泵站主要设计参数

泵站主要设计参数
泵站主要设计参数

泵站主要设计参数

3.1防洪标准

3.1.1泵站建筑物防洪标准应按表3.1.1确定。

表3.1.1 泵站建筑物防洪标准

注:修建在河流、湖泊或平原水库边的堤身式泵站,其建筑物防洪标准不应低于堤坝现有防洪标准。

3.1.2对于受潮汐影响的泵站,其挡潮水位的重现期应根据工程等级,结合历史最高潮水位,按表3.1.1规定的设计标准确定。

3.2设计流量

3.2.1灌溉泵站设计流量应根据设计灌水率、灌溉面积、渠系水利用系数及灌区内调蓄容积等综合分析计算确定。

3.2.2排水泵站排涝设计流量及其过程线,可根据排涝标准、排涝方式、排涝面积及调蓄容积等综合分析计算确定。

排水泵站排渍设计流量可根据地下水排水模数与排水面积计算确定。

3.2.3供水泵站设计流量应根据供水对象的用水量标准确定。

3.3特征水位

3.3.1灌溉泵站进水池水位应按下列规定采用:

3.3.1.1防洪水位:按本规范3.1.1的规定确定。

3.3.1.2设计水位:从河流、湖泊或水库取水时,取历年灌溉期水源保证率为85%~95%的日平均或旬平均水位:从渠道取水时,取渠道通过设计流量时的水位。

3.3.1.3最高运行水位:从河流、湖泊取水时,取重现期5~10年一遇洪水的日平均水位;从库取水时,根据水库调蓄性能论证确定;从渠道取水时,取渠道通过加大流量时的水位。

3.3.1.4最低运行水位:从河流、湖泊或水库取水时,取历年灌溉期水源保证率为95%~97%的最低日平均水位;从渠道取水时,取渠道通过单泵流量时的水位。

受潮汐影响的泵站,其最低运行水位取历年灌溉期水源保证率为95%~97%的日最低潮水位。

3.3.1.5平均水位:从河流、湖泊或水库取水时,取灌溉期多年日平均水位;从渠道取水时,取渠道通过平均流量时的水位。

3.3.1.6上述水位均应扣除从取水口至进水池的水力损失。从河床不稳定的河道取水时,尚应考虑河床变化的影响,方可作为进水池相应特征水位。

3.3.2灌溉泵站出水池水位应按下列规定采用:

3.3.2.1最高水位:当出水池接输水河道时,取输水河道的校核洪水位;当出水池接输水渠道时,取与泵站最大流量相应的水位。

3.3.2.2设计水位:取按灌溉设计流量和灌区控制高程的要求推算到出水池的水位。

3.3.2.3最高运行水位:取与泵站加大流量相应的水位。

3.3.2.4最低运行水位:取与泵站单泵流量相应的水位;有通航要求的输水河

道,取最低通航水位。

3.3.2.5平均水位:取灌溉期多年日平均水位。

3.3.3排水泵站进水池水位应按下列规定采用:

3.3.3.1最高水位:取排水区建站后重现期10~20年一遇的内涝水位。

3.3.3.2设计水位:取由排水区设计排涝水位推算到站前的水位;对有集中调蓄区或与内排站联合运行的泵站,取由调蓄区设计水位或内排出站出水池设计水位推算到站前的水位。

3.3.3.3最高运行水位:取按排水区允许最高涝水位的要求推算到站前的水位;对有集中调蓄区或与内排站联合运行的泵站,取由调蓄区最高调蓄水位或内排站出水池最高运行水位推算到站前的水位。

3.3.3.4最低运行水位:取按降低地下水埋深或调蓄区允许最低水位的要求推算到站前的水位。

3.3.3.5平均水位:取与设计水位相同的水位。

3.3.4排水泵站出水池水位应按下列规定采用:

3.3.

4.1防洪水位:按本规范表3.1.1的规定确定。

3.3.

4.2设计水痊:取承泄区重现期5~10年一遇洪水的3~5日平均水位。

当承泄区为感潮河段时,取重现期5~10年一遇的3~5日平均潮水位。

对特别重要的排水泵站,可适当提高排涝标准。

3.3.

4.3最高运行水位:当承泄区水位变化幅度较小,水泵在设计洪水位能正常运行时,取设计洪水位。当承泄区水位变化幅度较大时,取重现期10~20年一遇洪水的3~5日平均水位。

当承泄区为感潮河段时,取重现期10~20年一遇的3~5日平均潮水位。

对特别重要的排水泵站,可适当提高排涝标准。

3.3.

4.4最低运行水位:取承泄区历年排水期最低水位或最低潮水位的平均值。

3.3.

4.5平均水位:取承泄区排水期多年日平均水位或多年日平均潮水位。

3.3.5供水泵站进水池水位应按下列规定采用:

3.3.5.1防洪水位:按本规范表3.1.1的规定确定。

3.3.5.2设计水位:从河流、湖泊或水库取水时,取水源保证率为95%~97%的日平均或旬平均水位;从渠道取水时,取渠道通过设计流量时的水位。

3.3.5.3最高运行水位:从河流、湖泊取水时,取重现期10~20年一遇洪水的日平均水位;从水库取水时,根据水库调蓄性能论证确定;从渠道取水时,取渠道通过加大流量时的水位。

3.3.5.4最低运行水位:从河流、湖泊或水库取水时,取水源保证率为97%~99%的最低日平均水位;从渠道取水时,取渠道通过单泵流量时的水位。

3.3.5.5平均水位:从河流、湖泊或水库取水时,取多年日平均水位;从渠道取水时,取渠道通过平均流量时的水位。

3.3.5.6上述水位均应扣除从取水口至进水池的水力损失。从河床不稳定的河道取水时,尚应考虑河床变化的影响,方可作为进水池相应特征水位。

3.3.6供水泵站出水池水位应按下列规定采用:

3.3.6.1最高水位:取输水渠道的校核水位。

3.3.6.2设计水位:取与泵站设计流量相应的水位。

3.3.6.3最高运行水位:取与泵站加大流量相应的水位。

3.3.6.4最低运行水位:取与泵站单泵流量相应的水位。

3.3.6.5平均水位:取输水渠道通过平均流量时的水位。

3.3.7灌排结合泵站的特征水位,可根据本规范3.3.1~3.3.4的规定进行综合分析确定。

3.4特征扬程

3.4.1设计扬程:应按泵站进、出水池设计水位差,并计入水力损失确定。

在设计扬程下,应满足泵站设计流量要求。

3.4.2平均扬程:可按(3.4.2)式计算加权平均净扬程,并计入水力损失确定;或按泵站进、出水池平均水位差,并计入水力损失确定。

H=ΣH i Q i t i/ΣQ i t i i(3.4.2)

式中H——加权平均净扬程(m);

H i——第i时段泵站进、出水池运行水位差(m);

Q i——第i时段泵站提水流量(m3/s);

t i——第i时段历时(d)。

在平均扬程下,水泵应在高效区工作。

3.4.3最高扬程:应按泵站出水池最高运行水位与进水池最低运行水位之差,并计入水力损失确定。

3.4.4最低扬程:应按泵站进水池最高运行水位与出水池最低运行水位之差,并计入水力损失确定。

曝气生物滤池计算(完整资料).doc

此文档下载后即可编辑 春柳河污水处理厂提供的中水水质

水量Q=1600m 3/h ,取NH 3-N 负荷为d m N kgNH ?-33/5.0 故:3316901000 5.0) 325(241600m N N NH Q V V =?-??=-?= 取填料层高度为H=3.4m ,则滤池总平面积为24974 .31690m H Q A === 取单池面积为A=297m ?,则所需池个数为个89 7497=?==A V n 水力负荷h m m A Q ?=??== 23/2.38 971600 q 水力停留时间h Q V 1.11600 1690t === 滤池总高度:m h h h h H H 4.65.00.13.02.14.343210=++++=++++= 曝气风机计算: 微生物需氧量=降解有机物需氧量+硝化需氧量 d kg C Q C Q R N NH BOD /48201000 )]325(57.4)530[(241600100057.410003=-?+-??=??+?= -滤池氧的利用率取30%,从滤池中逸出气体中含氧量的百分率Q t 为: %7.15) 3.01(2179) 3.01(21)1(2179)1(21=-?+-?=-?+-?= A A t E E O 当滤池水面压力Pa P 510013.1?=时,曝气器安装在水面下H=4.6m 深度时,曝气器处的绝对压力为:

Pa H P P b 5353104638.16.4108.910013.1108.9?=??+?=?+= 当水温为25℃时,清水中的饱和溶解氧浓度为C S =8.4mg/L ,则25℃时滤池内混合液溶解氧饱和浓度的平均值C Sm(25)为: L mg P Q C C b t S Sm /21.9)10 026.2104638.1427.15(4.8)10026.242(5 5 5) 25(=??+?=?+?= 水温为25℃时,BAF 的实际需氧量R 为: ] [025 .11)25() 20() 25(0C C C R R S T Sm -?= -βρα 式中L mg C /3,1,9.0,8.01====ρβα 代入公式后可得: d kg R /10809] 34.819.0[025.18.021 .94820)2025(=-????= - 则总供气量为: min /83/12010010030 3.010809 1003.033m d m E R G A S ==??=?= ∑ 每个单孔膜滤池专用曝气器供气量为h m ?个/3.0~2.03,取供气量为 h m ?个/25.03 则所需曝气器数量为个2001625.0/608325.0/60=?=?=∑S G n ,曝气器间距为125mm 为了布气均匀,取8台风机为8个滤池供氧,故每台供气量为: min /375.103m 曝气风机所需压力(取曝气器安装水深H=4.6m ): m kPa H h h h h P 678.598.9)6.45.1(8.9)5.1(4321==?+=?+=+++= 取风量15m 3/min ,风压6.5m ,N=30kW 的罗茨风机FSR150型10台,8用2备

线路设计常用参数

线路设计常用参数 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一、线路路径、安全距离 1、与道路距离 (1) 跨越时的垂直距离 (2) 平行时的水平距离(基础边缘与公路排水沟) 类比:电力设施保护条例(先用电力线,后有建筑适用;边线延伸) 2、交叉跨越角度 (1)与广梅汕铁路交叉时,交叉角必须大于60°。 (2)与弱电线路的交叉角 3、与建筑物间的距离 (1) 跨越建筑时(最大计算弧垂,垂直距离) (2) 城市建筑(最大计算风偏,净空距离) (3) 非城市规划区建筑(无风,水平距离) 4、按塔高计算的水平距离

5、跨树距离 (1) 导线与树木间垂直距离 (2) 无准确资料时估算树木自然生长高度 6、与石场距离 条件允许:500m以外;条件不允许:200m(背向爆破面)或300m(正向爆破面)以外。 7、接地体与石油天然气埋地管道距离 8、与机场距离 与跑道端或跑道中心线距离≥4km。 9、接地体与埋地通信线免计算保证距离 10、与无线电台间距离 11、交叉跨越时塔位与控制物距离(m)

12、规程中与铁路、公路、河流、管道、索道及各种架空线路交叉或接近的基本要求

二、电气间隙 1、带电部分与杆塔构件的最小间隙 2、变电站OY引下线 3、跳线对横担底部距离 4、档中线间距离 5、上下层导地线水平偏移 6、绝缘地线绝缘子间隙 一般为15mm。

三、绝缘配合、防雷 1、爬电比距配置 (1) 爬电比距要求(按额定电压) (2)有效系数(悬垂钟罩型、深棱型玻璃和瓷绝缘子) 零~II级:~;III~IV级:~ 2、复合绝缘子防雷选择 3、等高绝缘配置绝缘子片数

曝气生物滤池设计

曝气生物滤池设计 1曝气生物滤池滤料体积 BOD 容积负荷选3Kg BOD5「m3d,采用陶粒滤料,粒径5mm 2滤料面积 滤料高度取h3=3m 滤池采用圆形,则滤池直径d! . 4A . 4 5 2.52m,取2.5m \ V 3.14 取滤池超高h1=0.5m,布水布气区高度h2=1.0m,滤料层上部最低水位h4=1.0m,承托层高h5=0.3m 滤池总高度H=5.8m 3水力停留时间 2 空床水力停留时间t1 V英3 24 1.2h Q 4 300 实际水力停留时间t2 t1 0.5 1.2 0.6h 4校核污水水力负荷

5 需氧量

OR = 0.82 (△ BOD5)0.32 (-^) BOD BOD 设So) 0.3 , MLVSS MLSS 0.8,进水溶解性BO D5进水总BOD5 07 出水SS中BOD含 量: S ss MLVSS X e 1.42(1 e 5KLa(28) e04 5) 19.5mg L 出水溶MLSS 0.8 20 1.42 (1 解性BOD含量 Se=50-19.5=30.5mg/L 去除溶解性BOD5的量: 单位BOD需氧量: 实际需氧量: 6标准需氧量换算 设曝气装置氧利用率为吕=12%混合液剩余溶解氧C0=2mg/L,曝气装置安装 在水面下 4.2m,取a =0.8 =0.9 , Cs=7.92mg/L,p =1 标准需氧量: SOR —AOR C s(20) (T20)3—刊 2.4KgO2/h [ C sb(T)C]1.024( 0)0.8 [0.9 9.2 2] 1.024(2 )

供气量: 曝气负荷校核: 7反冲洗系统 采用气水联合反冲洗 (1) 空气反冲洗计算,选用空气反冲洗强度 q 气54m 3 m 2 h (2) 水反冲洗计算,选用水反冲洗强度 q 水25m 3.m 2 h 冲洗水量占进水量比为: 2.0 15 10% 300 工作周期以24h 计,水冲洗每次15min 曝气装置与反冲进气管合用选用穿孔曝气管,穿孔管孔眼直径为3mm 孔距70mm, 设支管管径为20mm 支管间距取80mm 经计算共需支管48根,枝状布置。孔 口向下倾斜45°,曝气管布置在滤板上 100mm 处。 设曝气管干管内空气流速为 V 1=12m/s 曝气干管管径: d 2 打爲恼00 需 12 ,取? 57X 3'5m G s 66.7 N 气 s A -2 2.5 4 1 3.6m m 2 h 满足要 求。

生物滤池

生物滤池 科技名词定义 中文名称: 生物滤池 英文名称: biological filter 定义: 一种用于处理污水的生物反应器,内部填充有惰性过滤材料,材料表面生长生物群落,用以处理污染物。 应用学科: 生态学(一级学科);污染生态学(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 名词解释 工艺流程及选择 推荐设计参数 参数选择注意事项 编辑本段名词解释 biological filter, trickling filter 由碎石或塑料制品填料构成的生物处理构筑物。污水与填料表面上生长的微生物膜间隙接触,使污水得到净化。 生物滤池是以土壤自净原理为依据,在污水灌溉的实践基础上,经较原始的间歇砂滤池和接触滤池而发展起来的人工生物处理技术。 构造 1、滤料的要求 (1)比表面要大(2)孔率高(3)质材强度高(4)稳定(5)价廉 2、池壁的功能 构筑物主体,起支撑作用。 3、池底通风系统、排泥系统、支承渗水结构 4 、布水系统旋转布水器 性能特点: 1)生物滤池的处理效果非常好,在任何季节都能满足各地最严格的环保要求。 2)不产生二次污染。 3)微生物能够依靠填料中的有机质生长,无须另外投加营养剂。因此停工后再使用启动速度快,周末停机或停工1至2周后再启动能立即达到很好的处理效果,几小时后就能达到最佳处理效果。停止运行3至4周再启动立即有很好的处理效果,几天内恢复最佳的处理效果。 4)生物滤池缓冲容量大,能自动调节浓度高峰使微生物始终正常工作,耐冲击负荷的能力强。 5)运行采用全自动控制,非常稳定,无须人工操作。易损部件少,维护管理非常简单,基本可以实现无人管理,工人只需巡视是否有机器发生故障。 6)生物滤池的池体采用组装式,便于运输和安装;在增加处理容量时只需添加组件,易于实施;也便于气源分散条件下的分别处理。 7)此类过滤形式的生物滤池能耗非常低,在运行半年之后滤池的压力损失也只有500Pa 左右。

给排水常用设计参数

出水、排水和水位的要求 消防水池的出水。排水和水位因符合下列要求: 1、消防水池的出水管应保证消防水池的有效容积能被全部利用 2.、消防水池应设置就地水位显示装置,并应在消防控制中心或值班室等 3、消防水池应设置溢流水管和排水设施,并应采用间接排水 条文说明 4.3.9本条为强制性条文,必须严格执行,消防水池的技术要求 1、消防水池是出水管的设计能满足有效容积被全部利用是提高消防水池的有效 利用率。减少死水区,实现节地的要求 消防水池(箱)的有效容积是设计最高水位至消防水池(箱)最低有效水位之间的距离,消防水池(箱)最低有效水位是消防水泵水喇叭口或水喇叭口以上0.6m 水位,当消防水泵吸水管或消防水箱出水管上设计防止旋流器时,最低有效水位为防止旋流器顶部以上0.2m 2.消防水池设置水位的目的是保证消防水池不因放空或各种因素漏水而照成的有效灭火水源不足的技术措施 3、消防水池溢流和排水采用见接排水的目的是防止污水倒灌污染消防水池内的 水 提示: 1,消防水池(箱)的有效容积可根据有效水深计算 2、喇叭口吸水管也可以在最低有效水位上方出池壁 3 在逆流水位、最低有效水位时应报警 4、水位位于正常水位的50~100mm时,应向消防控制中心或值班室报警消防水泵启动后低于正常水位时报警应停止 5、室外水池的就地水位显示装置可采用电子显示装置 消防水池容积的计算 (1)计算公式 有效容积为:V=3.6*(∑QPtp-Qbtb) V——消防水池的有效容积(m3)

QP——消火栓、自喷等自动灭火系统的设计流量(L/s) Qb——补水流量(L/s) t——火灾延续时间(H) (2)计算步骤 1、根据建筑类别和火灾危险性,确定消火栓延续时间:自动喷淋灭火系统火灾延续时间为1h 补水时间取最大值 2、根据建筑类别和规模。确定室外消火栓和室内消火栓的设计流量 3 、注意计算出消防水池容积与规定值要进行比较不应小于100m3 仅有消火栓系统时不应小于50m3

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

生物滤池的设计与计算4

:高负荷生物滤池的设计 已知:Q=7000m3/h 进水水质:BOD5=180m g/L 出水水质要求:BOD5≤30/L (1) 主要设计参数 ①以碎石为滤料时,工作层滤料的粒径应为40~70mm,厚度不大于1.8m,承托层的粒径为70~100mm,厚度为0.2m;当以塑料为滤料时,滤床高度可达4m; ②正常气温下,处理城市废水时,表面水力负荷为10~30 m3/m2.d,BOD5容积负荷不大于1.2kgBOD5/m3.d,高负荷生物滤池BOD5去除率一般为75~90%; ③进水BOD5大于200mg/l时,应采取回流措施; ④池壁四周通风口的面积不应小于滤池表面积的2%; ⑤滤池数不应小于2座。 (2) 计算公式: 高负荷生物滤池的计算公式 设计内容计算公式参数意义及取值 滤池高度(H) 以碎石为滤料时,H = 0.9~2.0m 用塑料滤料时,H = 2~4m 滤料总体积(V) V = QS/LvBOD V??滤料总体积,m3 Q??废水量,m3/d S??未经回流稀释时的BOD5浓度,mg/l LvBOD??容积负荷,一般不大于1.2kgBOD/m3.d 滤池面积(F)与直径(D) F = V/H n??滤池个数 F??滤池面积,m2 D??滤池直径,m 回流比(R) R = Fq/Q - 1 R??回流比 q??表面水力负荷,通常在10~30m3/m2.d之间 (3)高负荷生物滤池的流程 (4) 出水水质与滤池高度和水力负荷之间的关系 高负荷单级生物滤池的出水水质与滤池高度以及水力负荷之间存在如下的关系: 式中:——出水BOD5浓度,mg/l; ——进水浓度;mg/l; H——滤池高度,m; q——水力负荷,m3/m2.d; K——常数,min-1; n——常数。

停车场各种设计参数和尺寸

停车场各种设计参数和尺寸

停车场或库车位设计参数和尺寸 停车场(库)设计车型外廓尺寸和换算系数 车辆类型 各类车型外廓尺寸(m) 车辆换算系数 总长 总宽 总高 机动车 微型汽车 3.20 1.60 1.80 0.70 小型汽车 5.00 2.00 2.20 1.00 中型汽车 8.70 2.50 4.00 2.00 大型汽车 12.00 2.50 4.00 2.50 铰接车 18.00 2.50 4.00 3.50 自行车 1.93 0.60 1.15 注:(1)三轮摩托车可按微型汽车尺寸计算。 (2)二轮摩托车可按自行车尺寸计算。 (3)车辆换算系数是按面积换算。 机动车停车场设计参数

注:表中Ⅰ类指微型汽车,Ⅱ类指小型汽车,Ⅲ类指中型汽车,Ⅳ类指大型汽车,Ⅴ类指绞接车。 车辆纵横向净距 项目微型汽车和小型汽车大中型汽车和铰接车车间纵向净距 2.00 4.00 车背对停车时车间尾距 1.00 1.00 车间横向净距 1.00 1.00 纵0.50 0.50 车与围墙、护栏及其他构筑物之间 横1.00 1.00 注:多层车库和地下车库的净距按国家标准GBJ67-84《汽车库设计防火规范》表5.0.6的规定执行。 停车场通道的最小平曲线半径 车辆类型车辆类型最小平曲线半径(m) 绞接车13.00 大型汽车13.00 中型汽车10.50 小型汽车7.00 微型汽车7.00 停车场通道最大纵坡度(%) 通道形式 车辆类型 直线曲线 铰接车8 6 大型汽车10 8

中型汽车12 10 小型汽车15 12 微型汽车15 12 自行车停车场主要设计指标 停车方式停车带宽 (m) 车辆横向 间距(m) 过道宽度 (m) 单位停车面积(平方米) 单排双排单排 双 排 单排一 侧停车 单排两 侧停车 双排一 侧停车 双排两侧停车 斜列式30° 1.00 1.60 0.50 1.20 2.0 2.20 2.00 2.00 1.80 45° 1.40 2.26 0.50 1.20 2.0 1.84 1.70 1.65 1.51 60° 1.70 2.77 0.50 1.50 2.6 1.85 1.73 1.67 1.55 垂直式 2.00 3.20 0.60 1.50 2.6 2.10 1.98 1.86 1.74 旅馆机动车停车位指标 城市类型 停车位指标(车位/客房) 第一类旅馆第二类旅馆 大城市0.20 0.08 中等城市0.18 0.06 注:第一类以接待外国人、港澳同胞和华侨为主。第二类接待国内旅客。 饮食店停车位指标 项目机动车自行车 停车位指标(车位/100平方米营业面积) 1.70 3.60 办公楼停车位指标 项目 停车车位(车位/100平方米建筑面积) 机动车自行车 一类0.40 0.40 二类0.25 2.00 注:1.一类:中央、省级机关、外贸机构及外国驻华办事机构。2.二类:

80000m3生物滤池除臭装置计算

(一) 生物滤池工艺及外形计算 生物滤池尺寸的计算,一般是根据空气在滤床中的停留时间、空气的单位负荷率、以及组分去除能力的考虑来定。废水处理设施所排臭气的停留时间一般在15~40s 之间。根据我们工程经验,停留时间应该>20s 。 1.工艺计算: 风量Q=80000m 3/h 表面负荷率选用200m 3/m 2.h 。 生物活性介质装填高度h=1.2m 生物滤池表面积S= 80000/200=400m 2 生物活性介质的需要量:V= 1.2*S=1.2x20=24m 3 空床停留时间的核算:t= V/ Q=24/4000*3600=22s >20s (可用) 2.外形尺寸计算: 根据表面积S=20m 2,则: 生物滤池的直径D= 2* S =2*14.320=5m 生物滤池高度的计算: 滤池底部排水区的高度h 1=400mm 滤池底部布气区的高度h 2=200mm 滤池生物活性介质区的高度h 3=1200mm 滤池顶部布水区的高度h 4=600mm 滤池顶部尾气收集区的高度h 5=300mm 生物滤池总的高度H= h 1 +h 2+h 3+h 4+h 5=2700mm 生物滤池外形尺寸DxH=Φ5000x2700mm (二) 增湿循环系统设计 生物滤池 1、循环水泵的选择: 从气味源收集到的气体被送到生物滤池除臭装置处理,进滤池的气体要求

潮湿,相对湿度必须控制在90%~95%以上,否则填料会干化,微生物将失活。通常处理1m3的臭气需要散水量需要0.5~3L。 =(0.5~3)*4000=2~12m3/h,选取泵的流量为5m3/h。 水泵流量:Q 水 为保证螺旋喷嘴喷出的水能够形成雾状,充分对臭气进行保湿,水泵需要足够的扬程,考虑管道沿程阻力的损失,选取水泵扬程H=30m。 根据水泵流量及扬程,选取水泵型号为:CDL8-3,品牌为南方泵业, 电机功率:1.1Kw,380V/50Hz ,IP55 2、预处理塔的计算: 进水量Q1=5m3/h,液体密度ρ1=1000kg/ m3 进气量Q2=4000 m3/h,气体密度取为空气的密度ρ2=1.20kg/ m3 预处理塔内装设鲍尔环乱堆填料,采用φ25x25的塑质乱堆填料,填料因子为300 m2/ m3 液气质量通率之比:5x1000/(4000x1.2)=1.04 查得泛点流速为1m/s 取操作气体流速为泛点流速的0.5倍,塔内气体流速v=0.5*1=0.5 m/s 塔的截面面积A= Q2/v=2.22m2 选取预处理塔直径D=1800mm 填料高度取800mm,则填料堆积体积V=1.78m3 预处理塔底部排水区的高度h1=400mm 预处理塔底部布气区的高度h2=200mm 预处理塔塑质乱堆填料的高度h3=800mm 预处理塔顶部布水区的高度h4=600mm 预处理塔顶部尾气收集区的高度h5=300mm 预处理塔总的高度H= h1 +h2+h3+h4+h5=2300mm 预处理塔外形尺寸RxH=Φ1800x2300mm

IGBT的动态特性与静态特性的研究

IGBT的动态特性与静态特性的研究 IGBT动态参数 IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。RGint:模块内部栅极电阻: 为了实现模块内部芯片均流,模块内部集成有栅极电阻。该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。 RGext:外部栅极电阻: 外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。 上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。 用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。

已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。 实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。 如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。 最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。Cge:外部栅极电容: 高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。 IGBT寄生电容参数: IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。

曝气生物滤池计算

BAF 计算: 水量 Q=1600m 3/h ,取 NH 3-N 负荷为 0.5kgNH 3 N /m 3 d 故:V Q NH 3 N 1600 24 (25 3) 1690m 3 N V 曝气风机计算: 微生物需氧量 =降解有机物需氧量 +硝化需氧量 R Q C BOD 4.57 Q C NH 3 N 1600 24 [(30 5) 4.57 (25 3)] 4820kg/ d 1000 1000 滤池氧的利用率取 30%,从滤池中逸出气体中含 氧量的百分率 Q t 为: 当水温为 25℃时,清水中的饱和溶解氧浓度为 C S =8.4mg/L ,则 25℃时滤池内混 合液溶解氧饱和浓度的平均值 C Sm(25)为: C Sm(25) C S (4Q 2 t 2.026 Pb 10 5 ) 8.4 (1452 .7 42 2.026 105 42 水温为 25℃时, BAF 的实际需氧量 R 为: 0.5 1000 取填料层高度为 H=3.4m , 则滤池总平面积为 A Q 1690 497m 2 取单池面积为 A= 7 9m 2 , 则所需池个数为 H 3.4 497 79 8个 水力负荷 q Q 1600 A 7 9 8 3.2m 3 / m 2 h 水力停留时间 t V Q 1690 1600 1.1h 滤池总高度: H 0 H h 1 h 2 h 3 h 4 3. 4 1.2 0.3 1.0 0.5 6.4m 1000 O t 21 (1 E A ) 79 21 (1 E A ) 21 (1 0.3) 79 21 (1 0.3) 15.7% 当滤池水面压力 P 1.013 105 Pa 时,曝气器安装在水面下 H=4.6m 深度时,曝 气器处的绝对压力为: 3 P b P 9.8 103 H 1.013 5 3 5 105 9.8 103 4.6 1.4638 105 Pa P b 5 1.4638 10 5 5 ) 9.21mg / L 2.026 105

生物滤池曝气计算和说明书

生物滤池曝气计算和说 明书 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

曝气生物滤池设计 1 曝气生物滤池滤料体积 BOD 容积负荷选3Kg d m BOD ?35,采用陶粒滤料,粒径5mm 。 2 滤料面积 滤料高度取h 3=3m 滤池采用圆形,则滤池直径m A d 52.214 .35 441=?= = π ,取2.5m 取滤池超高h1=0.5m ,布水布气区高度h2=1.0m ,滤料层上部最低水位h4=1.0m ,承托层高h5=0.3m 滤池总高度H=5.8m 3 水力停留时间 空床水力停留时间h Q V t 2.124300 43 5.221=????= =π 实际水力停留时间h t t 6.02.15.012=?==ε 4 校核污水水力负荷 5 需氧量 OR =)(32.0)( 82.05BOD X BOD BOD O ?+?△ 设3.0)20(La =K ,8.0=MLSS MLVSS , 7.0BOD BOD 5 5 =进水总进水溶解性 出水SS 中BOD 含量: L mg e e X MLSS MLVSS S La K e ss 5.19)1(42.1208.01(42.154.05)28(=-???=-??=?-出水溶解性BOD 5含量 Se==L 去除溶解性BOD5的量: 单位BOD 需氧量: 实际需氧量: 6 标准需氧量换算 设曝气装置氧利用率为E A =12%,混合液剩余溶解氧C 0=2mg/L,曝气装置安装在水面下4.2m ,取α=,β=,Cs=L ,ρ=1 标准需氧量:

结构设计常用参数表

一、钢筋的计算截面面积及理论重量 101151201 注:表中直径d=8.2mm 的计算截面面积及理论重量仅适用于有纵肋的热处理钢筋

二、每米板宽内的钢筋截面面积表

三、单肢箍Asv1/s(mm2/mm) 四、梁内单层钢筋最多根数 14 16 九、混凝土保护层 《混凝土结构设计规范》第9.2.1条纵向受力的普通钢筋及预应力钢筋,其混凝土保护层厚度(钢筋外边缘至混凝土表面的距离)不应小于钢筋的公称直径,且应符合表9.2.1的规定。 表9.2.1 纵向受力钢筋的混凝土保护层最小厚度(mm) 梁 注:基础中纵向受力钢筋的混凝土保护层厚度不应小于40mm;当无垫层时不应小于70mm。

第9.2.3条板、墙、壳中分布钢筋的保护层厚度不应小于本规范表9.2.1中相应数值减10mm,且不应小于10mm;梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。第9.2.4条当梁、柱中纵向受力钢筋的混凝土保护层厚度大于40mm时,应对保护层采取有效的防裂构造措施。通常在砼保护离构件表面10-15mm处增配φ4@150钢筋 网片。 处于二、三类环境中的悬臂板,其上表面应采取有效的保护措施。 第9.2.5条对有防火要求的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。处于四、五类环境中的建筑物,其混凝土保护层厚度尚应符合国家现行有 关标准的要求。 注意事项:混凝土最低强度等级和保护层厚度问题 1、±0.00以下(基础、底层柱)和屋面、露台梁板环境类别为二(a)类,应采用C25或以上混凝土。 2、基础混凝土保护层厚度为40mm,特别注意基础梁纵向钢筋净距是否满足规范要求。 3、应根据混凝土构件所处的环境类别和强度等级修改结构分析程序的保护层厚度。 十、纵向受力钢筋的配筋率 10.1、考虑到满足最小配筋率要求,常见板纵向受力钢筋的最小配筋率应符合《混凝土结构 设计规范》第9.5.1条的规定: 《混凝土规范》第9.5.1条钢筋混凝土结构构件中纵向受力钢筋的配筋百分率不应小于表 9.5.1规定的数值。 表9.5.1 钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率(%) 注:1、受压构件全部纵向钢筋最小配筋率,当采用HRB400级、RRB400级钢筋时,应按表中规定减小0.1;当混凝土强度等级为C60及以上时,应按表中规定增大0.1; 2、偏心受拉构件中的受压钢筋,应按受压构件一侧纵向钢筋考虑;

曝气生物滤池计算

曝气生物滤池计算 转载的资料: 曝气生物滤池 上向流曝气生物滤池将水解(酸化)池出水中的碳化有机物进行好氧生物降解,并将TKN转化为氨氮并进行氨氮的部分硝化。上向流曝气生物滤池主要包括缓冲配水室,曝气系统,承托层和滤料层,出水系统,反冲洗系统等,所以曝气生物滤池的计算主要包括上述各部分的计算。 1)曝气生物滤池池体的设计在本工程中,由于处理对象为医疗废水,曝气生物滤池的作用包括对污水中有机物的去除和对污水中的营养物质如氨氮、磷的去除。曝气生物滤池主要用于去除污水中的有机污染物并进行部分硝化脱氮,其池体的设计计算分按有机负荷法计算与按有机物降解动力学公式计算两种方法,由于按有机负荷法计算方法比较成熟,所以本工程滤池池体按有机负荷法计算。 按有机负荷法计算的设计参数主要是BOD有机负荷,COD有机负荷和水力负荷。设计时根据BOD有机负荷进行计算,并用COD有机负荷和水力负荷进行校核。 当进水BOD为 71-140 mg/L 时,BOD容积负荷可达 1.3 - 2.6 kgBOD/(m3 滤料?d,而其COD有机负荷一般控制在 6 kgCOD/(m3 滤料?d以下,空塔水力负荷一般为 1.5 - 3.5 m3 /(m2 ? h)之间。 在本工程中,经水解(酸化)池每天进入C / N 曝气生物滤池的污水量 Q = 400 m3/d,在C / N 曝气生物滤池中,每天所要求去除的BOD5 的重量为: △WBOD = (Q△CBOD)/1000 代入数据后,则: △WBOD = [400 ×(121-30)]/1000 = 36.4 kg/d 取BOD有机负荷 qBOD = 1.3 kgBOD/(m3 滤料 d ,则所需滤料体积 V滤料= △WBOD / qBOD = 36.4 / 1.3 = 28 m3 采用COD有机负荷进行校核: 当滤料体积为 28 m3 时,每天经 C / N 曝气生物滤池去除的COD的重量为: △WCOD = (Q△CCOD)/1000 式中△WBOD ——在曝气生物滤池中每天需去除的COD重量,kg/d Q -—每天进入曝气生物滤池的废水量,m3/d; △CBOD ——进入曝气生物滤池的COD浓度差,mg/L. 代入数据后,则: △WBOD = [400 ×(300 - 100)]/1000 = 80 kg/d 实际上,C / N 曝气生物滤池内COD的有机负荷为: qBOD = △WCOD/ V滤料 = 80/28 = 2.86 kgCOD/(m3 滤料·d 所以, C / N 曝气生物滤池内的实际COD有机负荷小于 6 kgBOD/(m3 滤料·d ,

曝气生物滤池计算

5.主要构筑物与设备参数 (一)格栅 见草图: 1.栅条的间隙数: 设栅前水深 h=0.1m ,栅前流速 u1 =0.4m /S 过栅流速 u = 0.6 m/S,栅条间宽度e=20mm,格栅安装倾斜角a=60o n=Qmax×(Sina)1/2/(bhv) = 0.00463×(Sin60o)1/2/(0.018×0.1×0.6)≈4 2.栅条宽度: 设栅条宽度为 S=0.01m B=S(n-1)+bn=0.01×(4-1)+0.018×4=0.102m 3.进水水渠道渐宽部分长度: 设进水水渠宽B1=0.06m,渐宽部分展开角a1=20o l1=(B-B1)/(2tga1)=(0.102-0.06)/(2tg20o)=0.06m 4.栅槽与出水渠连接处的渐窄部分长度 l2=l1/2=0.06/2=0.03m 5.通过格栅的水头损失: 设栅条为矩形断面,取k=2.5 h1=β(s/b)4/3sinαk(v2/2g) =2.5×2.42×(0.01/0.018)4/3×0.866×(0.62/19.6) = 0.044 m 6.槽后槽总高度: 取栅前渠道超高h2=0.1m, 有总高度H=h+h1+h2=0.1+0.1+0.044=0.244m 7.栅槽总长度: L=l1+l2+1.0+0.5+H1/tga =0.06+0.03+0.5+0.8+0.2/tg60o≈1.413m 8.每日渣量: 取W1=0.07m3/103m3(污水) 所以,W=Qmax×W1×86400/K2/1000 =0.0463×0.07×86400/2.5/1000 ≈0.0112m3/d≤0.2m3/d 栅渣量极小,适宜人工清渣。 (二) 水解酸化池体的计算 (1)水解(酸化)池有效池容V有效是根据污水在池内的水力停留时间计算的。水解(酸化)池内水力停留时间需根据污水可生化性、进水有机物浓度、当地的平均气温情况综合而定,一般为2.5- 4.5h.考虑综合情况,本工程设计中水力停留时间取 T = 4 h,本工程设计流量 Q = 400 m3/d =1 6.67 m3/h, 取 T = 4 h,则有效池容为: 水解酸化池的有效容积 V有效 = QT

介绍几个CAD常用系统参数

介绍几个常用系统参数: zoomfactor 设置鼠标滚轮的速度,一般设置100。 filedia 设置为1 -----打开文件或者输入填充命令时却没跳出新的对话框,而必须在命令栏里输入,这样的问题用这个命令解决。 mirrtext 设置为0 。 snapmode 设置0,栅格关着。直接点击栅格右键设置尺寸。 dragmode 画矩形或弧形或圆的时候非得等到画完才显示,设置on CAD移动命令线条不跟随十字光标: 用CO命令的时候本来十字光标那里应该会出现被复制物体的虚匡, 答案:dragmode选择自动就可以了。 vtduration 设置为0。 pellipse 设置椭圆为多段线一般还是用pl描一遍吧 0.快捷键如何修改 注意一点:要保留原来默认的快捷键。 菜单栏,工具,自定义,编辑程序参数。 注意两点:1.快捷键修改成适合左手用 2.尽量保留原始快捷键:要嘛一个命令有两个快捷键,比如co和c都是复制,这样,别人在我们的电脑上照样可以使用。 (拿快捷键修改单进行讲解)---这是本人的快捷键,供大家参照,接下来要说的cad和施工图均用以上修改过的快捷方式。,我习惯了,呵呵。 1.块和属性块的区别 块的用处: B制作的,更快的方式是ctrl+c复制后,ctrl+shift+v黏贴,就成块了,不过块的名字就由cad 决定了 方便修改 汀步花架条等应用,结合div和me的应用,偶尔还有对齐,比如用在弧形花架上,cad操作 数块:bcount 做快的时候要注意框里的保留删除成块的选择,cad操作. 属性块的用处:大多用在一些符号标注和图框上。 属性块的修改:天正右键在位编辑,如果在位编辑没反映,那就重新插入这个块(要知道块名) 改颜色或图层可以在位编辑或直接双击后在框里修改 块(块和属性快)如何改名:rename,cad操作 2.怎么应用布局出图 天正命令里的文件布图的定义视口命令ra 3.坐标标注 天正符号标注里的坐标标注,首先要把图放到0,0点,拿个图来说明。 4.图没法继续缩小 面域设置,这个参考书或者F1帮助 一般我是投机取巧直接画个矩形然后放大 5.图案填充是破碎的

传感器的参数静态特性技术指标

1.线性度(Linearity) 传感器的输出输入关系或多或少地存在非线性。在不考虑迟滞、蠕变、不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示: 式中:y—输出量;x—输入量;a0—零点输出; a1—理论灵敏度;a2、a3、… 、a n—非线性项系数。 各项系数不同,决定了特性曲线的具体形式。 静态特性曲线可实际测试获得。在获得特性曲线之后,可以说问题已经得到解决。但是为了标定和数据处理的方便,希望得到线性关系。这时可采用各种方法,其中也包括硬件或软件补偿,进行线性化处理。 一般来说,这些办法都比较复杂。所以在非线性误差不太大的情况下,总是采用直线拟合的办法来线性化。 在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的最大偏差,就称为非线性误差或线性度。 通常用相对误差 L表示: ΔLmax一最大非线性误差;y FS—满量程输出。 非线性偏差的大小是以一定的拟合直线为基准直线而得出来的。拟合直线不同,非线性误差也不同。所以,选择拟合直线的主要出发点,应是获得最小的非线性误差。另外,还应考虑使用是否方便,计算是否简便。 ①理论拟合;②端点连线平移拟合;③端点连线拟合;④过零旋转拟合;⑤最小二乘拟合;⑥最小包容拟合

2.迟滞(Hysteresis) 传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。迟滞特性如图所示,它一般是由实验方法测得。迟滞误差一般以满量程输出的百分数表示,即 式中△ Hmax —正反行程间输出的最大差值。 迟滞误差的另一名称叫回程误差。回程误差常用绝对误差表示。检测回程误差时,可选择几个测试点。对应于每一输入信号,传感器正行程及反行程中输出信号差值的最大者即为回程误差。 3.重复性(Repeatability) 重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。 重复性误差可用正、反行程的最大偏差表示,即 △Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。 重复性误差也常用绝对误差表示。检测时也可选取几个测试点,对应每一点多次从同一方向趋近,获得输出值系列y i1,y i2,y i3,…,y in ,算出最大值与最小值之差或3σ作为重复性偏差ΔRi ,在几个ΔRi 中取出最大值ΔRmax 作为重复性误差。 ()% 100/max ??±=FS R R y δ()%100/)3~2(?±=FS R y σδ

废水处理高负荷生物滤池设计说明

水污染控制工程 课程设计 题目废水处理高负荷生物滤池设计 班级 学号 学生 指导老师 完成日期 目录 一、前言 (1) 二、设计任务 (2)

三、工艺流程选择 (2) 四、工艺设备计算 (3) 4.1高负荷生物滤池尺寸和个数的确定 (3) 4.1.1滤床总体积 4.1.2滤床高度 4.1.3滤池面积和个数 4.1.4其他构造要求 4.2 布水设备计算 (4) 4.3 二沉池的形式、个数和工艺尺寸的确定 (6) 五、平面布置图 (8) 六、主要构筑物图 (8) 七、小结 (8) 八、参考文献 (9)

一、前言 生物滤池是由过滤田和灌溉田逐步发展而来的。过滤田和灌溉田是天然条件下的需氧生物处理设施。废水流入过滤田和灌溉田后,水中的有机物滞留在土壤表层,由需氧微生物氧化分解为无机物。这种作用只在土壤表层进行,占地面积大,而且受气候影响,只能在适当条件下采用。19世纪末,进行了洒滴滤池试验。20世纪初洒滴滤池法得到公认,出现了各种型式的生物滤池。用生物滤池处理废水的方法统称为生物膜法。 生物滤池一般是长方形或圆形,池填有滤料,滤料层上为布水装置,滤料层下为排水系统。废水通过布水装置均匀洒到生物滤池表面,呈涓滴状流下,一部分废水呈薄膜状被吸附于滤料周围,成为附着水层;另一部分则呈薄膜流动状流过滤料,并从上层滤料向下层滤料逐层滴流,最后通过排水系统排出池外。 由于滤料间隙的空气不断地溶于水中,水层中保有比较充足的溶解氧;而流过的废水中所含的大量有机物质,可作为微生物的营养源,因此水层中需氧微生物能够大量生长繁殖。微生物的代作用使部分有机物质被氧化分解为简单的无机物,并释放出能量。这些能量一部分供微生物自身生长活动的需要,另一部分被转化合成为新的细胞物质。另外,废水通过滤池时,滤料截留了废水中的悬浮物质,并吸附了废水中的胶体物质,使大量繁殖的微生物有了栖息场所,从而在滤料表面逐渐生长起一层充满微生物及原生动物的“生物膜”。膜的外侧有附着水层,废水不断地从滤池上淋洒下来,就有一层废水不断沿生物膜上部表面流下,这部分废水为流动水层。流动水层和附着水层相接触,附着水层由于生物净化作用,所含有机物质浓度很低,流动水层通过传质作用把所含的有机物传递给附着水层,从而不断地得到净化。同时由于生物膜上的微生物的增殖,膜的厚度不断增加,当达到一定厚度时,生物膜层由于得不到足够的氧,由需氧分解转变为厌氧分解,微生物逐渐衰亡、老化,使生物膜从滤料表面脱落,随水流至沉淀池。生物滤池的滤料上再生成新的生物膜,如此不断更新。

水厂常用设计参数100

水厂常用设计参数净水构筑物的允许流速、水头损失和池总高度

1. 斜板垂直净距一般采用80-120mm,斜管直径一般采用50-80mm; 2. 斜板(管)长度为1-1.2m; 3. 倾角一般为60°;

4. 斜板(管)底部缓冲区高度一般为0.5-1m; 5. 斜板(管)上部水深一般为0.7-1m; 6. 池内停留时间:初次沉淀≤30min;二次沉淀≤60min。

竖流式沉淀池设计数据 1. 池直径或正方形边长与有效水深的比值≤3,池直径一般采用4-7m; 2. 当池直径或正方形边长< 7m时,澄清水沿周边流出。个别当直径≥7m时,应设辐射式集水支渠; 3. 中心管内流速≤30mm/s; 4. 中心管下口的喇叭口和反射板要求: 1)反射板板底距泥面≥0.3mm; 2)反射板直径及高度为中心管直径的1.35倍; 3)反射板直径为喇叭口直径的1.3倍; 4)反射板表面对水平面的倾角为17°; 5)中心管下端至反射板表面之间的缝隙高为0.25-0.5m,缝隙中心污水流速,在初次沉淀池中≤30mm/s,在二次沉淀池中≤20mm/s; 5. 排泥管下端距池底≤0.2m,管上端超出水面≥0.4m; 6. 浮渣挡板距集水槽0.25-0.5m,高出水面0.1-0.15m,淹没深度0.3-0.4m。 平流式沉淀池设计数据 1. 长宽比以3-5为宜; 2. 长与有效水深比一般采用8-12; 3. 池底纵坡一般采用0.01-0.02,机械刮泥时不小于0.005; 4. 初次沉淀池最大水平流速为7mm/s,二次沉淀池为5mm/s; 5. 进出口处挡板位置 1)高出池内水面0.1-0.15m; 2)进出挡板淹没深度一般为0.5-1.0m; 3)出口挡板淹没深度一般为0.3-0.4m; 4)挡板距进水口0.5-1.0m,距出水口0.25-0.5m; 6. 非机械刮泥时,缓冲层高度0.5m,机械刮泥时,缓冲层上缘宜高出刮泥板0.3m; 7. 刮泥机行进速度一般为0.6-0.9m/min; 8. 排泥管直径为< 200mm; 9. 入口整流墙的开孔总面积为过水断面的6%-20%; 10. 出水锯齿形三角堰,水面宜位于齿高的1/2处。 沉砂池 1.一般规定 1)沉砂池去除对象是密度为2.65/cm3,粒径在0.2mm以上的砂粒; 2)城市污水沉砂量可按106m3污水沉砂15-30m3计算,其含水率为60%,其密度为1500kg/m3; 3)砂斗容积应按2天内沉砂量计算,斗壁与水平倾斜角不小于55°;

相关文档
最新文档