浅析轻质高强混凝土的配制和性能

浅析轻质高强混凝土的配制和性能
浅析轻质高强混凝土的配制和性能

浅析轻质高强混凝土的配制和性能

发表时间:2018-06-12T09:26:17.067Z 来源:《基层建设》2018年第9期作者:成艳[导读] 摘要:通过选用优质聚羧酸系高效减水剂与页岩陶粒与陶砂等混凝土材料,经过多次正交试验,选择最佳混凝土配合比,反复进行混凝土试配试验,最终研制出强度在70MPa、容重在1620kg/m3、耐久性优异的轻质高强混凝土。

黑龙江生物科技职业学院黑龙江哈尔滨 150025 摘要:通过选用优质聚羧酸系高效减水剂与页岩陶粒与陶砂等混凝土材料,经过多次正交试验,选择最佳混凝土配合比,反复进行混凝土试配试验,最终研制出强度在70MPa、容重在1620kg/m3、耐久性优异的轻质高强混凝土。本论文从不同方面阐述轻质高强混凝土的配置和性能研究,希望为研究轻质高强混凝土的专家和学者提供理论参考依据。

关键词:轻质高强混凝土;配置和性能;研究

以水泥、砂石、外加剂、掺合料和水为主要成分的混凝土是当今世界应用最为广泛、用量最大的建筑材料,仅我国每年混凝土用量就高达 109m3。混凝土自问世以来,强度一直是衡量其性能最主要的指标,混凝土技术的发展基本上也是围绕着强度这一核心而进行的。随着现代建筑物向着高层化、大跨度、轻量化的方向发展,对混凝土强度的要求也越来越高,因此研制高强混凝土具有重要的现实意义。

随着我国经济的快速发展,各地的城市建设也进入了高速发展时期,在城市高层建筑及重点工程中应用高强混凝土,对加快施工进度、保证工程质量、节约资金等方面具有重大的意义。根据上述情况研究和开发出一种采用普通的水泥、砂、石等原材料,使用常规的制作工艺,通过外加高效减水剂和矿物掺合料,配制出强度等级为 C80 的混凝土,为今后 C80 及更高强度等级的混凝土的设计及应用起到一定的指导作用。

1试验原材料

1.1水泥

水泥为南京小野田水泥厂生产的P·Ⅱ52.5水泥,符合《通用硅酸盐水泥》(GB175-2007)的相关要求,其化学成分和物理性能符合配置轻质高强混凝土要求。

1.2矿粉

采用上海宝钢公司生产的S95级矿渣微粉,其化学成分和物理性能符合配置轻质高强混凝土要求。

1.3粉煤灰

粉煤灰为镇江谏壁电厂苏源公司生产的I级F类粉煤灰,依据《用于水泥和混凝土中的粉煤灰》(GB/T1596-2005),其化学成分和物理性能符合配置轻质高强混凝土要求。

1.4减水剂

选择采用聚羧酸高效减水剂,含固量为20%,减水率30%,选用减水效果好的减水剂,可减少水用量,降低水胶比,提高轻质高强混凝土强度。

1.5骨料

粗骨料为湖北武汉某公司生产的5mm~25mm连续级页岩陶粒作为混凝土粗骨料,堆积密度为834kg/m3,吸水率4%,筒压强度6.0MPa;细骨料为轻质高强页岩陶砂,细度模数在3.0,堆积密度为754kg/m3,骨料与胶凝材料的密度差越大,骨料在混凝土中的上浮速度就较大,混凝土容易产生离析,因此,选用强度高、密度小的骨料,既可改善混凝土和易性,还可降低混凝土容重,其成分符合配置轻质高强混凝土要求。

2试验结果分析

在考虑单独作用因素的条件下,矿粉掺量10%时,28d胶砂强度优于其他掺量;粉煤灰掺量10%时,28d胶砂强度优于其他掺量;固体增效剂掺量20%时,28d胶砂强度优于其他掺量。因此,综合考虑在矿粉与粉煤灰掺量10%、固体增效剂掺量20%时,28d胶砂强度最高。

以基准配比中混凝土容重、胶凝材料、砂率为混凝土研究主要因素,胶凝材料按上述试验中水泥∶矿粉∶粉煤灰∶固体增效剂为6∶1∶1∶2掺加,其他材料不变,选取表11所示水平对象,进行混凝土强度与容重最佳平衡点,即最优混凝土配合比的验证。在混凝土设计容重一定的条件下,胶凝材料与砂率的提高,可以降低混凝土实测容重,说明粗骨料陶粒对混凝土容重影响最大。由于氯离子的存在会加快混凝土中的钢筋锈蚀,从而影响建筑物的使用寿命,所以混凝土中的氯离子扩散性是表征混凝土耐久性的重要指标。如何阻止和减弱氯离子在混凝土中的扩散已成为成了当今混凝土界的一个重要研究课题。在混凝土中掺粉煤灰不仅有利于水化作用,提高强度、密实度和施工性,增加粒子堆积密度,减小孔隙率,改善孔结构,而且对抵抗侵蚀和延缓性能的劣化等都有较大作用。粉煤灰的加入填充于水泥颗粒的空隙之间大幅度地降低了混凝土孔隙尺寸与连通性,改善水泥石中胶凝材料的组成,使粉煤灰的火山灰反应发挥更加充分,水泥石基体的结构更加致密,并优化了集料的表面结构。

3耐久性方面的研究

参照《普通混凝土长期性能和耐久性能试验方法标准》(GB/T50082-2009)中的抗冻性试验方法,对设计的轻质高强混凝土进行快速冻融法,结果抗冻等级为F200,抗冻性优于同级的普通混凝土。同时对设计的轻质高强混凝土进行抗渗性能检测,发现轻质高强混凝土等级达到P8,抗渗性能优于同级的普通混凝土,主要是通过掺加粉煤灰来提高轻质高强混凝土的抗渗性能。水泥强度等级一定时,影响高强混凝土强度的因素顺序主要是水胶比和粉煤灰掺量。水泥水化时所需的结合水,一般只占水泥重量的 23%左右,在实际拌合过程中常需加入多余的水,以其获得较好的流动性。当混凝土凝结硬化后,多余的水分就残留在水泥石中形成水泡或水分蒸发后形成气孔,大大地降低了混凝土抵抗荷载的能力,因此在配制混凝土时,水灰比越小混凝土的强度就越高。高效减水剂(UNF-5)的加入减少了混凝土拌和物的用水量,把水灰比降低到 0.28,同时粉煤灰的掺入可增加混凝土的密实度,通过改善混凝土的密实度从而使混凝土的强度增加。

总之,在轻质高强混凝土中掺入一定量固体增效剂,同时矿粉与粉煤灰分别为10%掺量时,固体增效剂发挥效应最大,混凝土强度明显提高;主要原因是作为微骨料,二者起到填充混凝土内部微小空隙、改善混凝土孔结构、提高混凝土密实性的作用。轻质高强混凝土在实际工程应用中,需要注意对原材料进行严格把关并调整相关工艺参数,以满足不同工作环境对混凝土和易性的要求。

参考文献:

[1]浅谈高强混凝土技术[J].徐磊. 才智.2011(24)

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。 表3.0.5-2 预应力钢筋混凝土中矿物掺合料最大掺量

高强轻质混凝土

高强轻质混凝土;配合比 一、前言 现代混凝土作为人造建筑材料已有170多年的历史。在生产实践过程中,随着技术水平的提高,为了解决普通混凝土质量大的缺点,人们逐渐开发出了混凝土的新品种一一轻质混凝土。1913年美国首先用回旋窑烧制了页岩陶粒,为轻质混凝土的发展迈出了可喜的第一步。由于轻质混凝土是一种比强度高,保温耐火,抗震性能好,无碱集料反应等新型混凝土,可广泛应用在各种工业与民用建筑等构筑物上,具有很好的技术经济价值,所以自上世纪60年代以来在世界各国获得了长足的发展和应用,成为建筑材料工业中发展最快的轻质高强的新型建筑材料之一。 在轻质混凝土的发展初期,由于其强度较低且人们对其力学性质研究较少,使其应用的范围有所局限。随着研究的深入、高强轻集料即高强陶粒的问世。人们利用高强陶粒配制出了密度等级为1600~1900,强度等级在LC30以上的,广泛用于结构的高强轻集料混凝土。它以优良的力学性能和潜在的好处,在世界各国,特别是在北欧等国被广泛地应用于高层、超高层建筑结构,大跨度桥梁和城市立交桥及海洋工程中。而在我国,由于对轻质高强混凝土的研究还不十分系统,其用于承重结构的还不多。 二、HSLC基本概念及优势 1. 高强轻质混凝土的定义 高强轻质混凝土(High-Strength Light Weight Concrete,以下简称HSLC)是指利用高强轻粗集料(在我国通常称它为高强陶粒)、普通砂、水泥和水配制而成的干表观密度不大于1950kg/m3,强度等级为LC30以上的结构用轻质混凝土。从HSLC的定义我们可以看出,它除了和普通混凝土一样牵涉到粗、细集料、水泥和水以外,所不同的是还涉及到表观密度(原称容重)的最大限值和最小的强度等级限值。 2. HSLC在公路桥梁中的优势 随着科学技术的发展,桥梁逐渐向大跨度发展,这也使混凝土自重大的缺点更加突出,限制了桥梁跨度的进一步提高。HSLC以其高强、轻质的特点,显然能够克服普通混凝土无法克服的自重过大的缺陷,实现桥梁跨度的进一步提高。因此,在桥梁结构向大跨、重载、轻质、耐久方向发展的今天,HSLC当是今后桥梁建设上主要使用的材料之一。HSLC在桥梁工程中的优势主要体现在以下几个方面: (1)减轻梁体自重,增大桥梁的跨越能力; (2)减低梁高; (3)提高桥梁的耐久性,延长桥梁的使用寿命; (4)抗震能力好; (5)降低工程造价。 三、HSLC配合比设计 HSLC配合比设计的任务在于确定能获得预期性能而又最经济的混凝土各组成材料的用量,它和普通混凝土配合比设计的目的是相同的,即在保证结构安全使用的前提下,力求达到便于施工和经济节约的要求。由于HSLC所使用高强陶粒的特性,它还不能像普通混凝土那样,用一个较公认的强度公式作为混凝土配合比设计的基础。虽然,国内外都有不少研究者提出了各种各样的强度公式,但都存在很大局限性,离实际应用还有很大差距。所以,现阶段,主要还是通过参数的选择和简单经验公式的计算,最终经过试验的方法来确定各组分材料的用量。

高强混凝土进展与应用

高强混凝土应用与研究进展 前言 高强混凝土在我国房屋建筑中的使用比例仍处于非常低的水平。推广应用高强混凝土有利于提高我国混凝土质量的总体水平。通过分析高强混凝土工作学性能、强度与国内外对高强混凝土的应用,了解它的优点和意义。并且从施工技术、结构、经济效益等方面分析高强混凝土存在的问题,指出需进一步深入研究的方向。为高强混凝土这种土木工程材料的科研与工程应用提供了参考意见。 1.高强混凝土的定义 1930年前后,就已经出现了抗压强度为100Mpa以上的高强混凝土。在1966年第五次预应力混凝土国际联盟大会上,阐述了高强混凝土技术的现状,并提出用强度为100Mpa的预应力混凝土结构,有可能比钢结构还要轻。这个报告影响很大,从此高强混凝土的关心就多起来了。 高强混凝土(High Strength Concrete 简称HSC)对于划分高强混凝土的范围,国内外没有一个确定的标准。在国外,规范强度(Mpa): 美国混凝土协会≥41 欧洲混凝土委员会 50~100 挪威 44~94 芬兰 60~100 日本 50~80 德国 65~115 荷兰 65~105 瑞典 60~80 法国 50~80 随着混凝土技术的提高,现在很多学者认为强度等级不低于C60的混凝土即

为高强混凝土。由于这类混凝土有别于C60以下的普通混凝土,其原材料选择和施工质量控制更为严格,而且受压破坏表现出更大脆性,因而在结构计算和构造方法上与普通混凝土也有所差别。通常还将强度大于C80的混凝土称为超高强混凝土。 从我国现今的结构设计和施工技术水平出发,也考虑到混凝土材料性的变化,一般把强度等级为C50~C80的混凝土称为高强混凝土。【2】这标准与美国混凝土学会(ACI)在1984年提出的高强混凝土定义不相上下。它是用水泥、砂、石原材料外加减水剂或同时外加粉煤灰、F矿粉、矿渣、硅粉等混合料,经常规工艺生产而获得高强的混凝土。 2.高强混凝土的特点 利用高强混凝土的高强、早强及高变形模量的特可以大幅度缩减底层墙柱的截面尺寸并增大建筑使用面积[3],可以扩大柱网间距并改善建筑使用功能,可以加快模板周转并缩短施工工期,可以增加结构刚度、减少高层房屋的压缩量与水平位移,采用高强混凝土之后 ,由于墙柱截面缩小,在保证构件配筋率提高的前提下仍有可能节约钢材,此外还减轻了结构自重和作用于地基的荷载。高强混凝土在受弯构件中也能发挥作用,可以增加梁跨和减薄楼板厚度,并为房屋建筑采用更大跨度的预应力板以及在预应力梁中应用更高强度的钢索提供了可能。高强混凝土有优异的抗渗性能,在遭受侵蚀物质作用的工业厂房、储罐、城市汽车库、海滨设施等建筑工程中也有广泛用途。 如以 C60~ C80 的混凝土取代 C30~ C40的混凝土, 生产钢筋混凝土构件, 可以大大减少混凝土及钢筋用量。经计算表明,高层框架的普通钢筋混凝土柱, 底层体积配筋率高达6%,如果用 C60 的混凝土替代 C30 的混凝土, 每 m3混凝土减少钢筋用量 24kg[4]。由此可见, 使用高强混凝土不但节省了材料, 还大大减轻了结构物自重, 同时对混凝土建筑物的设计与施工将会产生重要的影响。这就充分表明高强混凝土的研究,有其重大的技术经济意义。 但混凝土强度越高,脆性愈显著。在用于钢筋混凝土抗震柱时必须慎用。高强混凝土几乎不透水,当发生火灾时,材料内部的结合水在高温下转变为高压蒸

聚合物改性混凝土研究进展

聚合物改性混凝土研究进展 摘要:介绍了聚合物改性混凝土的种类、改性机理和研究现状,并对其应用前景作了展望。和普通混凝土相比,聚合物改性混凝土有良好的性能:高的抗折、抗拉强度、好的柔韧性,高的密实度和抗渗性等,当前聚合物改性混凝土主要有 3 种, 即: 聚合物浸渍混凝土, 聚合物混凝土, 聚合物改性混凝土。聚合物改性混凝土学科的发展前景广阔。 关键词:聚合物改性混凝土;种类;改性机理;研究现状;前景 0 引言 聚合物改性混凝土是指一类聚合物与混凝土复合的材料,是用有机高分子材料来代替或改善水泥胶凝材料所得到的高强、高质混凝土。聚合物改性混凝土的发展已有多年历史,并得到了越来越广泛的应用。目前,聚合物改性混凝土的性能已经得到广泛认可。普通混凝土虽然抗压强度高,但也存在着较多缺点,比如抗拉和抗折强度较低,干燥收缩大,脆性大。在水泥混凝土中加入少量有机高分子聚合物,可以使混凝土获得高密实度,改变混凝土的脆性,拓宽了混凝土的使用领域,能带来较大的社会效益及经济效益[1]。 1 聚合物改性混凝土的分类 聚合物改性混凝土按照制备方式,可分为聚合物浸渍水泥混凝土(PIC),聚合物胶结混凝土(PC)和聚合物水泥混凝土(PCC)三种。 1.1 聚合物浸渍混凝土 聚合物浸渍混凝土(PIC)是将已经水化的混凝土用聚合物单体浸渍, 随后单体在混凝土内部进行聚合生成的复合材料。聚合物浸渍混凝土有良好的力学性能、耐久性及侵蚀能力。用于浸渍混凝土的聚合物单体主要有丙烯酸或甲基丙烯酸酯、苯乙烯、环氧树脂、不饱和聚酯树脂、丙烯腈等。这种混凝土适用于要求高强度、高耐久性的特殊构件,特别适用于输运液体的有筋管、无筋管、坑道等。聚合物浸渍混凝土因其实际操作和催化复杂,目前多用于重要工程。国外已用于耐高压的容器,如原子反应堆、液化天然气贮罐等。 1.2 聚合物胶结混凝土 聚合物胶结混凝土(PC)是以聚合物为唯一胶结材料的混凝土,又称之为树脂混凝土。大部分情况下是把聚合物单体与骨料拌和,把骨料结合在一起,形成整体。聚合物混凝土所用的聚合物主要有环氧树脂、甲基丙烯酸酯树脂、不饱和聚酯树脂、呋喃树脂、沥青等,混凝土的胶结完全靠聚合物,聚合物的用量约占混凝土重量的8%左右,这种混凝土具有高强、耐腐蚀等优点,但目前成本较高,工艺复杂, 经济适用性和工程实用性均很差[2],只能用于特殊工程(如耐腐蚀工程)。 1.3 聚合物水泥混凝土 聚合物水泥混凝土(PCC)是将水泥和骨料混合后,与分散在水中或者可以在水中分散的有机聚合物材料结合所生成的复合材料。制备的方式主要有两种:一是先将聚合物用水分散后,以乳液或聚合物水溶液的形式加入,聚合物胶乳在混凝土水化过程中影响混凝土水化过程及混凝土的结构,从而对水泥砂浆或混凝土的性能起到改善作用。另一种是先将聚合物与水泥或其他分散介质进行预分散,以干拌砂浆的形式使用。混合料与水拌和时,聚合物遇水变为乳液,在混凝土凝结硬化过程中,乳液脱水,形成聚合物固体结构[3]。此外,聚合物还可以纤维或者纤维增强塑料的形式,或者起外加剂的作用在混凝土中获得了应用。聚合物水泥混凝土由于操作简单,改性效果明显,成本较低(相当其他两种聚合物混凝土成本的1/10),因而在实际应用中得到了广泛的应用。 2 聚合物对水泥混凝土的改性机理 国内外用于水泥混凝土改性的聚合物品种繁多,但基本上是三种类型:即乳液(乳胶、分散体)、液体树脂和水溶性聚合物。其中乳胶是使用最广的,主要分为三类: 1)橡胶乳液类。主要有天然乳胶(NR)、丁苯乳胶(SBR)和氯丁乳胶(CR) 甲基丙烯酸甲脂

高强混凝土配合比设计方法及例题

高强混凝土配合比设计方法及例题

1] 高强(C60)混凝土配合比设计方法[ 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰 (10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂;6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm; 7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。 表1 混凝土配合比设计参数参考表(自定,待验证)

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。 3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应经过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量

高强高性能混凝土

一、前言 1824年,波特兰水泥发明,到目前混凝土材料已有近200年的历史,且混凝土也有了很大的发展,由普通混凝土向高性能混凝土发展。自20世纪以来,混凝土就己成为房屋建筑、桥梁、水利、公路等现代工程结构首选材料,混凝土作为土木工程中最大宗的人造材料,其用量巨大。进入21世纪以来,随着科学技术的快速发展,一种种新型混凝土不断出现。作为最主要的建筑结构材料,混凝土本身必须具有高强度、高工作性、高耐久性等性能,因此高性能混凝土是现代混凝土技术发展的必然结果,是混凝土的发展方向。 我国自从 1979年在湘桂铁路红水河斜拉桥的预应力箱梁中首次采用泵送 C60 混凝土以来,现代高性能混凝土在我国的应用已走过了30余年。现在,像北京、广州、上海、深圳等大城市已供应C80级别的预拌混凝土,C50~C60级高性能混凝土已在许多建筑和桥梁中得到应用,近年建成的大型桥梁的混凝土主体构件如主梁、刚架或索塔等,多数都采用了高性能混凝土。 二、高性能混凝土的概念 《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。《普通混凝土配合比设计规程》(JGJ55-2011)规定强度等级不低于C60级别的混凝土称为高强混凝土。它采用高性能的外加剂,如高效减水剂或者高性能引气剂、其它特种外加剂和掺入足够的超细活性混合材料,如:超细磨粉煤灰、磨细矿粉、优质粉煤灰等达到低水胶比,并具有耐久性、体积稳定性和经济合理性等性能的新型混凝土。高性能混凝土以耐久性作为主要设计指标,针对不同用途要求,对耐久性、工作性、适用性、强度、体积稳定性和经济性等性能予以保证。 三、高性能混凝土的特性 (1) 高强度。由于高性能混凝土的强度高、弹模高,可以利用这一特性大幅度的减少高层和超高建筑物纵向受力结构的截面尺寸,扩大建筑使用面积,

超高强混凝土的研究进展

超高强混凝土的研究进展3 李 悦 (北京工业大学建工学院,北京100022) 摘 要: 随着建筑技术的发展,强度等级超过100M Pa 的超高强混凝土已经研制成功并在工程中应用。介绍了活 性粉末混凝土、无纤维增强混凝土及纤维增强混凝土等三类超高强混凝土的性能特点及其研究现状,并且讨论了今后超高强混凝土的发展方向。 关键词: 超高强混凝土; 研究进展; 纤维 The Research Progresses of Super H igh Strength Concrete L I Y ue (T he co llege of arch itectu re and civil engineering ,Beijing U n iversity of T echno logy ,Beijing 100022,Ch ina ) Abstract : W ith the developm en t of bu ilding techno logy ,the super h igh strength concrete w ith the strength degree over 100M Pa already w as developed successfu lly and app lied in field .T h is paper in troduces the p roperties and research p rogresses of th ree k inds of super h igh strength concrete ,w h ich are reactive pow der concrete ,fiber reinfo rce concrete and non -fiber reinfo rced concrete .Fu rthermo re ,the develop ing trend of super h igh strength concrete w as also discu ssed . Key words : super h igh strength concrete ; research p rogresses ; fiber 混凝土材料是一种应用广泛的工程材料,其强度等级是反映混凝土研究水平的一个重要标志。一般认为强度等级达到或超过C 60的为高强混凝土,但对超高强混凝土并没有明确的定义,文中认为强度等级超过C 100的为超高强混凝土。在我国,C 100以上的超高强混凝土已经在重要工程中开始使用,国外已经在实验室中配制出了抗压强度超过800M Pa 的超高强混凝土,并正在研制1000M Pa 的极高强混凝土。但是,随着混凝土强度等级的不断提高,随之而来也暴露出一些问题,其中最突出的问题是高强混凝土的脆性大,并且混凝土强度越高,材料的脆性就越大,超高强混凝土甚至会出现爆裂破坏现象。为了克服此缺点,一个有效的途径是掺加纤维的方式来改善其延性。综述了超高强混凝土国内外研究现状,为该类材料的研究和应用提供指导。 1 活性粉末混凝土 活性粉末混凝土(R eactive Pow der Concrete ,缩写为R PC )是一种超高强、低脆性,且具有高耐久性的新型水泥基复合材料。R PC 实现高强化的基本原理是:通过提高材料组分的细度与活性,减少材料内部的缺陷(孔隙与微裂缝),获得超高强度与高耐久性。根据这个原理,R PC 所采用的原材料平均颗粒尺寸在0.1~1.0mm 之间,目的是尽量减小混凝土中的孔间距,从而提高拌合物的密实度。最早的R PC 由法国最大的营造公司Bouygues 公司在1993 年率先研制成功。它由级配良好的细砂、水泥、石英粉、硅灰及高效减水剂等组成,同时,为了进一步提高材料的延性,掺入了直径约0.15~0.20mm 、长度为3~12mm 的微钢纤维。它有2个强度等级:一是经高温高压处理后强度达800M Pa 的R PC 800;二是

建筑施工中高强混凝土的应用探究

建筑施工中高强混凝土的应用探究 发表时间:2018-12-17T10:21:21.583Z 来源:《建筑学研究前沿》2018年第23期作者:赵磊 [导读] 本文在分析高强度高性能混凝土概念的基础上,对高强度混凝土的原材料、配合比设计原则、技术问题以及具体的施工控制方法进行了分析。旨在为高强度混凝土在建筑施工中的应用提供理论参考。 赵磊 23020319850110XXXX 摘要:本文在分析高强度高性能混凝土概念的基础上,对高强度混凝土的原材料、配合比设计原则、技术问题以及具体的施工控制方法进行了分析。旨在为高强度混凝土在建筑施工中的应用提供理论参考。 关键词:高强度混凝土配合比设计集料外加剂 1 特点 高强混凝土是具有富配合比,低水灰比特点,而且高效减少剂,是配制高强混凝土必不可少的组成部分。由于高强混凝土的坍落度损失快,要求在施工中从搅拌运输到浇筑各环节要紧扣,在短时间内完成。高强混凝土拌合物特点是粘性大,骨料不易离析,泌水量少。 2 适用范围 高层建筑、大跨度建筑、构造物以及高效预应力混凝土等。 3 工艺原理 高强混凝土是通过掺加高效减水剂、活性掺合料,选用优质材料、合理的配比和搅拌系统的计量精度、严格控制水灰比的用水量,外加剂量以及浇筑成型,养护等各个环节,达到高强的目的。 4 原材料: 4.1 水泥:应不低于525#的硅酸盐水泥。其质量必须符合GBJ175-85《硅酸盐水泥,普通水泥》规定。水泥进场后,必须进行复验,合格方可使用。 4.2 细骨料:中砂、细度模量2.65-3.0容量1420kg/m3左右。符合11区级配要求,其品质符合IGJ52-79《普通混凝土用砂、质量标准及检验方法》规定含泥量不得超过2%。 4.3 粗骨料:花岗岩碎石、石灰岩碎石,规格为0.5-2cm,最大不超过3.2cm,质地坚硬,外形接近正方形,针片颗粒状不超过5%,压碎指标9-12%,强度比与所配混凝土强度高20-50%,连续级配,含砂量不大于1%,各项技术指标符合JGJ53-79《普通混凝土用碎石或卵石质量标准及检验方法》的规定。 4.4 F矿粉增强剂质量应符合以下要求:F矿粉增强剂质量不得低于6%;可溶性硅、铝含量分别不低于8-10%与6-8%;细度控制0.08方孔筛的筛余量为1-3%。F矿粉技术特点:用内渗10%地矿粉的高强混凝土强度与对比纯水泥强度基本相同,但每立方米混凝土可节省水泥40-50kg左右。改善了工艺性能,保水性好,一小时内无泌水现象。坍落度增大,满足泵送混凝土施工要求。价格低,仅为水泥价的1/2-2/3。高效减水剂:质量应符合GB8076-87《混凝土外加剂质量标准》的规定。 4.5 高效减水剂:质量应符合GB8076-87《混凝土外加剂质量标准》的规定。 4.6 水:自来水。 5 配合比 高强混凝土的配合比必须满足混的强度,耐久性要求以及施工工艺要求的和易性,可泵性,凝结时间、控制坍落度损失等。通过试配确定,并应通过现坍试验合格后,才能正式使用。 5.1 试配强度。高强混凝土配制强度,根据GBJ107-87(混凝土强度检验评定标准)和《高强混凝土结构施工规程建议》(初稿)的规定,并考虑现场实施条件的差异和变化确定配合比,试配强度定为所需强度等级乘系数1.15。mfcu≥mfcuk+1.64580;其中mfcu-混凝土试配强度;mfcuk-混凝土强度等级;1.645-为保证率95%系数。80-根据情况取5N/mm2。 5.2 高强混凝土的水灰比控制在0.28-0.32范围内,不大于0.32,并随强度等级提高而降低,对C60及其以上的混凝土,水灰比应不大于0.28,拌料的和易性宜通过外加高效减水剂和外加混合料进行调整,在满足和易性的前提下尽量减少用水量,为改善工作度,如用NF高效减水剂时,用量以不超过水泥量的1.5-2%。 5.3 水泥用量宜用450-500kg/m3,对60Mpa及其以上的混凝土也不宜超过550kg/m3应通过外加矿物掺合料来控制和降低水泥量,尤其是外加硅粉可以较大幅度地减少水泥用量。高强混凝土必须采用优质水泥,其标号以525#以上。 5.4 砂率一般控制在26-32%,泵送时砂率应在32-36%范围内。 5.5 掺F矿粉混凝土配合比计算宜采用绝对体积法或假定容重法,先计算出不掺F矿粉的基准混凝土配合比,再用F矿粉置换基准混凝土配合比中水泥用量的10%左右代替水泥。 5.6 入模坍落度范围根据运输时间混凝土浇筑技术措施确定。其大小应通过高效减水剂掺量调整,坍落度的损失,通过掺载体流化剂或NF高效减水剂控制坍落度损失。 6 施工工艺 6.1 高强混凝土拌制:投料顺序及搅拌工艺;严格控制施工配合比,原材料按重量计,要设置灵活,准确的磅砰,坚持车车过秤。定量允许偏差不应超过下列规定:水泥±2%;粗细骨料±3%;水、掺合料,高效减水剂±1%;高强混凝土搅拌时,应准确控制用水量,应仔细测定砂石中的含水量并从用水量中扣除,配料时采用自动称量装置和砂子含水量自动检测仪器,自动调整搅拌用水。不得随意加水;高效减水剂可用粉剂,也可制成溶液加入,并在实际加水时扣除溶液用水。搅拌时宜用滞水工艺最后一次加入减水剂;保证拌合均匀,制配高强混凝土要确保拌合均匀,它直接影响着混凝土的强度和质量要采用强制式搅拌机拌和,特别注意确保搅拌时间充分,不少于60秒。 6.2 高强混凝土运输与浇筑:快速施工。由于高强混凝土坍落度损失快,必须在尽可能短的时间内施工完毕,这就要求在施工过程中精心指挥有严密的施工组织,从搅拌、运输、浇筑几个工序之间要协调作业,各个环节要紧扣,保证一小时内完成;密实性对混凝土的强度至关重要。在施工过程中为保证混凝土的密实性,要采用高频震捣器,根据结构断面尺寸分层浇筑,分层震捣。浇筑混凝土卸料时,自

高强高性能混凝土施工方案

高强高性能混凝土施工方案 本工程为南京广州路干沿河B片B、C幢高层建设工程,地点为于南京市广州路与干河沿街之间,由南京市中住房地产开发公司做为开发商。江苏邗建集团有限公司南京分公司拟通过投标承建其土建、安装及室外工程项目,工期730天,建筑用途为商业、办公、住宅高层,其中地下室3900卅,住宅楼13500 m2 (18层),办公楼22000 m (22层)。基础转换层及竖向承重构件采用高强高性能泵送混凝土合计约2000m 3。 ⑴原材料的要求 ①水泥使用矿渣盐水泥,利用混凝土的后期强度,减少水泥用量,控制水化热温升,减小温度应力。 ②选用中粗砂,细度模数2.6以上,含泥量控制在3%以下。 ③石子选用5?31.5连续粒级洁净碎石,含泥量控制在1 %以下。 ④外掺添加材料 a .掺入一定数量的一级粉煤灰,改善混凝土的和易性及可泵性,降低混 凝土的水化热及减小混凝土的收缩; b .掺入一定数量的JM-川减水剂,降低混凝土水灰比,改善混凝土和易性及可泵性同时起到混凝土缓凝的作用。 ⑤混凝土拌和物入模坍落度为120 i20mm。 ⑵浇筑 ①本工程基础混凝土全部采用商品混凝土,搅拌车运输到现场,由混凝土输送泵泵送入模的混凝土施工方案。 ②根据基础平面及现场的施工条件,为充分利用泵车能够展开的工作面,各施工段混凝土浇捣从一边赶向另一边。本工程地下室基础承台多为大体积砼,浇筑砼时应采用斜面分层法浇筑,如下图所示,表面及时整平。

③ 混凝土浇筑前应将模板表面洒水湿润,混凝土浇筑过程中,模板和钢筋派 专人看 护。 ④ 混凝土入模处,每处配备4-5只插入式振动器。浇筑时确保快插慢拔,振 动时间 以不冒气泡为止,插入间距为300mm 呈梅花状布置,插入深度为第一层 距底板垫层上表面 50mm ,分层插入深度为进下层 50mm ?100mm 。砼浇筑过 程中,平板施工时应用插入式振动器与平板式振动器配合使用,确保砼密实。 ⑤ 混凝土严格控制配合比、水灰比和坍落度,浇筑过程中严禁在混凝土内随 便加 水。 ⑥ 严格控制混凝土初、终凝时间,要求混凝土终凝控制在 10h 左右,入泵 坍落度控制在120 i20mm 。 ⑦ 本工程地下室墙体混凝土采用分层分段下料、连续一次浇筑的施工方法 (如下图所示),即由2个浇筑小组从一点开始,砼分层浇筑,每两组相对应向 后延伸浇筑,直至同边闭合。高度超过 2.0m 的墙体混凝土浇筑采用溜槽入模, 使混凝土从一侧开始逐渐向前推进, 并在混凝土斜面上均匀布位振捣。混凝土以 500mm ?1000mm 高分层浇筑到顶,根据各施工段操作面,合理组织劳动力, 做到不留施工缝和冷接头。外墙墙板止水坎与底板同时浇筑,并按规定设置留钢 板止水带。墙板砼一次性浇筑到顶,不留施工缝,由于砼一次浇到墙体全高,模 板侧压力大,做好模板的加固、看护工作。 分层分段下料浇筑法示意图 ⑧ 为防止混凝土的收缩裂缝, 在混凝土初凝前采用二次复振和反复搓压使表 面密 实并用铁抹子压光以减少气泡、 消除混凝土的塑性收缩, 提高混凝土的密实 性,防止混凝土开裂。 ⑶混凝土试块 除正常混凝土抗压及抗渗试块外, 另适当增加结构实体检验用同条件养护试 块和拆 模指导试块,为及时了解混凝土强度增长情况提供数据。 同条件养护试块的留置方式和取模板 新浇筑的砼

高强混凝土强度的影响因素研究

高强混凝土强度的影响因素研究 【摘要】高强混凝土强度的影响因素是多方面的,通过着这些影响因素的分析,能够更好的了解到在现代化混凝土工艺中存在的问题和弊端,从而找到提升高强混凝土强度的方法。在具体的操作过程中,应该结合实际情况以及科学的进行工艺上的改变,从而更好的提升高强混凝土的强度。 【关键词】高强混凝土强度影响因素 高强混凝土是具有高强抗压能力、密度大以及孔隙率低等特点的现代化新型建筑材料,被大量的运用于大型桥梁建筑以及高层建筑中。高强混凝土具有的强大抗压能力,能够提高建筑的安全性,提高其经济效益。由于普通的混凝土的使用寿命较短,使用环境也较为复杂,混凝土的耐久性越强,现代化混凝土的工作效率也越高。而对影响高强混凝土强度的因素进行研究,能够不断提高其性能,发挥材料的优势,提升建筑的水平。 1 高强混凝土强度的影响因素分析 高强混凝土的制成和运用涉及到了一系列工艺,对其中的关键步骤和材料运用进行分析,能够找到高强混凝土的重要影响因素,从而不断改进高强混凝土的强度,提高其运用范围。 1.1 水泥等级 水泥等级对水泥强度的影响是成正比的,在保证矿渣掺量p1.3 掺合料品种 不同品种的掺合料会影响到高强混凝土的强度。按照一定的比例,对矿渣、硅粉以及粉煤灰进行掺合,并且在保证砂率以及水胶比相同的前提下,所得到的高强混凝土的流动性以及抗压强度都是不同的。相对来说,硅粉和矿渣的组合能够带来更高的强度。 1.4 水胶比 水胶比不同会直接影响到拌和物的流动性,最终造成高强混凝土的强度不同。传统的普通混凝土在水化过程中的用水量很大,多余的水分会在水泥硬化以后蒸发,在水泥板区域内形成大量的孔隙,以及水分蒸发过程中形成的微管等缝隙,这些都会严重影响到混凝土的最终性能。在高强混凝土中掺入高效的减水剂,从而降低水胶比,获得更高的强度。 1.5 砂率 砂率的不同也会影响到混凝土的强度。在胶凝材料相同的情况下,运用不同的砂率来进行混凝土制成,会得到不同的流动性和抗压强度。砂率的大小对混凝

高强高性能混凝土

高强高性能混凝土 根据《高强混凝土结构技术规程》(CECS104:99),将强度等级大于等于C50的混凝土称为高强混凝土;将具有良好的施工和易性和优异耐久性,且均匀密实的混凝土称为高性能混凝土;同时具有上述各性能的混凝土称为高强高性能混凝土;而《普通混凝土配合比设计规范》(JGJ55-2000)中则将强度等级大于等于C60的混凝土称为高强混凝土;《混凝土结构设计规范》(GB50010-2002)则未明确区分普通混凝土或高强混凝土,只规定了钢筋混凝土结构的混凝土强度等级不应低于C15,混凝土强度范围从C15~C80。综合国内外对高强混凝土的研究和应用实践,以及现代混凝土技术的发展,将大于等于C60的混凝土称为高强度混凝土是比较合理的。 获得高强高性能混凝土的最有效途径主要有掺高性能混凝土外加剂和活性掺合料,并同时采用高强度等级的水泥和优质骨料。对于具有特殊要求的混凝土,还可掺用纤维材料提高抗拉、抗弯性能和冲击韧性;也可掺用聚合物等提高密实度和耐磨性。常用的外加剂有高效减水剂、高效泵送剂、高性能引气剂、防水剂和其它特种外加剂。常用的活性混合材料有Ⅰ级粉煤灰或超细磨粉煤灰、磨细矿粉、沸石粉、偏高岭土、硅粉等,有时也可掺适量超细磨石灰石粉或石英粉。常用的纤维材料有钢纤维、聚酯纤维和玻璃纤维等。 一、高强高性能混凝土的原材料 (一)水泥 水泥的品种通常选用硅酸盐水泥和普通水泥,也可采用矿渣水泥等。强度等级选择一般为:C50~C80混凝土宜用强度等级42.5;C80以上选用更高强度的水泥。1m3混凝土中的水泥用量要控制在500kg以内,且尽可能降低水泥用量。水泥和矿物掺合料的总量不应大于600kg/m3。 (二)掺合料 1.硅粉:它是生产硅铁时产生的烟灰,故也称硅灰,是高强混凝土配制中应用最早、技术最成熟、应用较多的一种掺合料。硅粉中活性SiO2含量达90%以上,比表面积达15000m2/kg 以上,火山灰活性高,且能填充水泥的空隙,从而极大地提高混凝土密实度和强度。硅灰的适宜掺量为水泥用量的5%~10%。 研究结果表明,硅粉对提高混凝土强度十分显著,当外掺6~8%的硅灰时,混凝土强度一般可提高20%以上,同时可提高混凝土的抗渗、抗冻、耐磨、耐碱-骨料反应等耐久性能。但硅灰对混凝土也带来不利影响,如增大混凝土的收缩值、降低混凝土的抗裂性、减小混凝土流动性、加速混凝土的坍落度损失等。 2.磨细矿渣:通常将矿渣磨细到比表面积350m2/kg以上,从而具有优异的早期强度和耐久性。掺量一般控制在20%~50%之间。矿粉的细度越大,其活性越高,增强作用越显著,但粉磨成本也大大增加。与硅粉相比,增强作用略逊,但其它性能优于硅粉。 3.优质粉煤灰:一般选用I级灰,利用其内含的玻璃微珠润滑作用,降低水灰比,以及细粉末填充效应和火山灰活性效应,提高混凝土强度和改善综合性能。掺量一般控制在20%~30%之间。I级粉煤灰的作用效果与矿粉相似,且抗裂性优于矿粉。

浅谈C100高强混凝土的配置研究

浅谈C100高强混凝土的配置研究 摘要:高强混凝土是采用普通混凝土的施工工艺、材料,另掺高效复合外加剂和活性掺合料配制而成,本文简要介绍了高强混凝土的特点、原材料要求、配合比设计、施工工艺,并给出用南宁本地的材料成功配制出C100高强混凝土的配合比。 关键词:高强混凝土;原材料;配合比;施工工艺 近些年来,随着建筑技术的发展,建筑物趋向高层化、大型化和大跨度发展,因此,高强混凝土也得到广泛的应用。尽管国际上C100级高强混凝土的配制技术比较成熟,国内在试验室也已经成功配制出C100~C150高强混凝土,但迄今为止,还没有一个普遍认可或通用的高强混凝土配比的设计方法。本文根据南宁本地区原材料的供应情况(主要是砂、石、水泥),以及其他原材料的市场情况,通过试配和优化、反复修改后确定一个较佳的配合比。 1 高强混凝土的特点 1.1 强度高、节省材料 高强混凝土的抗压强度很高,可使钢筋混凝土柱和拱壳等以受压为主的构件的承载力大幅度提高。在受弯构件中,可降低截面的受压区混凝土高度。从而使构件截面减小,降低结构自重,增加有效使用面积,适用于大跨、重载、高耸等工程结构。 1.2 流动性高、早期强度高 高强混凝土在配制过程中使用高效减水剂等,能同时增加混凝土的坍落度和早强的性能,可采用商品混凝土和泵送等机械化施工工艺。由于高强混凝土具有早期强度高的特点,施工中可以早期拆模,缩短拆模时间,加速模板的周转,缩短施工周期,提高施工速度。 1.3 良好的耐久性 由于高强混凝土的低水灰比(水胶比),与普通混凝土相比有较高的密实性,抗外部侵蚀能力强,能承受恶劣的环境条件,提高结构的使用寿命。但是,高强混凝土受压时表现出较小的塑性和更大的脆性,随着混凝土等级提高,这一特征越明显。因此,在配制高强度混凝土时,不能单纯地追求抗压强度的高指标,而应兼顾混凝土在工程结构上所需要的其他力学性能指标。

高强混凝土的研究应用和发展趋势

高强混凝土的研究应用和发展趋势 本文对高强混凝土当前的技术水平及研究现状进行综述,对高强混凝土的工程应用情况与标准化情况进行介绍,对高强混凝土的发展趋势和推广应用的发展趋势进行了研究探讨。 标签:高强混凝土;研究应用;发展趋势;应用 高强混凝土早在上世纪60年代就在欧美等发达国家得到推广使用。发达国家经过多年的发展,高强混凝土在其预拌混凝土公司基本都能够生产出来,在房屋、桥梁、道路、港口建设等方面得到了广泛应用。 高强混凝土作为新型建筑材料,是建设部推广的十项新技术之一,一直受我国政府的高度关注。高强混凝土的广泛推广,能够节约资源、保护环境、并且对提高资源综合利用效率等方面有着重要推动作用,因此,作为公路、铁路、水工、建筑等行业部门研究推广的新技术之一的高强混凝土,在2004年的《工程建设中钢铁、水泥应用的可持续发展战略》中明确指出加大高强混凝土的升级,建议将C100-C160混凝土作为高端战略,把我国争取建设成为世界高强高性能混凝土技术强国。 1、高强混凝土的研究现状 在高强混凝土的制备技术中,国内外科研人员进行了系统研究。降低水灰比可以采用高效减水剂,过渡区界面结构的改善可以通过添加矿物掺合料,用来消耗水化产物中的氢氧化钙,改善混凝土生产施工工艺可以使用“水泥裹砂搅拌工艺”和“高频振捣成型工艺”等。如果需要降低混凝土拌合物的黏粘度可以选择较低单位的水和水泥用量,采用优质砂石、高强水泥等原材料,这也是高强混凝土配合比设计的重要点。 近年来,我国混凝土为了缩短与发达国家的技术差距,对高强混凝土的研究和推广应用格外重视,进行了一系列的应用研究,例如高强混凝土的收缩裂缝、自收缩规律、配置技术和施工技术等。同时,为了能够推广高强混凝土,使高强混凝土得到普及,在国家“七五”、“八五”重点科技项目;国家“九五”、“十五”科技攻关项目;国家“十一五”科技支撑计划;国家“863”计划项目中以及其他一系列各类专项基金课题研究中都对高强混凝土的研究应用和发展趋势有针对与涉及。 关于高强混凝土方面的研究,中国建筑科学研究院近年来对此展开了大量的工作,主持了大量的相关科研项目,并且承担了重大的高强混凝土技术服务项目。例如,沈阳富林大厦C100级混凝土、上海中技C60~C80预应力混凝土离心方桩耐久性技术研究等技术项目的承担。因此,我国高强混凝土方面得到了飞跃发展。与此同时,高强混凝土的强度也在活性粉末混凝土等新型混凝土的深入研究中得到了不断的提升。

高强与超高强混凝土配制技术

高强与超高强混凝土配制技术 陈友治 (武汉理工大学材料学院,湖北武汉430070) 摘要:阐述了研究开发高强与超高强混凝土的重大意义,提出了制备技术和途径,说明了主要原材料及其性能要求。 关键词:高强与超高强混凝土;制备;材料性能 Abstract: Expounded in this article is the great significance of research and development of high-stregth concrete and superhigh-strength concrete and their manufacturing technique and relative approaches.The main raw materials and the required performance are explained as well. Key words: high-strength concrete and 引言 混凝土是人类最大宗的建筑结构材料,其发展可以划分为低强低耐久混凝土、高强混凝土和高性能混凝土三个阶段。从我国目前的生产力发展水平、混凝土配制技术、施工性能、 设计和使用要求、施工机械及操作水平来看,目前正处于高强混凝土的配制和使用阶段, 这一时期还将经历很长一段时间。因此,充分利用地方资源,研究优质实用的高强或超高强混凝土配制技术,全面提高混凝土的生产和使用水平,是建材行业可持续发展的必然举措。 1 研究、开发、应用高强与超高强混凝土的重大意义 随着人类社会的发展和进步,人类有能力拓展生存的空间。目前,人们正在向高空、地底及海洋进军,现代建筑物越来越高层化、大跨化、轻量化;在海洋深处建造大型结构物, 在海面上建造巨大的工作平台;越来越多的跨大江、深谷、海峡的大跨度桥梁和海底隧道 在建造。所有这些,都要求混凝土的质量越来越高。因此,高强度、高耐久性、高泵送性 是混凝土材料发展的方向。 目前,一般认为 C 50~C 90属高强混凝土范畴, C 100及以上强度等级是超高强混凝土。与普通混凝土相比,研究应用高强与超高强混凝土具有下列优越性: (1)有效地减轻结构自重。钢筋混凝土的最大缺点是自重大,在一般的建筑中,结构自重 为有效荷载的8~10倍。当混凝土强度提高时,结构自重降低。一些世界著名的专家预 言,80 %~90 %的钢结构工程可用预应力钢筋混凝土结构代替,当混凝土强度达到100 MPa时,可以设计成的预应力钢筋混凝土结构,应当与钢结构一样轻,因为这时二者的 比强度(强度与质量的比值)大致相等[1]。 (2)大幅度提高混凝土的耐久性。高强与超高强混凝土由于强度的提高、内部孔结构的改 善以及胶凝物质相组成的优化,其耐久性得到很大的改善。

高强高性能混凝土技术

高强高性能混凝土技术 2.2.1 技术内容 高强高性能混凝土(简称HS-HPC)是具有较高的强度(一般强度等级不低于C60)且具有高工作性、高体积稳定性和高耐久性的混凝土(“四高”混凝土),属于高性能混凝土(HPC)的一个类别。其特点是不仅具有更高的强度且具有良好的耐久性,多用于超高层建筑底层柱、墙和大跨度梁,可以减小构件截面尺寸增大使用面积和空间,并达到更高的耐久性。 超高性能混凝土(UHPC)是一种超高强(抗压强度可达150MPa以上)、高韧性(抗折强度可达16MPa以上)、耐久性优异的新型超高强高性能混凝土,是一种组成材料颗粒的级配达到最佳的水泥基复合材料。用其制作的结构构件不仅截面尺寸小,而且单位强度消耗的水泥、砂、石等资源少,具有良好的环境效应。 HS-HPC的水胶比一般不大于0.34,胶凝材料用量一般为480~600kg/m3,硅灰掺量不宜大于10%,其他优质矿物掺合料掺量宜为25%~40%,砂率宜为35%~42%,宜采用聚羧酸系高性能减水剂。 UHPC的水胶比一般不大于0.22,胶凝材料用量一般为700~1000kg/m3。超高性能混凝土宜掺加高强微细钢纤维,钢纤维的抗拉强度不宜小于2000MPa,体积掺量不宜小于

1.0%,宜采用聚羧酸系高性能减水剂。 2.2.2 技术指标 (1)工作性 新拌HS-HPC最主要的特点是粘度大,为降低混凝土的粘性,宜掺入能够降低混凝土粘性且对混凝土强度无负面影响的外加剂,如降粘型外加剂、降粘增强剂等。UHPC的水胶比更低,粘性更大,宜掺入能降低混凝土粘性的功能型外加剂,如降粘增强剂等。 混凝土拌合物的技术指标主要是坍落度、扩展度和倒坍落度筒混凝土流下时间(简称倒筒时间)等。对于HS-HPC,混凝土坍落度不宜小于220mm,扩展度不宜小于500mm,倒置坍落度筒排空时间宜为5~20s,混凝土经时损失不宜大于30mm/h。 (2)HS-HPC的配制强度可按公式f cu,0≥1.15f cu,k计算; UHPC的配制强度可按公式f cu,0≥1.1f cu,k计算; (3)HS-HPC及UHPC因其内部结构密实,孔结构更加合理,通常具有更好的耐久性,为满足抗硫酸盐腐蚀性,宜掺加优质的掺合料,或选择低C3A含量(<8%)的水泥。 (4)自收缩及其控制 1)自收缩与对策 当HS-HPC浇筑成型并处于绝湿条件下,由于水泥继续水化,消耗毛细管中的水分,使毛细管失水,产生毛细管张

相关文档
最新文档