时作经济分析: 转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

乙二醇生产工艺

乙二醇生产工艺

摘要 乙二醇在国民经济中有着极其重要的地位,广泛用于生产聚酯纤维、薄膜、容器瓶类等聚酯系列产品和汽车防冻剂,但国内乙二醇的产量一直无法满足国内市场的强劲需求。因此,本设计以乙二醇精制为中心和重点,经过严密的计算和论证,得到了肯定的结果。 关键词:乙二醇;环氧乙烷;水合法。

目录 前言 (1) 1文献综述........................................................................... 1.1 乙二醇工业的发展[1][2]........................................

前言 乙二醇在国民经济中有着极其重要的地位,是大宗有机化工产品。广泛用于生产聚酯纤维、薄膜、容器瓶类等聚酯系列产品和汽车防冻剂,还可用于除冰剂、表面涂料、表面活性剂、增塑剂、不饱和聚酯树脂以及合成乙二醇醚、乙二醛、乙二酸等化工产品的原料,虽然乙二醇产品用途极广,但国内乙二醇的产量一直无法满足国内市场的强劲需求,乙二醇自给率不足50%,如图1有相当大的部分需要进口,易受国际市场供求关系的影响。因此,发展和技术改造乙二醇工艺设计对我国经济发展有着重要的意义。 随着我国市场经济的发展,以前那种单纯*增大原料和能源的消耗来提高产量的做法已逐渐被淘汰,继续这种做法的企业已经濒临破产倒闭;现在只有依*科技的力量,通过技术的改造来降低能源的消耗,同时使各种生产数据得到优化的配置,才是摆脱困境最有效的方法。 乙二醇工艺设计中,乙二醇的精制是整个工艺流程的核心部分,关系着乙二醇产品的质量和产量。因此,本设计以乙二醇精制为中心和重点,经过严密的计算和论证,得到了肯定的结果。 该技术具有世界共同发展趋向的节能性,是生产乙二醇工艺的重大突破。 图1 我国近些年乙二醇的供需情况 年份 产量 万吨/年 进口量 万吨/年 需求量 万吨/年 自给率 % 2000 2001 2002 2003 2004 2005 2006 2007 2008 90 80 90 96 94 110 156 174 214 105 160 214 251 339 400 406 480 522 195 240 304 347 433 510 562 654 736 46 33 30 28 22 21 28 27 29 第1章文献综述

北京再生资源回收利用项目可行性报告

北京市再生资源回收利用项目 可行性研究报告 北京市华京源再生资源回收市场有限公司 2010年2

1总论 1.1项目概况 1.1.1项目名称:北京市再生资源回收利用项目 1.1.2项目法人单位:北京市华京源再生资源回收市场有限公司 1.1.3建设地点:北京市丰台区永合庄村9号 1.1.4总占地面积与建设内容 北京市再生资源回收利用项目占地4.4万平方米,分两期建设:第一期建设规模14000平方米,重点建设改造再生资源交易市场,完善再生资源仓储中心的功能;第二期建设规模12000平方米,重点扩建再生资源分拣加工处理中心,对分拣加工设备进行升级改造,建设电子信息管理平台。 1.1.5建设规模 本项目拟建设规模为交易分拣加工废塑料10万t/a、废钢铁45万t/a、废纸25万t/a;其它15t/a。 产出塑料工业基础原料9.3万t/a、再生钢铁工业基础原料44.775万t/a、再生纸工业基础原料24.875万t/a1。其它原料14.925t/a。 1.1.6建设总投资 本项目总投资估算为7558万元,其中建设投资万元,建设期利息万元,流动资金万元。 1注:在回收分拣过程中损失1.125万吨/年,其中水分损失2.98万吨/年,含少量废塑料等的泥土固体废弃物0.48万吨/年。产生含废纸的泥土0.05万吨/年。产生含泥土铁粉和铁锈0.16万吨/年。

1.1.7建设期 本项目建设期1年(不含前期工作)。 1.1.8主要技术经济指标 (1)资源循环与利用水平 根据国家环境保护行业标准HJ/T275-2006,颁布静脉产业类(资源再生利用产业)生态工业基地标准(试行)。 北京市再生资源回收利用项目——完全达到标准要求。 表1.1-1国家环保行业标准及本项目达标情况 (2)国家发布和实施《工业项目建设用地控制措施》,国土资发[2008]24号 1)土地等别划分 本项目位于北京市丰台区永合庄村9号,该区土地已列入北京市再生资源分拣中心规划用地。 2)投资强度控制措施 (3)主要技术经济指标 表1.1-2 主要技术经济指标汇总表

EOEG(乙二醇)装置工艺技术特点及基本原理教学内容

工艺技术特点及基本原理 基本原理 乙烯氧化生成环氧乙烷的反应机理 乙烯氧化过程按氧化程度可分为选择性氧化(部分氧化)和深度氧化(完全氧化)两种情况。乙烯分子中的碳—碳双键(C=C)具有突出的反应活性,在一定氧化条件下可实现碳—碳双键的选择氧化而生成环氧乙烷,但在通常氧化条件下,乙烯分子骨架很容易被破坏,发生深度氧化而生成二氧化碳和水。目前工业上乙烯直接氧化生成环氧乙烷的最佳催化剂是银催化剂。 (1)主反应 乙烯氧化生成环氧乙烷是放热反应,在250℃时,每生成一摩尔环氧乙烷要释放出25.19千卡的反应热。 (2)副反应 乙烯氧化时除生成产物环氧乙烷外,还发生其它反应: 在工业生产中,反应产物里实际主要是环氧乙烷、二氧化碳和水,而甲醛量远小于1%,乙醛量则更小。 反应(2)是主要副反应,也是放热反应,250℃时,每反应掉1摩尔乙烯要放出315.9千卡反应热,如果反应温度过高或其它条件影响会产生反应(3),其反应也是强放热反应,每反应掉1摩尔环氧乙烷要放出314.4千卡的热量,副反应(2)和(3)与主反应(1)的反应进行比较,便可看出副反应的反应热是主反应热的卡几倍,因此必须严格控制工艺条件,以防副反应增加。不然,副反应加剧,势必引起操作条件恶化,造成恶性循环,甚至发生催化剂床层"飞温"(由于催化剂床层大量积聚热量造成催化剂层温度突然飞速上升的现象)而使正常生产遭到破坏。 近代对乙烯在银催化剂条件下的选择性氧化机理做了大量的研究,比较统一的看法是: A.氧被银表现吸附的形态 初始时,在各种不同温度下氧被高速度吸附,此时活化能很低,约为3千卡/克分子,这个过程发生在四个邻近的清洁的银原子上氧分子的解离吸附(非活化解离吸附)。 O2+4Ag(邻近)→2O2-(吸附)+4Ag+(邻近) (a) 如果银表面有四分之一被氯遮盖时,则上述过程被完全吸附。 第二种过程是表面缺乏四个邻近的清洁银原子时,则发生氧分子的非离解吸附,此时氧

乙二醇合成

大致上,EG的合成路线可以分为两类:石油合成路线和非石油合成路线。?? 1石油合成路线? 1。1EO法 Wurtz于1859年首次用氢氧化钾水解乙二醇二乙酸酯制得EG,次年又由环氧乙烷(EO)直接水合制得,至今,该 法仍是世界上大规模生产EG的唯一方法。 1。1。1 EO非催化水合法 EO直接水合法是目前国内外工业化生产EG的主要方法,该生产技术基本上由英荷壳牌(Shell)、美国Halcon—SD 以及美国联碳(UCC)三家公司所垄断。它们的工艺技术和工艺流程基本上相似,即采用乙烯、氧气为原料,在银催化剂、 甲烷或氮气致稳剂、氯化物抑制剂存在下,乙烯直接氧化生成EO,EO进一步与水以一定物质的量比在管式反应器内进行 水合反应生成EG,EG溶液经蒸发提浓、脱水、分馏得到EG及其他副产品.以UCC的生产工艺为例,水和EO的物质的量 之比为22:1,反应入口温度155oC,出口温度193 oC,反应压力2.1 MPa,EO转化率100 %,水合收率91.3 %。 Shell和SD工艺的反应条件类似,不同的是它们使用的催化剂和添加剂不同. 该工艺中用到大量的水,能耗很大;EO的转化率为100 %,但是产品中EG的选择性只有90 %左右,另外还会产生 9%左右的二乙二醇(DEG)和1 %左右的三乙二醇(TEG)。增加投料中水的比例会提高EG的选择性,但是同时会加大能耗,并增加分离困难. ?虽然EO直接水合法制EG工艺成熟,是目前工业生产中广泛采用的方法,但是其自身仍然存在一些缺陷,因此仍有必 要对其生产工艺进行改进,或者寻求更加高效的替代方法。? 1。1.2 EO催化水合法??为了降低能耗,提高EG的选择性,世界各国的研究人员对EO水合法制EG的催化剂和添加剂等展开了广泛的研究。 ?Shell公司[17-22]早期采用氟磺酸交换树脂为催化剂,后来又开发了一系列具有正电中心的固体催化剂以及固载的大环 螯合化合物作为非均相催化剂。树脂型催化剂催化的反应, EG的选择性超过94 %。但是,树脂型催化剂具有一些缺点, 例如寿命短、热稳定性和机械强度不高等等,而固载的大环螯合化合物作为催化剂克服了这些缺点,并且具有较高的活性, 在与树脂相同的条件下反应5小时,EO的转化率大于99 %,EG的选择性可以达到95 %。最近,Shell公司成功地开发 出了第一代水合催化剂S100,并完成了催化剂筛选和400 kt/a环氧乙烷水合装置的工艺设计。此工艺已经完成中试, 有望用于工业化生产。 ?UCC公司采用含Mo、W、V等多价态金属含氧酸盐作为EO水合催化剂,后来又开发了具有水滑石结构的混合金

飞机除冰液废液乙二醇回收和再生系统共10页文档

Welcome to Inland Technologies Inland是为机场提供飞机除冰液废液(乙二醇)回收和再生系统的专业制造商. 生产基地分别位于加拿大和美国. 通过使用我们的系统, 飞机除冰液废液(乙二醇)被迅速收集, 经过浓缩和再生, 再次应用于飞机除冰, 最终排放到环境中的乙二醇含量可小于85 mg/l, 符合并超过北美和欧洲对机场排放废水中乙二醇含量的最严格要求. 我们的系统应用在北美的二十多个军用和民用机场, 以及位于英国伦敦的希思罗机场. 回收飞机除冰液(乙二醇)超过700,000,000升. 我们提供具有自己专利的: Glyvac?乙二醇回收车 Glycol Recovery Vehicle [Glyva c?] 乙二醇浓缩器 Glycol Concentrator The Starcevic Distillation System? 乙二醇蒸馏系统 The Starcevic Distillation System? GlycolGuard? 乙二醇排水阻塞系统 GlycolGuard? Drain Block 膜处理系统 Membrane treatment system 交钥匙乙二醇回收和再生系统 Turnkey glycol recycling system Glyvac?乙二醇回收车 Glyco l Recovery Vehicle [Glyvac?] 减小飞机除冰液废液(乙二醇)对周围环境影响的一个关键点是快速清除机场停机坪上的废液. 由于我们是制造商, 因此能很好地满足客户的时限要求. 与其它回收车辆相比, Glyvac?拥有许多可以改善运行效率的特点. 收集效率 Glyvac? 具有一个三阶流体分离系统, 能清除气流中99.9% 的乙二醇. 快速卸载 Glyvac? 使用一个机载泵, 该泵能在10分内卸载6800升(满载)的废液, 改善回收和劳动效率。Glyvac? 还拥有一个较大的容量水箱,可减少卸载频率. 安全 所有回收操作都可在驾驶舱管理, 所以工作人员无需离开便可开启收集系统. 这避免了受冷,并减少可滑倒的危险. 维护 第 1 页

国内再生资源回收交易市场发展现状

国内再生资源回收交易市场发展现状 我国再生金属产业原料的60%~70%依靠进口,进入21世纪以来,进口再生资源加工园区在全国各地蓬勃发展起来,目前在建或建成的进口再生资源加工园区已达15家,年处理废金属占我国进口总量的50%以上,交易量较大的国内废物回收交易市场也有10家,园区和市场的快速发展为再生金属产业和区域经济发展提供了原料保障。 一、进口园区和国内市场发展现状 为规范再生资源行业发展、完善制度、加强环境保护,2002年9月,环境保护部(原国家环保总局)污控司在浙江宁波召开了再生资源加工园区座谈会,会上就加工园区的发展方向、园区模式等热点问题进行了广泛的讨论。会议认为,为了指导加工园区的建设,应尽快制定进口再生资源加工园区环境保护指导意见。受环境保护部污控司的委托,中国有色金属工业协会再生金属分会于2003年初完成了《进口再生资源加工园区指导意见》的起草工作,在此基础上,环境保护部公布了《关于促进对国家限制进口的可用作原料的废五金电器、废电线电缆、废电机圈区管理的指导意见(征求意见稿)》,2005年正式发布了《废弃机电产品集中拆解利用处置区环境保护技术规范》。 我国己有宁波镇海、江苏太仓、福建漳州、浙江台州和天津子牙再生资源加工园区,环境保护部已同意河北文安、广东江门、肇庆和梅州、山东烟台、广西梧州和玉林、江西鹰潭等地开发建设再生资源加工园区,并批准了江苏张家港建设废压件拆解试点园区。除了上述国家批准建设的园区外,广东清远、辽宁沈阳、河北大成等地园区建设也己初具规模。目前我国进口再生资源加工园区处理的废金属占到我国进口废金属总量的50%以上。我国已建成了15个进口再生资源加工园区,这些园区都是高标准、高起点规划建设,极大地方便管理和资源集聚,提升了我国再生金属产业的形象。 2003年,环境保护部发文确定浙江宁波再生资源加工园区为试点园区,将天津子牙和广 东肇庆园区列为“圈区管理”园区,2007年,山东烟台、广东肇庆、河北文安等园区也通过了环境保护部的验收。 随着我国经济的快速发展,国内产生了大量的各种废旧物资如废钢、废有色金属、废塑料、废纸等,各种类别的废旧物资交易市场像雨后春笋似的发展起来,我国已兴起了河北保定、浙江永康、湖南汨罗、山东临沂、四川新津、河南长葛、广东南海和重庆等废旧物资交易市场。此外,一些专业化的园区如安徽界首的再生铅、江西丰城的再生铝、湖南永兴的贵金属、江西贵溪的再生铜市场也在加速建设发展。 为了规范废旧物资回收交易市场的发展,商务部出台了《再生资源回收管理办法》,在全国26个城市开展再生资源回收体系建设试点工作。国家在《循环经济促进法》中又明确规定“国家鼓励和推进废物回收体系建设”。2009年,商务部会同财政部下发《关于加快推进再生资源回收体系建设的通知》,已有29个城市和11个交易市场作为第二批再生资源回收体系建设试点。 二、园区和市场发展面临的问题

环氧乙烷、乙二醇装置简介和重点部位及设备

编订:__________________ 审核:__________________ 单位:__________________ 环氧乙烷、乙二醇装置简介和重点部位及设备Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3193-35 环氧乙烷、乙二醇装置简介和重点 部位及设备 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一,装置简介 (一)EO/EG(环氧乙烷/乙二醇)行业发展史及生产现状 1,EO/EC行业发展史 环氧乙烷是石油化工的重要原料,广泛用作防冻液、冷却剂以及纤维和塑料生产的原料,还大量用于生产非离子表面活性剂,乙二醇醚、乙醇胺、防腐涂料以及其他多种化工产品。EO、EG成为聚乙烯和聚氯乙烯之后的第三大乙烯衍生物。 世界上发现环氧乙烷这种化学物质的时间可以追溯到1859年。当时德国化学家伍兹(Wurtz)用2—氯乙醇与氢氧化钾溶液进行液相反应时,首先制得了EO 这种产物,20世纪60年代以前生产20的主要方法氯

乙醇法a9来自于他的研究成果。 1931年,法国的勒福特(Lefort)成功完成了在银催化剂上用空气直接氧化乙烯制取EO的实验,并开发了以空气为氧化剂的直接氧化法。1938年,美国联合炭化物公司(UCC)采用此方法建成了世界上第一座直接氧化法生产EO的工厂。 1953年,美国科学设计公司(即本装置的专利商SD公司)也开发了以空气为氧化剂的SD技术,并建成了2。7XI0的4次方(原多次方位置应该标在右上位置,但word格式不支持)t/a的生产装置。 第二次世界大战后,由于肋的需求量增加,原料乙烯随着石油化工的发展而廉价易得,纯氧的供应又有来源,世界上一些工业发达的国家便对直接氧化法加强了改进的研究。1958年,美国壳牌油晶开发公司(ShellOilDevelopmentCo.)最先完成了以纯氧替代空气直接氧化乙烯制取EO的实验,开发了SheH技术。随即建成了一座2XI0的4次方(原多次方位置应该标在右上位置,但word格式不支持)t/a的工业装置。

乙二醇的回收

从稀溶液中回收乙二醇 摘要 本文讨论了从稀溶液中回收乙二醇实验的可行性,如聚对苯二甲酸乙二醇酯废液。根据工艺过程的要求水溶液种乙二醇的质量分数为1.3%,乙二醇先经过一个初步蒸发阶段,然后由一个反渗透蒸馏处理。本研究的目的是找出各个操作单元的操作条件,从而确保乙二醇的浓度达到相关工艺所要求的浓度,并尽可能多的回收乙二醇,减少乙二醇的浪费。 关键词:乙二醇回收聚酯废水废物减少蒸发反渗透 绪论 工业上采用乙二醇与对苯二甲酸直接酯化反应,或对苯二甲酸二甲酯(DMT)与乙二醇酯交换法聚生产聚对苯二甲酸乙二醇酯。直接酯化是新建工厂生产采用的首选方法,是因为直接酯化反应具有较高的反应速率;在催化剂作用下,可以获得更高的分子聚合度;对苯二甲酸比对苯二甲酸二甲酯轻,减少了存储费用。 乙二醇与对苯二甲酸在缩聚反应器中反应,温度控制在220-260℃。乙二醇过剩,通常可以获得较高的反应速率。乙二醇与对苯二甲酸的比例大于2时,可以抑制一缩二乙二醇的形成。直接酯化,由催化剂加速其反应,其次是逐步四方的压力达到1mbar。反应产物中过剩的试剂,用连续蒸馏的方法除去。根据酯交换生产方案,酯化废水溶液主要含有乙二醇。对于此废水,资料显示总有机碳(TOC)在5000-11,00mg/L之间,TOC的含量取决于工厂的生产情况。 乙二醇是化学工业的主要产品之一,全世界的生产为6.7 ×10 6t/a。乙二醇可以降低水的冰点,其作为一种完美的防冻剂处理起来也很方便。商业上乙二醇用于发动机制冷,太阳能设备,热水及工业冷却系统以及作为飞机的防冻剂。乙二醇也是一种具有用于生产聚酯纤维的重要商业价值的原料,主要是聚对苯二甲酸乙二醇酯。其他少量用途是作为保湿剂,增塑剂,柔软剂,液压油和溶剂。 由于其大量使用,乙二醇已被列为10种环境污染物之一。在土壤中容易渗透,污染地下水,而其从地表水释放是微不足道的。因此有必要在乙二醇污染环境之前对其进行处理。需氧或厌氧生物治疗对于处理乙二醇废水具有重要作用,并应用PET废水处理。好氧工艺已成功被证明可以处理化学需氧量(COD)不高于1000-1500mg/L的废水。但是这些工艺不能很好地处理PET废水,由于PET

10 乙二醇再生撬技术规格书

临兴西地面工程 乙二醇再生撬 设计阶段:初步设计 日期:2014-2-19 第1 页 共15页 A 版 目录 第一部分 基本要求 (2) 1 概述及范围 (2) 2 项目总体要求 (2) 3 基础条件 (4) 乙二醇注入橇流程 (6) 设备选型及供货界限 (6) 控制仪表 (8) 第二部分 通用技术要求 (8) 1 采用规范、标准及法规 (9) 4 检查、检验、测试及责任 (10) 5 备品、备件及专用工具 (12) 6 提交文件 (12) 7 技术服务 (13) 8 验收 (14) 9 售后服务 (14) 10 保证和担保 (15)

临兴西地面工程 乙二醇再生撬 设计阶段:初步设计 日期:2014-2-19 第2 页 共15页 A 版 第一部分 基本要求 1 概述及范围 项目名称:中澳煤层气能源有限公司临兴集气站地面工程; 建设地点:山西省临县临兴西区块; 建设规模:48×104Nm3/d; 业主:中澳煤层气能源有限公司。 本技术规格书包括乙二醇再生撬在设计、制造、检验、运输和验收等方面的最低要求,除满足本技术规格书的要求外,还应符合相应标准和技术文件的要求。 2 项目总体要求 2.1 供货商资质要求 2.1.1供货商证书要求 供货商及分包商应具有权威认证机构颁发的有效ISO9001 或同等质量体系认证证书。具有国家规定的相应压力容器设计、制造资质。 2.1.2供货商业绩和经验要求 供货商应用中文递交近五年来同等规模的天然气脱水增压站或其他相关领域上同类产品成功的可核实的有效业绩。 供货商应在投标书中提供购买这种设备的用户证明及用户使用情况,其中包括投入实际运行的工程主管部门的名称、所供设备的详细类型、应用地点等也应同时给出。业主保留证实所供设备性能的权力,如有必要,可到现场调查。 2.2 强制技术条款 1)设备供货商及分包商的工厂均需获得ISO9001 或同等认证。 2)供货商提供的设备及其配件应符合相关规范、标准法标,并经相关管理部门认定的检验机构鉴定合格的产品。 3)在正确安装及正常使用条件下,要求使用寿命在20 年以上。 2.3 投标承诺

【工作总结】再生资源回收工作总结

再生资源回收工作总结 近日,淄川区在全区范围内开展了废品收购点专项治理行动,按照全区统一分工部署,区经信局负责开展再生资源回收利用管理工作,积极配合各相关部门单位做好废品收购点的依法取缔、责令搬迁工作。 区经信局高度重视此项工作,召开专题会议,安排部署工作,同时组织相关科室对各镇、办、开发区废旧经营点进行了摸底、调查、督导。下一步工作中,区经信局将按照区政府对废品收购点专项治理方案的统一安排和要求,坚决清理、取缔区内各种不符合要求的废品收购点,做好有关废品收购点的备案登记工作,对未备案的废品收购点依法或将进行处罚。 开展废品收购点专项治理工作,将对进一步规范废品收购行业秩序,改善城市风貌,提高城市品味,给广大群众营造良好的生活环境具有积极意义。 根据区长批示,区商务委高度重视、认真研究,结合《北京市加快推进再生资源回收体系建设促进产业化发展的 一、×××区再生资源回收体系现状 (一)再生资源回收企业情况 我区目前从事再生资源回收业务的企业有50多家。其中:较大型的企业有6家:元盛天鸿公司、星宇公司、安之洁、广学金、西部强龙、海泰京安。这些企业主要分布在5个街道(社区)的辖区范围内。×××区再生资源主体回收企业和较大型的回收企业的回收量大约占全区回收总量的40%,其余都被各类小型企业和个体户占有,零散个体回收占有较大比例。 (二)社区回收站点情况

×××区共有141个居民社区。20**年至____年,再生资源主体企业完成了100个社区回收站点的规范建设,主要分布在等街道的部分社区。 (三)再生资源分拣中心情况 近几年,随着我区城市化建设进程的加快,一些再生资源回收企业被拆除或停业。目前,海泰京安科技发展有限承担着×××区再生资源回收体系建设工作。 北京海泰京安科技发展公司,是一家民营企业,注册资金200万元。该公司于20**年3月与北京景阳天昊投资管理公司、首钢首运物流有限责任公司分别签订15年和8年的合作开发协议书,在原首钢料场共同开发建设再生资源分拣中心。该项目占地总面积250亩,北京景阳天昊投资管理公司占有土地110亩,首钢首运物流有限责任公司占有土地140亩。该地块位于新首钢高端产业综合服务区规划的第7#用地,用地性质为F类多功能用地、道路用地及绿地。按照首钢的总体规划,该地块最早也要在20**年或以后才能开发建设。(规划用地性质图及协议书附后) 该企业总体项目分二期进行建设,一期项目已投资____多万元完成了2万平米再生资源规范市场的建设并投入使用,二期项目预计投资2500万元建设再生资源分拣中心,将于20**年11月建设完成。 二、×××区再生资源回收体系建设意见 加快推进再生资源回收体系建设,对于推动可持续发展、确保城市安全、树立城市形象、建设资源节约型、环境友好型社会具有重要意义。市委、市政府将其列为____年为群众办实事的第34项并对各区县提出了工作要求。区委、区政府高度重视此项工作,为切实建设好再生资源回收体系,促进产业化发展,要求加强领导,精心组织,采取有效措施,

EOEG(乙二醇)装置工艺技术特点及基本原理

E O E G(乙二醇)装置工艺技 术特点及基本原理 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

工艺技术特点及基本原理 基本原理 乙烯氧化生成环氧乙烷的反应机理 乙烯氧化过程按氧化程度可分为选择性氧化(部分氧化)和深度氧化(完全氧化)两种情况。乙烯分子中的碳—碳双键(C=C)具有突出的反应活性,在一定氧化 条件下可实现碳—碳双键的选择氧化而生成环氧乙烷,但在通常氧化条件下,乙烯分子骨架很容易被破坏,发生深度氧化而生成二氧化碳和水。目前工业上乙烯直接氧化生成环氧乙烷的最佳催化剂是银催化剂。 (1)主反应 乙烯氧化生成环氧乙烷是放热反应,在250℃时,每生成一摩尔环氧乙烷要释放出25.19千卡的反应热。 (2)副反应 乙烯氧化时除生成产物环氧乙烷外,还发生其它反应: 在工业生产中,反应产物里实际主要是环氧乙烷、二氧化碳和水,而甲醛量远小于1%,乙醛量则更小。 反应(2)是主要副反应,也是放热反应,250℃时,每反应掉1摩尔乙烯要放出315.9千卡反应热,如果反应温度过高或其它条件影响会产生反应(3),其反应也是强放热反应,每反应掉1摩尔环氧乙烷要放出314.4千卡的热量,副反应(2)和(3)与主反应(1)的反应进行比较,便可看出副反应的反应热是主反应热的卡几倍,因此必须严格控制工艺条件,以防副反应增加。不然,副反应加剧,势必引起操作条件恶化,造成恶性循环,甚至发生催化剂床层"飞温"(由于催化剂床层大量积聚热量造成催化剂层温度突然飞速上升的现象)而使正常生产遭到破坏。 近代对乙烯在银催化剂条件下的选择性氧化机理做了大量的研究,比较统一的看法是: A.氧被银表现吸附的形态 初始时,在各种不同温度下氧被高速度吸附,此时活化能很低,约为3千卡/克分子,这个过程发生在四个邻近的清洁的银原子上氧分子的解离吸附(非活化解离吸附)。

乙二醇生产装置的工艺设计

乙二醇生产装置的工艺设计前言 乙二醇在国民经济中有着极其重要的地位,是大宗有机化工产品。广泛用于生产聚酯纤维、薄膜、容器瓶类等聚酯系列产品和汽车防冻剂,还可用于除冰剂、表面涂料、表面活性剂、增塑剂、不饱和聚酯树脂以及合成乙二醇醚、乙二醛、乙二酸等化工产品的原料,虽然乙二醇产品用途极广,但国内乙二醇的产量一直无法满足国内市场的强劲需求,乙二醇自给率不足50%,有相当大的部分需要进口,易受国际市场供求关系的影响。因此,发展和技术改造乙二醇工艺设计对我国经济发展有着重要的意义。 随着我国市场经济的发展,以前那种单纯*增大原料和能源的消耗来提高产量的做法已逐渐被淘汰,继续这种做法的企业已经濒临破产倒闭;现在只有依*科技的力量,通过技术的改造来降低能源的消耗,同时使各种生产资料得到优化的配置,才是摆脱困境最有效的方法。 乙二醇工艺设计中,乙二醇的精制是整个工艺流程的核心部分,关系着乙二醇产品的质量和产量。因此,本设计以乙二醇精制为中心和重点,经过严密的计算和论证,得到了肯定的结果。 该技术具有世界共同发展趋向的节能性,是生产乙二醇工艺的重大突破。 第1章文献综述 1.1 乙二醇工业的发展[1][2] 乙二醇是最简单和最重要的脂肪族二元醇,它在有机化工生产中是一种重要的基本原料,尤其广泛用于聚酯纤维、聚酯塑料的生产。在汽车、航空、仪表工业的冷却系统中,它是抗冻剂的重要成分。在溶剂、润滑剂、软化剂,增塑剂和炸药的生产中也有多种用途。 乙二醇是由Wurtz于1859年首次用氢氧化钾水解乙二醇二乙酸酯制得的。第一次世界大战期间,人们利用乙二醇的二硝酸酯能降低甘油凝固点的特性来代替甘油生产炸药。本世纪20年代,随着汽车工业的发展,抗冻剂的需求猛增,导致了乙二醇供不应求。当时是采用氯乙醇皂化法生产乙二醇。50年代中期,聚酯树脂的开发成功和投入生产,再度刺激了乙二醇工业的发展,由石油化工基本原料乙烯或环氧乙烷的氧化、水解制乙二醇的方法开始占据主导地位。70年

三甘醇再生

TRIETHYLENE GLYCOL REGENERATION IN NATURAL GAS DEHYDRATION PLANTS: A STUDY ON THE COLDFINGER PROCESS F. Gironi, M. Maschietti, V. Piemonte, Università degli Studi di Roma “La Sapienza”, D. Diba, S. Gallegati, S. Schiavo, Comart SpA, Ravenna, Italy This paper was presented at the Offshore Mediterranean Conference and Exhibition in Ravenna, Italy, March 28-30, 2007. It was selected for presentation by the OMC 2007 Programme Committee following review of information contained in the abstract submitted by the authors. The Paper as presented at OMC 2007 has not been reviewed by the Programme Committee. ABSTRACT Natural gas pipeline transportation requires very low water content in the gas stream in order to avoid condensation or hydrate formation. To reach this goal, when triethylene glycol (TEG) is used to dehydrate natural gas, after the absorption step TEG must be regenerated to levels substantially above 98.5-99.0 % by weight available from atmospheric distillation of glycol-water mixtures. In order to regenerate TEG to higher purity levels some of the methods used require a stripping gas, a solvent or to perform the distillation under vacuum. A simpler method to perform a further dehydration of TEG is the use of a water exhauster, known as Coldfinger, where the vapour in equilibrium with the liquid to be dehydrated is continuously condensed and removed. In this work, the Coldfinger apparatus was modelled and a study on the most relevant operating parameters was carried out. A process simulation of a natural gas dehydration plant, provided with a Coldfinger water exhauster for TEG regeneration, was performed on a case study. It was shown that the dehydration process with Coldfinger unit is capable of reaching current water content specifications in a simple and economic way. INTRODUCTION Natural gas at the producing well contains significant quantities of water vapour. Typically, the gas is water-saturated at the condition of pressure and temperature of the well and a dehydration process is required. In fact, water content must be reduced in order to prevent liquid water condensation and hydrate formation in the pipeline transportation system. Nowadays, typical values of allowable water content in the gas transmission lines range from 70 to 120 mg/Nm3 [1]. Among methods available for natural gas dehydration, absorption by means of triethylene glycol (TEG) is one of the most common. Water removal from the gas stream takes place by means of countercurrent contact between the gas, fed to the bottom of a contactor tower, and TEG, which is a liquid with a great affinity for water, fed at the top of it. The crucial part of the process is represented by TEG regeneration. If the water-rich TEG is distilled in a simple atmospheric column, TEG can not be regenerated to levels above 98.8-98.9 % by weight. This is caused by the reboiler operating temperature, which can not be fixed at temperature above 204 °C. In fact, this tempe rature must be regarded as an upper limit for TEG processing, because of thermal degradation at higher values [2,3]. In the past these regeneration levels were sufficient because values of allowable water content in the lean gas were higher and regeneration was commonly performed in a simple atmospheric still column. On the other hand, in order to reach current water content specifications, it is necessary to regenerate TEG up to levels substantially above 99.0 % by weight.

乙二醇回收事故预案

乙二醇回收事故预案 目录 一、可能产生的事故类型 1、停电、停水 2、负压压力不够 3、回收乙二醇中会含量过高 4、刮膜蒸发器搅拌电机损坏 5、刮膜蒸发器内温度波动大 6、刮膜蒸发器搅拌十字板脱落 7、乙二醇的泄露引起的人员中毒、着火、爆炸和环境污染 二、危险物质危险特性 三、装置危险源及造成的危险程度(造成的后果) 四、处理方法 五、预防措施 1、日常操作与巡检 2、现场静电防护 3、静电防护 4、安全操作 5、职业健康

一、可能产生的事故类型 乙二醇回收事故类型主要有: 1、停电、停水 2、负压压力不够 3、回收乙二醇中会含量过高 4、刮膜蒸发器搅拌电机损坏 5、刮膜蒸发器内温度波动大 6、刮膜蒸发器搅拌十字板脱落 7、乙二醇的泄露引起的人员中毒、着火、爆炸和环境污染 二、装置危险物质危险特性 1、乙二醇理化常数 乙二醇别名甘醇熔点 -13.2℃沸点:197.5℃外观与性状无色、无臭、有甜味、粘稠液体蒸汽压 6.21kPa/20℃闪点:110℃ 健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入中毒表现为反复发作性昏厥,并可有眼球震颤,淋巴细胞增多。口服后急性中毒分三个阶段:第一阶段主要为中枢神经系统症状,轻者似乙醇中毒表现,重者迅速产生昏迷抽搐,最后死亡;第二阶段,心肺症状明显,严重病例可有肺水肿,支气管肺炎,心力衰竭;第三阶段主要表现为不同程度肾功能衰竭。人的本品一次口服致死量估计为1.4ml/kg(1.56g/kg)。 急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸,并迅速取就医。 食入:饮足量温水,催吐。洗胃,导泄。就医。 毒理学资料及环境行为 毒性:属低毒类。 急性毒性: 亚急性和慢性毒性:人吸入40%乙二醇混合物9/28人出现短暂昏厥;人吸入40%

再生资源回收体系建设规范

再生资源回收体系建设规范(重庆市商委)再生资源回收体系建设规范 一、再生资源回收站 ( 点 ) 建设规范 第一条 严格按照“七统一、一规范” ( 统一规划、标识、着 装、价格、计量、车辆、管理及经营规范 ) 的要求进行建设。 第二条 回收站 ( 点

经营证照及资质齐全,负责人有个人身份证明资料,无违法犯罪记录。 第三条 按照“便于交售”的原则,城区每2000 户居民设置 1 个回收站 ( 点 ) ;乡、镇每 2500 户居民设置 1 个回收站(点) 。 第四条 回收站 ( 点 ) 面积原则上不少于

平方米,门面招牌采 用统一规范的站名和设计。 第五条 回收站 ( 点 ) 建设要符合当地城市总体规划,设计及装修与社区环境相符,社区回收站 ( 点 ) 采用绿色环保轻型建筑材料进 行全封闭处理。 第六条 社区回收站 ( 点 ) 的从业人员须经过培训学习,持证上岗。 第七条

不影响当地市容市貌和环境卫生,排污设施完善,符 合当地的环境保护要求。 第八条 社区回收站 ( 点 ) 至中转站至再生资源集散市场间配备 相应的封闭式运输设备。 第九条 保证社区回收站 ( 点 ) 再生资源能及时运出,避免造成 新的环境污染和火灾隐患,同时配备消防安全设施,符合消防安全管理规定要求。 二、再生资源集散市场建设规范

根据网络体系整体功能配置要求,市场应由“五区一中心”构 成,即:商品交易区、分拣加工区、仓储配送区、商品展示区、配套服务区和培训中心。 第一条 再生资源集散市场的设置应在符合城市总体规划、土 地利用总体规划和当地固体废物污染防治规划的前提下,在交通便利、基础设施齐全的近郊地区选址。 第二条 再生资源集散市场规划、设计及建设要符合环保、市 容和消防安全等标准,设有隔离围墙,园区绿化,保持较好的外观环境。 第三条 市场要完善集散、交易、储存、初加工、治污减排等 功能,并与再生资源综合利用相配套。市场内加工区、交易区、仓储配送区与服务区、办公区分离,加工区与交易区配备相应的环保、安全等作业设施,集中治理废弃物排放,消除二次污染。 第四条 市场的建设用地规模根据国家产业政策、城市规划要 求和当地再生资源总量确定,集约用地。

相关文档
最新文档