(完整版)红外试题及答案

(完整版)红外试题及答案
(完整版)红外试题及答案

红外试题及答案

一、选择题

1.在红外光谱分析中,用KBr作为样品池,这是因为:(3 )

(1)KBr晶体在4000-400cm-1范围内不会散射红外光

(2)KBr在4000-400cm-1范围内有良好的红外光吸收特性

(3)KBr在4000-400cm-1范围内无红外光吸收

(4)在4000-400cm-1范围内,KBr对红外光无反射

2. 一种能作为色散型红外光谱仪色散元件的材料为:(3 )

(1)玻璃(2)石英(3)卤化物(4)有机玻璃

3.

二、填空题

1. 一般分析上所说的红外光谱区域是指(中红外区)。

2. 在分光光度计中,常因波长范围不同而选用不同材料的容器,现有下面三种材料的容器,各适用的光区为:

(1)石英比色皿用于(可见、紫外光区)(2)玻璃比色皿用于(可见光区)(3)氯化钠窗片吸收池用于(红外光区)

三、问答题:

1.指出指纹区的波长范围、特点及用途。

答:范围:400~1500cm-1

特点:峰密集,峰形对分子结构变化十分敏感,是整个分子的特征。

用途:特征基团的进一步确证,整体结构确定,确定苯环上取代基的数目、位置及碳链长短等。

2.红外吸收光谱法定性、定量分析的依据是什么?

答:定性依据是峰的位置和数目,定量依据是峰的高度。

3.如何利用红外吸收光谱来区分伯、仲、叔醇?

答:利用C—O基团特征峰,伯醇:~1050cm-1;仲醇:~1100cm-1;叔醇:~1150 cm-1。

4.一含氮化合物,分子量为53,红外吸收光谱图如下,推断化合物的结构。

1610

3067 1412

2222

980

答:①3300~3500无峰,无N-H峰。②2222峰,有C≡N或C≡C基团。③小于3000处无峰,无饱和C-H键,即无-CH3和-CH2-。④根据分子量,除N外只能含3个C,

H H

||

C = C

||

H C ≡N

5.某化合物其红外光谱图如下, 试推测该化合物是: HO-C6H4-Cl还是

ClCH 2CH 2-CO-CH 2CH 3? 为什么?

答:因为3255cm -1有强吸收说明有OH 。1595,1500cm -1有吸收说明有苯环。1700cm -1无强吸收,说明不含羰基,所以该化合物是前者而不是后者。

6. 乙烯分子中的C=C 对称伸缩振动在红外光区有无吸收?为什么?

答:乙烯分子中的C ═C 对称伸缩振动在红外光区没有吸收,因为乙烯的对称伸缩振动没有偶极矩的变化,是红外非活性的。

7. 某化合物的分子式为C 5H 8O ,其红外光谱有如下主要吸收带;3020,2900,1690和1620cm -1;其紫外吸收光谱在λmax =227nm,εmax =104。已知该化合物不是醛,试指出它可能结构。

答:解:根据分子式计算该化合物的不饱和度: 22

8152

n n 1n 134=-+=-++=Ω

其红外吸收峰分别说明

3020cm -1 υ=C-H 不饱和化合物,含有双键 2900cm-1 υC-H 饱和

1690cm -1 υC=O 共轭的羰基,占有一个不饱和度 1620cm -1 υC=C 共轭双键,占有一个不饱和度

从紫外吸收εmax =104说明,此跃迁是由π→π*产生的,因此可能有如下结构: CH 2═CH —CO —CH 2—CH 3或者CH 3—CH ═CH —CO —CH 3 用Woodward 规则计算:

前者:母体基数 215nm 后者:母体基数 215nm

nm

2150计算值烷基取代?-α

计算值

烷基取代1?-αnm 22712

因此该化合物为

CH 3—CH ═CH —CO —CH 3

8. 产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 解:条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化.

并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱.

9. 何谓基团频率? 它有什么重要用途?

解:与一定结构单元相联系的振动频率称为基团频率,基团频率大多集中在4000-1350 cm-1,称为基团频率区,基团频率可用于鉴定官能团

10.

红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程.

解:基本依据:红外对有机化合物的定性具有鲜明的特征性,因为每一化合物都有特征的红外光谱,光谱带的数目、位置、形状、强度均随化合物及其聚集态的不同而不同。定性分析的过程如下:

(1) 试样的分离和精制;(2)了解试样有关的资料;(3)谱图解析;(4)与标准谱图对照;(5)联机

检索

11. 影响基团频率的因素有哪些?

解:有内因和外因两个方面.

内因: (1)电效应,包括诱导、共扼、偶极场效应;(2)氢键;(3)振动耦合;(4)费米共振;(5)立体障碍;(6)环张力。

外因:试样状态,测试条件,溶剂效应,制样方法等。

12. 何谓指纹区?它有什么特点和用途?

解:在IR光谱中,频率位于1350-650cm-1的低频区称为指纹区.指纹区的主要价值在于表示整个分子的特征,因而适用于与标准谱图或已知物谱图的对照,以得出未知物与已知物是否相同的准确结论,任何两个化合物的指纹区特征都是不相同的.

13.

OH

O

是同分异构体,如何应用红外光谱检测它们?

解:后者分子中存在-C=O,在1600cm-1会有一强吸收带,而前者则无此特征峰.

14. 某化合物在3640-1740cm-1区间,IR光谱如下图所示.该化合物应是氯苯(I),苯(II), 或4-叔丁基甲苯中的哪一个?说明理由.

解:应为III, 因为IR中在1740-2000cm-1之间存在一个双峰,强度较弱,为对位双取代苯

的特征谱带,而在2500-3640cm-1之间的两个中强峰,则为CH3-对称与不对称伸缩振动的特征谱带.

四、计算题:

1. 计算50μm 红外光所对应的波数,725cm -1所对应的波长。 答:ν~= 1/λ = 1/50×10-4 = 200cm -1 λ = 1/ν~=1/725 = 1.38×10-3

2. 计算苯及乙炔的基本振动数目。 答:n 苯 = 3N -6 = 30 n 乙炔= 3N -5 = 7

3. 计算下列化合物的不饱和度。(1) C 5H 12O 4 (2) C 6H 5-O- C 6H 5。 答:(1) U =1+n 4+2-1(n 3-n 1)=1+5+2-1(0-12)=0 (2) U =1+12+2-1(0-10)=8

4. 将800nm 换算为(1)波数;(2)mm 单位 答:

8

.010/800/12500

800/10/10/377

1

=====-m nm

cm μλλσ 5. 氯仿(CHCl 3)的红外光谱说明C-H 伸缩振动频率为3100cm -1,对于氘代氯仿(C 2HCl 3),其C-2H 振动频率是否会改变?如果变化的话,是向高波数还是低波数位移?为什么? 解:由于1H,2H 的相对原子质量不同,所以其伸缩振动频率会发生变化. CHCl 3中,M=12x1/(12+1)=0.9237 C 2HCl 3中.M=12x2/(12+2)=1.714,

由于σ与M 平方根成反比,故氘代氯仿中,C-2H 键振动频率会向低波数位移

红外热像仪用户手册终结版

IPRE-160 红外热像仪用户手册

! 警告、小心和注意 定义 !警告代表可能导致人身伤害或死亡的危险情况或行为。 !小心代表可能导致热像仪受损或数据永久丢失的情况或行为。 !注意代表对用户有用的提示信息。 重要信息–使用仪器前请阅读 !警告–本仪器内置激光发射器,切勿凝视激光束。激光规格为635 nm, 0.9mW, 二级。 !小心–因热像仪使用非常灵敏的热感应器,因此在任何情况下(开机或关机)不得将镜头直接对准强烈幅射源(如太阳、激光束直射或反射等),否则将对热像仪造成永久性损害! !小心 - 运输期间必须使用原配包装箱,使用和运输过程中请勿强烈摇晃或碰撞热像仪。!小心–热像仪储存时建议使用原配包装箱,并放置在阴凉干燥,通风无强烈电磁场的环境中。 !小心-避免油渍及各种化学物质沾污镜头表面及损伤表面。使用完毕后,请盖上镜头盖。 !小心 -为了防止数据丢失的潜在危险,请经常将数据复制(后备)于计算机中。 !注意 -在精确读取数据前,热像仪可能需要3-5分钟的预热过程。 !注意 -每一台热像仪出厂时都进行过温度校正,建议每年进行温度校正。 !小心 -请勿擅自打开机壳或进行改装,维修事宜仅可由本公司授权人员进行。

目录 ! 警告、小心和注意 (2) 1简介 (5) 1.1标准配置 (7) 1.2可选配置 (7) 2热像仪简介 (8) 2.1功能键 (8) 2.2接口 (11) 3基本操作 (12) 3.1电池安装及更换 (12) 3.1.1电池装卸 (12) 3.1.2更换电池 (13) 3.2电池安全使用常识 (14) 3.3快速入门 (15) 3.3.1获取热像 (15) 3.3.2温度测量 (15) 3.3.3冻结和存储图像 (17) 3.3.4回放图像 (17) 3.3.5导出存储的图像 (17) 4操作指南 (18) 4.1操作界面描述 (18) 4.1.1工作界面 (18) 4.1.2主菜单 (19) 4.1.3对话框 (20) 4.1.4提示框 (20) 4.2测温模式 (20) 4.3自动/手动 (21) 4.4设置 (22) 4.4.1测温设置 (22) 4.4.2测温修正 (23) 4.4.3分析设置 (24) 4.4.4时间设置 (25) 4.4.5系统设置 (26) 4.4.6系统信息 (27) 4.4.7出厂设置 (27) 4.5文件 (29) 4.5.1打开 (29) 4.5.2存储 (30)

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

FLIRA315红外热像仪中文说明书

FLIRA315红外热像仪使用说明书 代理商:武汉筑梦科技有限公司 2014-1-6

第一章设备简介 1 FLIR红外热像仪原理 1.1红外热像仪 从原理上讲,热像仪包括两部分:光学部件和探测器。光学部件使目标的红外辐射集中到探测器上,探测器对之成像。 1.1.1光学材料 红外辐射和可见光的性质一样能折射和反射。因而,红外热像仪的光学部件设计方法和普通相机的相似。用于普通相机的玻璃对红外线的透射程度不够好,因而不能用于红外热像仪。所以必须寻找别的材料。对红外线透明的材料一般对可见光不透明。象硅和锗就通常对可见光不透明。 从图中可以看出,这两种材料可以作为SW和LW光学材料。通常,硅用于SW系统而锗用于LW热像仪。硅和锗有好的机械性能,即不易破裂,它们不吸水,可以用现代车削法加工成镜头。 1.1.2探测器 对红外辐射敏感的元件称为探测器。这些年来,热像仪采用过许多不同类型的探测器。这些探测器不分类型都有一些典型特点。探测器对入射辐射的探测结果以电信号输出。这信号取决于入射红外辐射的强度与波长。大部分探测器都存在截止波长,这也很典型。如果入射辐射的波长长于探测器的截止波长,探测器将没有信号输出。在1997 年以前,所有的探测器都是制冷型的,根据不同型号,低的至少制冷到–70oC,更有甚者需制冷到–196oC。 1997 年,AGEMA 公司在世界上首先生产出了新一代非制冷微量热型探测器热像仪:Thermovision? 570,现在叫做AGEMA 570。500 系列的另一种热像仪叫做AGEMA 550,它使用制冷型探测器。

AGEMA 550 的探测器由斯特林制冷机制冷。这种PtSi探测器需制冷到–196oC。它需要两分钟来制冷。作为“单一”探测器的换代品,在1995年FPA 探测器被运用于所有的热像仪(AGEMA)上。AGEMA 550的探测器有320 x 240 = 76,800 探测器单元。 2 FLIR红外热像仪组成及接口 2.1、红外热像仪组成 红外热像仪组成:抗反射膜、光学滤片、探测器 2.2 使用说明 2.2.1 红外测温方法 红外热像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

红外二极管应用

红外发射二极管学习 一:红外发射管基本原理及应用 1、发光二极管LED(Light Emitting Diode): LED是由半导体材料所制成的光电元件,元件具有两个电极端子,在端子间施加电压,通入极小的电流便可发光;即:LED的发光原理是施加电压于AlGaAs(砷化铝镓)、AlGaInP(磷化铝铟镓)及GaInN(氮化铟镓)等化合物半导体上,借着电子与空穴复合释放出过剩的能量而发光,发光现象不是藉加热发光,属于冷发光。LED利用3-5族化合物半导体材料及元件结构之变化,进而设计产出各种颜色之固态电源,由于材料不同所释出来的波长也不同,包括红、橙、蓝、绿、黄等可见光,以及红外光等不可见光的LED,种类繁多。 2、红外发光二级管Infraed LED 由红外辐射效率高的材料(常用砷化镓GaAs)制成PN结,外加正向偏压向PN结注入电流激发红外光。光谱功率分布为中心波长830~950nm,半峰带宽约40nm左右,它是窄带分布,为普通CCD黑白摄像机可感受的范围。其最大的优点是可以完全无红暴,(采用940~950nm波长红外管)或仅有微弱红暴(红暴为有可见红光)和寿命长。 光是一种电磁波,它的波长区间从几个纳米(1nm=10-9m)到1毫米(mm)左右。人眼可见的只是其中一部分,我们称其为可见光,可见光的波长范围为380nm~780nm,可见光波长由长到短分为红、橙、黄、绿、青、兰、紫光,波长比紫光短的称为紫外光,波长比红外光长的称为红外光。 3、红外发光二极管识别 红外发光二极管,外形与普通发光二极管、光电二极管和光电三极管相似,极易造成混淆,应当注意辨别。红外发光二极管大多采用无色透明树脂封装或黑色、淡蓝色树脂封装三种形式,无色透明树脂封装的管子,可以透过树脂材料观察,若管芯下有一个浅盘,即是红外发光二极管,光电二极管和光电三极管无此浅盘; 4、红外发光二极管的极性 通常较长的引脚为正极,另一脚为负极。如果从引脚长度上无法辨识(比如已剪短引脚的),可以通过测量其正反向电阻确定之。数字万用表,测得正向电阻较小时,红表笔为正。(若是指针式万用表刚好相反,这与电表内部电池极性有关系) 补充:一般通过测量红外发光二极管的正反向电阻,还可以在很大程度上推测其性能的优劣。如果测得正向电阻值接近于零,则应报废。如果反向电阻只有数千欧姆,甚至接近于零,则管子必坏无疑;它的反向电阻愈大,表明其漏电流愈小,质量愈佳。 5、产品特点: 易与晶体管集成电路相匹配。体积小、重量轻、结构坚固耐震、可靠性高。 6、红外发光二极管应用 适用于各类光电检测器的信号光源。 适用于各类光电转换的自动控制仪器,传感器等。 根据驱动方式,可获得稳定光、脉冲光、缓变光,常用于遥控、报警、无线通信等方面。 7、应用注意事项: 红外发光二极管应保持清洁、完好状态,尤其是其前端的球面形发射部分既不能存在脏垢之类的污染物,更不能受到摩擦损伤,否则,从管芯发出的红外光将产生反射及散射现象,直接影响到红外光的传播。 红外发光二极管在工作过程中其各项参数均不得超过极限值,因此在代换选型时应当注意原装管子的型号和参数,不可随意更换。另外,也不可任意变更红外发光二极管的限流电阻。 由于红外光波长的范围相当宽,故红外发光二极管必须与红外接收二极管配对使用,否则将影响遥控的灵敏度,甚至造成失控。因此在代换选型时,要务必关注其所辐射红外光信号的波长参数。 红外发光二极管封装材料的硬度较低,它的耐高温性能更差,为避免损坏,焊点应当昼远离引脚的根部,焊接温度也不能太高,时间更不宜过长,最好用金属镊子夹住引脚的根部,以散热。引脚弯折开关的定型应当在焊接之前完成,焊接期间管体与引脚均不得受力。焊接后的器件引线割断,需冷却后进行。 红外发射二极管的发光功率与光敏器件的灵敏度因封装而有角分布,使用时注意安装的指向调整,更换时亦应做相应调整。注意管子的极性,管子不要与电路中的发热元件靠近。

表面增强拉曼光谱的目标之一是制作SERS活性的纳米结构(精)

[1]Gary Braun, Ioana Pavel, Andrew R. Morrill, Dwight S. Seferos, Guillermo C. Bazan,Norbert O. Reich,and Martin Moskovits.Chemically Patterned Microspheres for Controlled Nanoparticle Assembly in the Construction of SERS Hot Spots.J. AM. CHEM. SOC. 2007, 129, 7760-7761 表面增强拉曼光谱的目标之一是制作SERS活性的纳米结构,重现性好,可靠,灵敏,通过控制密度和分布的电磁(EM)的“热点”(地方的SERS增强和安置在这些区域内的分析物分子)。 纳米技术,纳米线捆包括二聚体团聚的建设,提出一个超敏感的SERS有为平台,以满足这一挑战。排列高度有序的筏或紧密堆积的纳米粒子或金属薄膜组成的2-D定期纳米蒸发超过模板领域。 在这种沟通中,我们证明化学方法驱动SERS活性系统克服了这一挑战。使用短链接分子作为模型分析物结合了一种新型的微球(MS)的图形技术,使用常规的光学显微镜,拉曼光谱和TEM分析可以发现纳米粒子(NP)热点。消除了测绘大面积的SERS信号的需要。此外,NP的聚合由MSs大小限制。这单一的NP集群的分析,所以匹配的激光探头直径和MS(1uM 0.88uM 分别的NP集群分析是可能的,我们描述了如何自我组装技术允许跨越多个尺度的光学识别和结构与功能分配。掩蔽过程模式二氧化硅微球的支撑面与不同地区的两个化学亲和力。有选择性地结合纳米银(银粒子) 使他们成为MS的表面上的离散点的本地化。 随着银结合的双功能连接器的NP随后交联步骤绘制的MSs小的银纳米粒子团聚在一起,形成一个设在路口的连接器数量。 MSs的微米大小,

红外光谱仪的应用

红外光谱仪的应用 (陕西科技大学材料科学与工程学院西安任莹莹710021) 摘要:傅里叶转换红外光谱(FTIR)是一种用来获得吸收,射出光电导性或固体,液体或气体的拉曼散射的仪器。本文将从红外光谱仪的使用原理,样品制备,结果分析等几个方面对红外光谱仪进行介绍。 关键字:FTIR,原理,样品制备,结果分析 The Application of Infrared Spectrometer (School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an Ren yingying 710021) Abstract:Fourier transform infrared spectroscopy (FTIR) is a kind of instrument, which is used to get absorbed, penetrate photoconductivity or solid, liquid or gas Raman scattering. This article from the principle of the use of infrared spectrometer, sample preparation, the analysis of several aspects, such as the infrared spectrometer is introduced. Key words: FTIR, principle, sample preparation, analysis of the results 一、原理 红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5—5μm;4000—400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。 红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率和红外光的频率一样时,分子就吸收能量由原来的基态振动能级跃迁到能量较高的振动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。如图1,辛烷的红外光谱图,纵坐标为透过率,横坐标为波长λ(μm )或波数(cm-1)。

HHIR-85B型红外热像仪说明书

1 概述 1.1 用途 HHIR-85B型红外热像仪(以下简称红外热像仪)用 于单兵夜间观察、发现目标,实现夜间侦察作战能力。它 可以与多种瞄准、射击、观察类装备联合使用,具有较强 的穿透烟雾、识别伪装、全天时(昼/夜)工作的能力;可 在夜间单独使用,用于单兵夜间侦察,监控。 1.2 特点 a)可应用于单兵手持; b)具备完整的人机工程设计; c)可昼夜工作。 1.3 主要性能 1.3.1观察距离(能见度>15km,温度15℃~30℃,湿度< 40%条件下): a) 喷气式飞机探测距离(15m × 5m):≥5000m。(探 测是指可以发现飞行中的喷气式飞机,成像最少两像素。) b) 探测站立人员(高170cm × 宽40cm)目标:≥ 2000m。(探测是指可以发现直立走动的人员,成像最少 两像素。) --------------------------------------------------------------------------------12-1

--------------------------------------------------------------------------------12-2 c) 识别站立人员(高170cm × 宽40cm )目标:≥1000m 。(识别是指可以分辨直立走动的人员外形轮廓,成像最少五像素。) 1.3.2 技术指标 探测器类型: 非制冷焦平面 探测器: 384pixel × 288pixel ,面元25μm 噪声等效温差(NETD):≤100mk@30°C 工作波段: 8μm ~12μm 场频: 50Hz 电子放大倍率: 2× 空间分辨率MRTD : ≤0.4℃(在特征频率下) 视场: 6.5°×4.8° 红外物镜参数: 物镜直径=85mm ,F 数=1.0, 物镜焦距f=85mm 。 物镜类型: 电动调焦镜头 调焦范围: 10m~∞ 启动工作时间: <30s 电池工作时间: 3h (常温) 功耗: ≤6W (常温) 颜色: 主体制做成黑色 三角架接口类型: 1/4inch 主体外形尺寸(mm): (280±15)长×(130±5)宽

可循环表面增强拉曼光谱基底的制备及其应用

第3  1卷,第2期 光谱学与光谱分析Vol.31,No.2,pp 394-3972 0 1 1年2月 Spectroscopy and Spectral Analysis February,2 011 可循环表面增强拉曼光谱基底的制备及其应用 倪丹丹1,王伟伟,姚建林*,张雪姣,顾仁敖 苏州大学材料与化学化工学部,江苏苏州 215123 摘 要 以氨基硅烷为偶联剂,硅酸钠为硅源,合成了一种以金为核,二氧化硅为壳的核壳纳米粒子。通过调节硅酸钠的量,反应温度和反应时间控制二氧化硅壳层厚度,获得理想的表面增强效应。通过研究表面增强拉曼光谱(SERS)信号强度和二氧化硅层厚度之间的关系优化基底的制备条件。采用对巯基苯和联吡啶作为探针分子进行SERS实验,在一定浓度范围内得到SERS信号强度和浓度的对数之间的线性关系,实验结果表明此组装有Au@SiO2的ITO基底作为可循环利用基底可定量分析吸附物种的浓度。关键词 Au@SiO2纳米粒子;表面增强拉曼光谱;基底;循环;定量分析 中图分类号:O652.7 文献标识码:A DOI:10.3964/j .issn.1000-0593(2011)02-0394-04 收稿日期:2010-04-28,修订日期:2010-08- 03 基金项目:国家自然科学基金项目( 20773091,20973120)资助 作者简介:倪丹丹,女,1985年生,苏州大学材料与化学化工学部硕士研究生 e-mail:soochow_ndd@1 26.com*通讯联系人 e-mail:jly ao@suda.edu.cn引 言 表面增强拉曼光谱(surface enhanced Raman sp ectrosco-py ,SERS)是一种重要的表面谱学技术,它不仅可以从分子水平上提供丰富的光谱信息鉴别吸附在金属表面的物 种[ 1,2] ,给出有关吸附分子表面取向的信息,还可以通过控制表面粗糙度、溶胶粒子尺寸获得理想的SERS效应,特别是纳米科技的飞速发展赋予SERS光谱新的生机和活力,其 可望成为表面科学研究的重要工具之一[3,4] 。虽然SERS的 机理及应用均得到了快速的进展,但迄今为止,将SERS技术用于定量分析仍然存在较大困难,这主要由于SERS增强效应重现性不理想,基底循环使用较困难以及结果横向对比性较差等原因造成的。 虽然裸露的单金属或复合金属纳米粒子具有极高的SERS效应,但由于部分物种的吸附是不可逆的,因此此类 基底无法作为第二次检测的基底,特别是纳米粒子的尺寸、表面状态以及纳米粒子的间距等都极大地影响了其SERS效应,这造成了不同基底之间的横向可比性较差,只能用于高 灵敏度的定性检测,而无法用于定量检测[ 5] 。最近表面惰性氧化物包裹的币族金属纳米粒子具有较好的稳定性,良好的 SERS效应[6] ,Tian等将其用于研究单晶表面的吸附行为,通过内核金的长程SERS效应获得了单晶表面分子的信号, 同时由于SiO2层对单晶表面的吸附行为并没有影响 [7] ,由 此可见包裹SiO2层后可使分子在核壳粒子表面的吸附仅靠 物理作用,而内核的SERS效应仍可表达。本文制备Au@ SiO2核壳纳米粒子并研究其S ERS增强效应及其作为可重复利用基底进行定量分析的可行性。 1 实 验 1.1 试剂与仪器 3-氨丙基-三甲氧基硅烷(3-aminopropyl)trimethoxy si-lane,APTMS)(纯度97%)购自Alfa Aesar,硅酸钠(Na2O(SiO2)3-5,27Wt%SiO2)和聚乙烯吡啶(poly(4-vinylpyri-dine),Mw=160 000,PVP)购自Sigma-Aldrich,其余试剂均为分析纯;实验所用水均为Millipore公司超纯水仪提供的电阻率大于18.0MΩ·cm的超纯水。使用Tecnai F30透射电子显微镜及Hitachi S-4800场发射扫描电子显微镜表征纳米粒子及组装基底。Raman光谱实验采用Horiba的LabRamHR800型共聚焦显微拉曼光谱仪,激发光波长为632.8nm。1.2 纳米粒子的制备 直径为55nm的金种子的合成采用柠檬酸三钠还原氯金 酸的方法[8]。步骤如下:将100mL浓度为1.0×10-4  g· mL-1氯金酸水溶液加热至沸腾,迅速加入0.7mL  1.0×10-2  g ·mL-1柠檬酸三钠水溶液,3min之内溶液由透明淡黄色变为黑色最后变成紫红色[9] ,继续搅拌回流15min ,拆除装置待溶胶自然冷却至室温备用。 Au@SiO2纳米粒子的合成采用水解硅酸钠的方法 [10] ,步骤如下:取30mL上述制备的金溶胶,室温搅拌下加入新

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

红外发光二极管资料介绍

常用的红外发光二极管(如SE303.PH303),其外形和发光二极管LED相似,发出红外光。管压降约1.4v,工作电流一般小于20mA。为了适应不同的工作电压,回路中常常串有限流电阻。 发射红外线去控制相应的受控装置时,其控制的距离与发射功率成正比。为了增加红外线的控制距离,红外发光二极管工作于脉冲状态,因为脉动光(调制光)的有效传送距离与脉冲的峰值电流成正比,只需尽量提高峰值Ip,就能增加红外光的发射距离。提高Ip的方法,是减小脉冲占空比,即压缩脉冲的宽度T,一些彩电红外遥控器,其红外发光管的工作脉冲占空比约为1/3-1/4;一些电器产品红外遥控器,其占空比是1/10。减小脉冲占空比还可使小功率红外发光二极管的发射距离大大增加。常见的红外发光二极管,其功率分为小功率(1mW-10mW)、中功率(20mW-50mW)和大功率(50mW-100mW以上)三大类。要使红外发光二极管产生调制光,只需在驱动管上加上一定频率的脉冲电压。 用红外发光二极管发射红外线去控制受控装置时,受控装置中均有相应的红外光一电转换元件,如红外接收二极管,光电三极管等。 红外线发射与接收的方式有两种,其一是直射式,其二是反射式。直射式指发光管和接收管相对安放在发射与受控物的两端,中间相距一定距离;反射式指发光管与接收管并列一起,平时接收管始终无光照,只在发光管发出的红外光线遇到反射物时,接收管收到反射回来的红外光线才工作。 图2.6 红外发射二极管图2.7 常用红外接收头 红外发光二极管的特性: 1.电流—电压特性 红外发光二极管其电气的电路符号及特性曲线,如图2.8所示。阳极(P极)

电压加正,阴极(N极)电压加负,此时二极管所加之电压为正向电压,同时亦产生正向电流,提供了红外发光二极管发射出光束的能量,其发光的条件与一般的发光二极管(LED)一样,只是红外线为不可见光。 一般而言砷化镓的红外线发光二极体约须1V,而镓质的红色发光二极管切入电压约须1.8V;绿色发光二极管切入电压约须2.0V左右。当加入之电压超过切入电压之后,电流便急速上升,而周围温度对二极管的切入电压影响亦很大,当温度较高时,将使其切入电压数值降低,反之,切入电压降低。 红外线发光二极管工作在反向电压时,只有微小的漏电流,但反向电压超过崩溃电压时,便立即产生大量的电流,将使元件烧毁,一般红外线二极管反向耐压之值约为3~6V,在使用时尽量避免有此一情形发生。 图2.8 红外发光二极管的特性 2.热损 红外线发光二极管的热损失,是因元件所外加的电压VF,产生的电流IF累积而来的,除了一小部份能量做为光的发射外,大部份形成热能而散发,所散发的热能即所谓的损失。元件的功率损耗,在最大值的60%以下范围内,元件使用上会很安全,功率的损其最大值与周围温度亦有关系。 3.发射束电流特性 一般可见光的发光二极管其输出光的强度是以光度表示之,而不可见光如红外线发光二极管其输出光的能量大小,是以发射束Fe表示,其单位为瓦特。发射束的意义是单位时间内,所能发射、搬移光的能量的多寡。 红外线发光二极管的发射束大体上也是随电流比例而定,如图2.9所示,为发射束与正向电流的特性曲线。同时,发射束亦受周围温度影响,温度下降时,发射束反而增强;温度上升时,则下降(正向电流一般都有一固定值),然而因热损失之故,元件上的温度便形增加,如此发光效率就会受到影响而降低。

红外光谱技术

红外光谱技术 学号:1211050126 姓名:徐健榕 班级:12110501

摘要 红外光谱作为一门先进的技术,已经在各个领域得到了广泛的应用,。本文主要了解红外光谱分析的历史发展、现状分析、研究应用及其应用成果。 关键词:红外光谱历史应用成果 一、红外光谱的历史发展 真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的.1666 年牛顿证明一束白光可分为一系列不同颜色的可见光, 而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带.牛顿导入"光谱" (spectrum)一词来描述这一现象.牛顿的研究是光谱科学开端的标志. 从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区.红外辐射是18世纪末,19世纪初才被发现的。1800年英国物理学家赫谢尔(Herschel)用棱镜使太阳光色散,研究各部分光的热效应,发现在红色光的外侧具有最大的热效应,说明红色光的外侧还有辐射存在,当时把它称为“红外线”或“热线”。这是红外光谱的萌芽阶段。由于当时没有精密仪器可以检测,所以一直没能得到发展。过了近一个世纪,才有了进一步研究并引起注意。 1892年朱利叶斯(Julius)用岩盐棱镜及测热辐射计(电阻温度计),测得了20几种有机化合物的红外光谱,这是一个具有开拓意义的研究工作,立即引起了人们的注意。1905年库柏伦茨(Coblentz)测得了128种有机和无机化合物的红外光谱,引起了光谱界的极大轰动。这是红外光谱开拓及发展的阶段。到了20世纪30年代,光的二象性、量子力学及科学技术的发展,为红外光谱的理论及技术的发展提供了重要的基础。不少学者对大多数化合物的红外光谱进行理论上研究和归纳、总结,用振动理论进行一系列键长、键力、能级的计算,使红外光谱理论日臻完善和成熟。尽管当时的检测手段还比较简单,仪器仅是单光束的,手动和非商化的,但红外光谱作为光谱学的一个重要分支已为光谱学家和物理、化学家所公认。这个阶段是红外光谱理论及实践逐步完善和成熟的阶段。20世纪中期以后,红外光谱在理论上更加完善,而其发展主要表现在仪器及实验技术上的发展:①1947年世界上第一台双光束自动记录红外分光光度计在美国投入使用。这是第一代红外光谱的商品化仪器;②20世纪60年代,采用光栅

红外热像仪使用说明书

红外热像仪使用说明书 在红外热像仪的使用说明书中,以下的指标值得关注: 除了从典型应用的角度之外,还可以快速地从回答3个简单问题,来进行红外热像仪关键指标的选择: 问题一:红外热像仪到底能测多远? 红外热像仪的检测距离= 被测目标尺寸÷IFOV,所以空间分辨率(IFOV)越小,可以测得越远。例如:输电线路的线夹尺寸一般为50mm,若使用Fluke Ti25 热像仪,其IFOV为2.5mRad ,则最远检测距离为50÷2.5=20m 问题二:红外热像仪能测多小的目标? 最小检测目标尺寸= IFOV×最小聚焦距离。所以IFOV越小,最小聚焦距离越小,则可检测到越小的目标。举例: 某品牌热像仪Fluke Ti25 热像仪 空间分辨率(IFOV):2.6mRad 空间分辨率(IFOV):2.5mRad 像素:320×240 像素:160×120 最小聚焦距离:0.5m 最小聚焦距离:0.15m 最小检测尺寸:1.3 mm 最小检测尺寸:0.38 mm 从对比图看,右侧Fluke Ti25,虽像素稍低,但凭借更小的IFOV 及最小聚焦距离优势,实际可以拍摄到0.38mm微小目标,而另一品牌则只能测到1.3mm 的目标。 问题三:热像仪能看得多清晰? 因素一:热灵敏度决定热像仪区分细微温差的能力。同样状况下,右图所用热像仪的热灵敏度更低,画面清晰显示花蕊细节的温度分布,而左图同区域只能看到一片红色。

因素二:最小检测尺寸决定了热像仪捕捉细小尺寸的能力。尺寸越小,相同面积的检测目标画面由更多像素组成,画面更清晰。 由右图可见,像素(马赛克)越小越清晰 什么是空间分辨率(IFOV)? 在单位测试距离下,红外热像仪每个像素能够检测的最小目标( 面积),以mRad 为单位,是一个主要由像素和所选镜头角度所决定的综合性能参数,是热像仪处理空间细节能力的技术指标。 为什么空间分辨率(IFOV)越小越好? 单位距离相同时,IFOV 越小,单个像素所能检测的面积越小,单位测量面积上由更多的像素所组成,图像呈现的细节越多,成像越清晰。

表面增强拉曼光谱技术在食品安全现场快速检测中的应用

表面增强拉曼光谱技术在食品安全现场快速检测中的应用 欧普图斯(苏州)光学纳米科技有限公司(OptoTrace?,光纳科技?) 摘要: 本文综述了表面增强拉曼光谱技术在食品安全检测领域中的应用,具体介绍了表面增强拉曼光谱技术用于快速检测三聚氰胺、苏丹红Ⅰ号、孔雀石绿等违禁添加剂。利用光纳科技开发的RamTracer?系列便携式激光拉曼光谱仪和拥有专利技术的表面增强试剂以及芯片(NanoDog?),通过简单的样品前处理手段,即可实现对食品中非法添加剂和过量添加剂进行现场实时检测。其中,三聚氰胺标准品系统检测时间小于1分钟,方法检测限为2mg/L;苏丹红Ⅰ号标准品系统检测时间约为1分钟,方法检测限为10μg/L;孔雀石绿标准品系统检测时间约为2分钟,方法检测限为1μg /L。因而表面增强拉曼光谱技术提供了食品安全领域现场快速检测的应用前景。 概述: 拉曼光谱(Raman Spectroscopy) 分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其谱线位置(位移值)、谱线数目、和谱带强度等直接反映了基于化学分子键的延伸和弯曲的振动模式信息,进而可以了解分子的构成及构象信息。20世纪60年代随着激光的问世并引入到拉曼光谱仪作为光源之后, 拉曼光谱技术得到了迅速的发展,出现了很多新的拉曼光谱技术,从而应用到许多领域。 光纳科技研发的RamTracer?系列便携式激光拉曼光谱仪体积远小于普通大型激光拉曼光谱仪,便于携带,适应现场检测需求,内置高容量可充电锂电池,可在现场持续工作约5小时以上;光源采用785nm稳频激光,功率可在0-300mW范围内连续调节,能够根据不同检测对象的性质进行实时调整;该系列激光拉曼光谱仪的光谱范围可达100cm-1-3300cm-1,可检测绝大多数常见物质,而6cm-1的高分辨率可解析复杂结构的分子信息,即便是检测含有多成份的混合物,也能得到清晰易辨识的拉曼谱图。

红外热像仪操作步骤(精)

红外热像仪操作步骤 第一、连接设备,该仪器主要的部件有MAG30系列在线式热像仪(包括镜头)1台,12V电源适配器一个,网线一条(普通网线即可),IO接线端子,安装盘(光盘内附带用户手册)。使用时,将热像仪固定在三角支架上,连接处有螺丝固定,旋紧即可;将电源线插入12V DC 电源接口,此时电源指示灯亮;将网线插入电脑的网线接口(即RJ45网口)和热像仪的RJ445网口,若连接通路,则网口的黄色指示灯变亮,若不通则检查网线等方面。 第二、我们目前使用的是将热像仪与电脑直接通过网线相连,该情况下需要对电脑的ip地址进行修改,xp系统与win7系统修改ip的方法稍有差异,对于xp系统,可右键点击网上邻居—选择属性—本地连接—右键—属性—双击 tcp/ip协议—使用下面的ip地址,进行修改即可,若为win7系统,则右键点 击网上邻居—选择属性----点击本地连接—属性—双击 internet 协议版本4--—使用下面的ip地址,修改即可,Ip地址为 192.168.1.2—192.168.1.250之间均可,子网掩码255.255.255.0,网关192.168.1.1,即可完成连接。 第三、打开电脑上的软件ThermoX.exe(红外热像仪),,由于是网线直接连接在软件界面右侧的启用DHCP Server打钩

,打钩后,MAG30-110257即为该设备的型号,此时连接完毕。 第四、点击软件主界面右下方的黑色三角即可开始进行红外录制,然后要进行对焦,使出现的画面更加清晰,点击对焦按钮 完成自动对焦。 第五、该设备可以进行图片和视频以及带温度等详细信息的视频文件,根据需要进行保存,也可直接存储为温度流,方便以后进行相关分析。 ,左键点击存温度流按钮,出现保存路径对话框,设置其保存路径。待完成需要的测量后,点击上图黑色方框停止记录,此时完成实验过程。 第六、对实验保存的温度流进行回放,首先断开热像仪,点击下图中的断开按钮,然后点击主界面上方菜单的回放下拉菜 单,,选择打开文件,寻找保存的.mgs为文件后缀名的文件,可通过回放菜单中的回放控制进行一些相应的设置(如选择循环播放等)。

红外二极管感应电路分析

红外二极管感应电路分析 一、电路功能概述 红外二极管感应电路可以实现用手靠近红外发射管和红外接收管时,蜂鸣器发声,LED灯点亮,手移开后立即停止发声、LED灯熄灭,灵敏度非常高。该电路设计思路来源于银行自动开门关门的生活场景,人走进银行,门自动打开,离开后门自动关闭。或者说来源于肯德基等高档餐厅的水龙头,当手放在水龙头下,水自动流出,离开后水自动关闭。该电路应用的生活场景非常多,是电路设计人员必须掌握的一种电路。 特别注意,本电路制作成功后,必须调试后才能达到相应的效果,只有掌握了红外感应电路的工作原理后才能调试好相关的参数,所以工作原理是学习重点。 二、电路原理图 三、原理图工作原理 红外感应电路的设计采用模拟电路中的电阻分压取样电路、红外二极管感应电路、三极管电路、运算比较器组成的电压比较电路等相关知识点,请制作者务必学习。 红外感应电路由以红外发射管VD1、红外接收管VD2为核心的红外感应电路,以可调电阻RP1、通用运算放大器LM358为核心的取样比较电路,以三极管9012 VT1、VT2、蜂鸣器HA1、发光二极管LED1为核心元件的声音输出、显示电路构成。

通上5V电源,红外发射管VD1导通,发出红外光(眼睛是看不见的),如果此时没有用手挡住光,则红外接收管VD2没有接受到红外光,红外接收管VD2仍然处于反向截止状态。红外接收管VD2负极的电压仍然为高电平,并送到LM358的3脚。 LM358的2脚的电压取决于可调电阻RP1,只要调节可调电阻RP1到合适的时候(用万用表测量LM358的2脚的电压大概为2.5V左右),就能保证LM358的3脚的电压大于LM358的2脚的电压,根据比较器的工作原理,当V+ > V-的时候, LM358的1脚就会输出高电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2截止,蜂鸣器HA1不发声,发光二极管LED1熄灭。 当用手靠近红外发射管VD1时,将红外光档住并反射到红外接收管VD2上,红外接收管VD2接受到红外光,立刻导通,使得红外接收管VD2负极的电压急速下降,该电压送到LM358的3脚上。 LM358的3脚电压下降到低于2脚的电压,根据比较器的工作原理,V+ < V-的时候, LM358的1脚就会输出低电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2导通蜂鸣器HA1发声,发光二极管LED1点亮。 通过以上调试步骤,可以实现当手移动到红外发射管VD1和红外接收管VD2的上面时,蜂鸣器发声,发光二极管点亮。当手离开红外发射管VD1和红外接收管VD2的上面时,蜂鸣器停止发声,发光二极管熄灭,产生了感应手的效果。 四、组装及调试技巧 请根据红外二极管感应电路的原理图和PCB布局图(如下图),按照红外发射电路、红外接收电路、电压取样电路、电压比较电路、报警电路、LED显示电路的顺序安装。安装前一定要学习红外感应电路工作原理,并熟记电路原理 图, 以便正确安装。

相关文档
最新文档