发电机负序电压

发电机负序电压
发电机负序电压

发电机负序电流、负序电压

发电机正常运行时发出的是三相对称的正序电流。发电机转子的旋转方向和旋转速度与三相正序对称电流所形成的正向旋转磁场的转向和转速一致,即转子的转动与正序旋转磁场之间无相对运动,此即“同步”的概念。当电力系统发生三相不对称短路或负荷三相不对称时,在发电机定子绕组中就流过负序电流,该负序电流在发电机气隙中产生反向(与正序电流产生的正向旋转磁场方向相反)旋转磁场,它相对于转子来说为2倍的同步转速,因此在转子中就会感应出100HZ的电流,即所谓的倍频电流,该倍频电流的主要部分流经转子本体、槽锲和阻尼条,而在转子端部附近沿周界方向形成闭合回路,这就使得转子端部、护环内表面、槽锲和小齿接触面等部位局部灼伤,严重时会使护环松脱,给发电机造成灾难性破坏,即通常所说的“负序电流烧机”,这是负序电流对发电机的危害之一。另外,负序(反向)气隙旋转磁场与转子电流之间,正序(正向)气隙旋转磁场与定子负序电流之间产生的100HZ的交变电磁力矩,将同时作用于转子大轴和定子机座,引起频率为100HZ 的振动,此为负序电流危害之二。汽轮发电机承受负序电流的能力,一般取决于转子的负序电流发热条件,而不是发生的振动。

鉴于以上原因,发电机应装设负序电流保护。负序电流保护按其动作时限分为定时限和反时限两种。前者用于中型发电机,后者用于大型发电机。

发电机不对称过负荷及过电流保护

发电机不对称过负荷及过电流保护实际是保护发电机转子的,故又称为转子表层负序过电流保护。

该保护通常有定时限过负荷及反时限过电流两部分组成。而反时限过电流保护的整定值,通常有上限动作电流值及动作时间、反时限特性、下限动作电流值及动作时间组成。

(1)负序过负荷保护的整定计算。负序过负荷保护为定时限保护。

1)动作电流的整定。负序过负荷保护的动作时间I2dz,应按躲过发电机长期允许的负序电流I2来整定。

I2dz=Krel(I2’/Kr)*IN

Krel可靠系数,取1.05~1.1;

Kr返回系数,对于微机保护取0.95;

IN发电机额定电流(TA二次值);

I2’发电机长期允许的负序电流标幺值(以发电机额定电流为基准)。也可按照发电机额定电流的8%来整定。

2)动作延时的整定。动作延时可整定为6~9S,出口发信号。

(2)负序反时限过流保护

1)反时限部分的整定。负序反时限过流保护的反时限部分的动作时间t,应按发电机负序电流与允许持续时间的关系来整定。

t=A/(I2’平方-α)

A:与转子表层承受负序电流能力有关的常数。

I2’平方:负序电流标幺值(以发电机额定电流为基准)。

α:与发电机转子散热有关的常数,通常取0.01~0.02。

转子表层承受负序电流的能力,与发电机的容量、结构及冷却方式均有关系,对于

容量为300MW级一下且转子为直冷式的发电机,A值可取8~10。

2)反时限上限的整定。对于发电机变压器组的负序反时限过流保护,其上限电流I2dzmax应按照变压器高压母线上两相短路的条件来计算及整定。

即:I2dzmax=(Krel×IN)/(Xd’+X2+2XT)

IN发电机额定电流(TA二次值)

Krel可靠系数,取1.05~1.1

X2发电机负序电抗(标幺值)

XT主变压器电抗(标幺值)

上限的动作延时t1,应按与高压母线出线短路保护的I段动作时间配合的原则整定。

即t1=tI+三角t

tI高压母线所接出线上保护的I段动作时间(约为0.1S)

三角t时间级差,可取0.3~0.5S

3)反时限下限的整定。反时限电流I2dzmin应按照与负序反时限过负荷保护的配合来整定,即:

I2dzmin=KCI2dz

KC配合系数,取1.1;

I2dz负序过负荷保护的动作电流。下限动作时间按上式计算,当计算时间大于1000S 时,按1000S整定。

负序电压保护:保护由纵向零序电压和故障分呈负序方向判据构成,设置PT断线闭锁措施,作为发电机内部匝间、相间短路以及定子绕组开焊的主保护.故障分量负序方向判据通过检测流出发电机的负序功率实现纵向零序电压判据通检测中性点与发电机中性点直接相连但不接地的3PT开口三角绕组所输出的纵向3U0实现。保护动作于全停。

正序负序零序电流

正序电流、负序电流和零序电流 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上画图。 从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。 1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。 2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。这就得出了正序分量。 )求负序分量:注意原向量图的处理方法与求正序时不一样。A相的不动,B相顺时针

零序与间隙零序的区别

零序与间隙零序的区别 两种保护主要都是用于接地故障的。根据系统运行方式的不同,中性点接地系统中主变的中性点是接地的,而中性点不接地系统中主变中性点要求不接地运行。零序用于前者的接地保护,而间隙零序用于后者的接地保护,一般还会辅以零序电压保护。至于保护的选择很简单,引出一个中性点接地刀闸的辅助接点即可判断。有时这两种保护是并存的,如在中性点接地系统中,如果将主变中性点接地刀闸拉开时,主变零序电流保护就不起作用,这时主变间隙零序保护就承担起接地保护的重任了。原来两者共用一个ct,现已要求分开。 变压器的零序方向过电流保护是为防止电力变压器出现单项短路或负载严重不平衡而安装的保护电路,在变压器出现单项短路或负载严重不平衡切断高压输出柜,使变压器断电,达到保护变压器和线路安全的目的。通常保护值设为额定电流的25%。 变压器的不平衡电流,Y型接线的变压器不平衡电流过大的影响 变压器不平衡电流系指三相变压器绕组之间的电流差而言。当变压器三相负载不平衡时,会造成变压器三相电流不平衡,由于不平衡电流的存在,将使变压器阻抗不平衡,二次侧电压也不平衡,这对变压器和用电设备是不利的。尤其是在Y型接线的变压器中,零线将出现零序电流,而零序电流将产生零序磁通,绕组中将感应出零序电动势,,使中性点位移。其中电流大的一相电压下降,而其他两相电压上升,另外对充分利用变压器的出力也是很不利的。 当变压器的负荷接近额定值时,由于三相负载不平衡,将使电流大的一相过负荷,而电流小的一相负荷达不到额定值。所以,一般规定变压器零线截面的也是根据这一原则决定的。所以,当零线电流超过额定电流的25%时,要及时对变压器三相负荷进行调整。 接地(零序)保护是将的中性点与大地可靠连接。中性点接地作用是保护变压器过电压击穿绕组或铁芯与绕组间绝缘的击穿,还有个作用是防止外部过电压造成绕组等器件的损坏。 变压器低压侧星型接法中性点接地的作用是:1、用来接使用相电压的设备;2、用来传到三相不平衡电流和单相电流;3、用来减少负荷中性点的偏移;

发电机保护现象、处理

发电机保护1对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。

电动机的主要保护及计算

电动机的主要保护及计算 一、速断保护 1.速断高值: 动作电流高定值Isdg 计算。 按躲过电动机最大起动电流计算,即: Isdg=Krel ×Kst ×In In=Ie/nTA 式中 Krel ——可靠系数1.5; Kst ——电动机起动电流倍数(在6-8之间); In ——电动机二次额定电流; Ie ——电动机一次额定电流; n TA —— 电流互感器变比。 2. 速断低值:按躲过区外出口短路时电动机最大反馈电流计算。厂用母线出口三相短路时,根据 以 往 实测,电动 机 反馈 电流 的 暂 态 值为 5.8 Isdd=Krel ×Kfb ×In=7.8In 式中 Krel ——可靠系数1.3; Kfb ——区外出口短路时最大反馈电流倍数,取Kfb=6。 3. 动作时间整定值计算。保护固有动作时间,动作时间整定值取: 速断动作时间: tsd=0s. 二、单相接地零序过电流保护(低压电动机) 1. 一次动作电流计算。有零序电流互感器TA0的电动机单相接地保护,一次三相电流平衡时,由 于三相电流产生的漏磁通不一致,于是在零序电流 2 互感器内产生磁不 平衡电流。根据在不同条件下的多次实测结果,磁不平衡电流值均小于0.005Ip(Ip 为平衡的三相相电流),于是按躲过电动机起动时最大不平衡电流计算,低电压电动机单相接地保护动作电流可取: I0dz=(0.05-0.15)Ie 式中 I0dz ——单相接地零序过电流保护一次动作电流整定值; Ie ——电动机一次额定电流。 当电动机容量较大时可取: I0d z =(0.05-0.075)Ie 当电动机容量较小时可取: I0d z =(0.1-0.15)Ie

什么叫零序电压

什么叫零序电压、零序电流??? 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上画图。 从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。 1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。 2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。这就得出了正序分量。 3)求负序分量:注意原向量图的处理方法与求正序时不一样。A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。下面的方法就与正序时一样了。 通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。 在这里再说说各分量与谐波的关系。由于谐波与基波的频率有特殊的关系,故在与基波合成时会分别表现出正序、负序和零序特性。但我们不能把谐波与这些分量等同起来。由上所述,之所以要把基波分解成三个分量,是为了方便对系统的分析和状态的判别,如出现零序很多情况就是发生单相接地,这些分析都是基于基波的,而正是谐波叠加在基波上而对测量产生了误差,因此谐波是个外来的干扰量,其数值并不是我们分析时想要的,就如三次谐波对零序分量的干扰 什么是零序电流? 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接

图解正序负序零序

正序负序与零序 电力三相不平衡作图法对称分量法 1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以3 3:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以3 4:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3 个人为理解三相不平衡做的总结。总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。 对称分量法参考借用了东南大学电器工程学院的PPT的图片。作图法用CAD的平移很方便,求3分点位置还网上查了下。449836432@https://www.360docs.net/doc/ed10308302.html,.,欢迎补充、更正、交流。 1:不过我仍没有了解三相不平衡的各种保护方法。零序保护倒是理解,用开口三角即可。负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。 2:similink是否可以仿真故障并做相序分析 3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。计算程序需要输入每相的幅值与相角。不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。 4:暂态过程的不平衡一致吗 5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。 欢迎推荐文章。 一:理解 1 相序 在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。 正相序:分别达到最大值的次序为A、B、C; 负相序:分别达到最大值的次序为A、C、B。

配置发电机相间短路的后备保护

配置发电机相间短路的后备保护 2010-02-14 21:18:36 作者:loveg来源:电机维修网浏览次数:35 网友评论 0 条(1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (2)发电机、发电机-变压器组的母线故障,而该母线没有母线差动保护或保护拒动时。 (3)当连接在母线上的电气元件(如变压器、线路)故障而相应的保护或断路器拒动时。发电机的后备保护方式有:低电压启动的过电流保护、复合电压启动的过电流保护、负序电流以及单元件低压过电流保护和阻抗保护。 1)低电压启动的过电流保护。发电机低压启动的过流保护的电流继电器,接在发电机中性点侧三相星形连接的电流互感器上,电压继电器接在发电机出口端电压互感器的相间电压上,在发电机投入前发生故障时,保护也能动作。低电压元件的作用在于区别是过负荷还是由于故障引起的过电流。 2)复合电压启动的过电流保护。复合电压启动是指负序电压和单元件相间电压共同启动过电流保护。在变压器高压侧母线不对称短路时,电压元件的灵敏度与变压器绕组的接线方式无关,有较高的灵敏度。 3)负序电流和单元件低压过流保护。发电机负序电流保护采用两段式定时限负序电流保护,由于不能反应三相对称短路,故加设单元件低压过流保护作为三相短路的保护;对于发电机-变压器组,宜在变压器两侧均设低压元件。两段式定

时限负序保护的灵敏段作为发电机不对称过负荷保护,经延时作用于信号。定时限负序电流保护作为发电机不对称短路的后备保护,它和单元件电压过流共用时间元件。 4)阻抗保护。发电机-变压器组阻抗保护一般接在发电机端部,阻抗元件一般为全阻抗继电器。但阻抗元件易受系统振荡及发电机失磁等的影响。阻抗元件的阻抗值整定,应与线路距离保护的定值配合,动作时间与所配合的距离保护段时间相配合。阻抗保护应有可靠的失压闭锁装置。由于动作时间较长,不设振荡闭锁装置。

高压电动机的保护一般有以下几种

高压电动机的保护一般有以下几种:速断保护、过负荷保护、起动时间过长保护、堵转保护、两段式负序过流保护、反时限负序过流保护、低电压保护、过电压保护、接地保护等。 电流速断保护反映的是电动机的定子绕组或引线的相间短路而动作。动作时限可整定为速断(无延时)或带较短的延时(一般为零点几秒)。其整定值应躲过电动机的起动电流。在电动机运行时任一相电流大于整定值,电流速断保护动作即动作于跳闸。 电动机起动时间这个参数一般是由电机厂家提供,然后设计人员根据厂家提供的电动机的几个参数来计算电动机的各个保护定值(一般计算定值需要由厂家提供以下几个参数:电动机的额定电流、额定功率、起动电流倍数、起动时间和铭牌上的其它参数等)。 起动时间过长保护的定值由设计给出,为一个电流定值,和一个动作于跳闸的延时时间。综保装置这样判断电动机是否为起动过程阶段:起动前电流为零,合上断路器后,电流瞬间增大,随着电动机转速的升高,电动机的电流逐渐减小,当电动机到额定转速后,电动机的电流也稳定在额定电流的附件(一般低于额定电流)。综保装置根据电流特征来判断电动机的状态。电动机的电流小于0.1倍的额定电流时,认为电动机处于停止状态。当从一个时刻t1(合上断路器那一时刻)开始,电动机电流从无到有,装置即认为电动机进入了起动状态。当电流由大变小,并稳定在t2时刻(额定电流附近),则认为电动机已经进入稳定运行状态。起动时间过长保护是在电动机起动过程中对电动机进行保护。而在电动机运行过程中,装置自动将起动时间过长保护退出。当在电动机起动过程中,任一相电流大于整定值,起动时间过长保护即经过延时而动作于跳闸相电流速断保护 1)速断动作电流高值Isdg Isdg = Kk / Ist 式中,Ist:电动机启动电流(A) Kk:可靠系数,可取Kk = 1.3 2)速断电流低值Isdd Isdd可取0.7~0.8Isdg,一般取0.7Isdg 3)速断动作时间tsd 当电动机回路用真空开关或少油开关做出口时,取tsd =0.06s,当电动机回路用FC做出口时,应适当延时以保证熔丝熔断早于速断保护。 4、电动机启动时间tqd 按电动机的实际启动时间并留有一定裕度整定,可取tqd =1.2倍实际启动时间。 修正:Isdg = Kk* Ist Pe=710KW,COS=0.8,CT:150/1A,零序:100/1A,启动时间按18S (CT变比要按照实际变比,有的二次侧可能是5A的,自己换算一下) 速断 躲过电机启动电流: Ie=710/(0.8×√3×6.3)=81.3A Izd=Kk×I_qd=(1.5×6×81.3)/150=4.9A

关于零序电压和零序电流的几个概念

关于零序电压和零序电流的几个概念 零序电流 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为: Ia+Ib+Ic=I(漏电电流) 这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的两个条件: 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。 零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量)。下面再

零序电压,零序电流.负序电流.正序电流怎么理解

零序电压,零序电流.负序电流.正序电流怎么理解 对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立; 当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流; 对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立; 因此,零序电流通常作为漏电故障判断的参数。 负序电流则不同,其主要应用于三相三线的电机回路; 在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流; 其常作为电机故障判断; 注意了: Ia+Ib+Ic=0与三相对称不是一回事; Ia+Ib+Ic=0时,三相仍可能不对称。 注意了: 三相不平衡与零序电流不可混淆呀! 三相不平衡时,不一定会有零序电流的; 同样有零序电流时,三相仍可能为对称的。 前面好几位把两者混淆了吧! 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。 只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原 因)。 当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病 (特别是单相接地时的零序分量)。 下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上

断相时的负序电流

1.负序电流的定义:正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了。 2.我国有关规程对发电机正常运行负序电流的规定:汽轮发电机的长期允许负序电流为6% ~ 8%发电机额定电流;水轮发电机的长期允许负序电流为12%发电机额定电流。3.该定值规定了发电机在正常运行时所能承受的负序电流数值,对于发电机额定电流为是10189A的话,在发电机正常运行时负序电流就不能超过10189*8%=815A,此值为负序电流的限值,而不是实际发电机正常运行时的负序电流值。 4.根据国标《继电保护和安全自动装置技术规程》(GB/T 14285-2006) 4.2.6.3 50MW及以上的发电机,宜装设负序过电流保护和单元件低压起动过电流保护。4.2.9对不对称负荷、非全相运行以及外部不对称短路引起的负序电流,应按下列规定装设发电机转子表层过负荷保护: 4.2.9.1 50MW及以上A值(转子表面承受负序电流能力的常数)大于等于10的发电机,应装设定时限负序过负荷保护。保护与4.2.6.3条的负序过电流保护组合在一起。保护的动作电流按躲过发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。 4.2.9.2 100MW及以上A值小于10的发电机,应装设由定时限和反时限两部分组成的转子表层过负荷保护。 定时限部分:动作电流按发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。 反时限部分:动作特性按发电机承受负序电流的能力确定,动作于停机。保护应能反应电流变化时发电机转子的热积累过程。不考虑在灵敏系数和时限方面与其它相间短路保护相配合。 5.根据国标《电力装置的继电保护和自动装置设计规范》(GB/T 50062-2008) (此规范适用于50MW及以下的发电机保护) 3.0.9 对不对称负荷、非全相运行以及不对称短路引起的转子表层过负荷,且容量为50MW、A值大于10的发电机,应装设定时限负序过负荷保护。保护装置的动作电流应按发电机长期允许的负序电流和躲过最大负荷下负序电流滤过器的不平衡电流值整定,并应延时动作于信号。

发电机负序电流保护

发电机负序电流保护 大容量的发电机,额定电流比较大,低电压启动的过电流保护,往往不能满足远后备灵敏度的要求。此外当电力系统发生不对称短路、断线、或负载不平衡等情况,发电机定子绕组中将产生负序电流,并将在转子铁芯、励磁绕组及阻尼绕组等部件上感应出倍频电压、电流,引起转子附加发热,危害发电机的安全运行 假设负序电流使转子发热是个绝热过程,则不使转子过热所允许的负序电流与持续时间的关系为 式中——在时间t内负序电流的均方根值(以发电机额定电流为基准的负序电流标幺值); ——流经发电机的负序电流; t——负序电流持续时间; A——发电机允许过热常数,其值与发电机型式和冷却方式有关。 1.定时限负序电流保护 (1) 原理接线对表面冷却的汽轮发电机和水轮发电机,大都采用两段式定时限负序过电流保护,其原理接线如图8—12所示。 图8—12 发电机负序电流及单项式低电压启动的过电流保护的原理接线图 (2) 负序电流的整定计算

1)启动电流的整定计算 动作于信号的保护部分(继电器3)按躲开发电机长期允许的负序电流和最大负荷时负序滤过器的不平衡电流整定,一般情况下取 动作于跳闸的保护部分(继电器4),保护的启动电流按下面两个条件整定。按转子发热条件整定,启动电流值为 式中A——发电机允许过热的时间常数。对非强迫式冷却的发电机,1s负序电流热稳定常数 对绕组内冷却的汽轮发电机,容量为200MW时,;对水轮发电机. T——值班人员有可能采取措施消除负序电流的时间,一般取120s,如值班人员在此时间内来不及消除产生负序电流的运行方式,则保护动作于跳闸。 对于表面冷却的发电机组,,代入上式后可得发电机的负序动作电 流. 动作于跳闸的负序动作电流还需与相邻元件的负序电流后备保护在灵敏度上相配合 式中——配合系数,取1.1; ——在计算运行方式下,发生外部故障时流过相邻元件(一般只考虑升压变压器的情况)的负序短路电流刚好与其负序电流保护的启动电流相等时,流经被保护发电机的负序短路电流(考虑有否分支系数)。 敏度校验 式中——被校验保护范围末端发生金属性不对称短路时,流过保护的最小负序电流。

转子负序电流

负序电流 任意一组不对称的三相正弦电压或电流向量都可以分解成三组对称的分量,一组是正序分量,相序与原不对称正弦量的相序一致,即A-B-C的次序,各相位互差120°。一组是负序分量,相序与原正弦量相反,即A-C-B,相位也差120°。另一组是零序分量,三相的相位相同。提出这三种分量的目的是为了分析问题的方便。 通常,同步发电机既发有功,也发无功,这种状态称为迟相运行,或称为滞后,此时发出一感性无功功率;但有时,发电机送出有功,吸收无功,这种状态称为进相运行。 发电机转子的旋转方向和旋转速度,与三相正序对称电流所形成的正向旋转磁场的转向和转速一致,即转子的转动与正序旋转磁场之间无相对运动,此即"同步"的概念。当电力系统发生不对称短路或负荷三相不对称(接有电力机车、电弧炉等单相负荷)时,在发电机定子绕组中就流有负序电流。该负序电流在发电机气隙中产生反向(与正序电流产生的正向旋转磁场相反)旋转磁场,它相对于转子来说为2倍的同步转速,因此在转子中就会感应出100Hz的电流,即所谓的倍频电流。该倍频电流主要部分流经转子本体、槽楔和阻尼条,而在转子端部附近沿周界方向形成闭合回路,这就使得转子端部、护环内表面、槽楔和小齿接触面等部位局部灼伤,严重时会使护环受热松脱,给发电机造成灾难性的破坏,即通常所说的"负序电流烧机",这是负序电流对发电机的危害之一。另外,负序(反向)气隙旋转磁场与转子电流之间,正序(正向)气隙旋转磁场与定子负序电流之间所产生的频率100Hz交变电磁力矩,将同时作用于转子大轴和定子机座上,引起频率为100Hz 的振动,此为负序电流危害之二。发电机承受负序电流的能力,一般取决于转子的负序电流发热条件,而不是发生的振动,即负序电流的平方与时间的乘积决定了发电机承受负序电流的能力。

发电机说明书..

RBC800G 系列数字式发电机保护装置 一 装置简介 1.1装置概述 RBC800G 系列数字式发电机保护装置采用高性能芯片支持的通用硬件平台,维护简便;全以太网通讯方式,数据传输快速、可靠;完全中文汉化显示技术,操作简捷。 基于防水、防尘、抗振动设计,可在各种现场条件下运行。 适用于容量为50MW 及以下的火力和水力发电机保护。 1.2装置主要特点 ? 摩托罗拉32位单片机技术,使产品的稳定性和运算速度得到保证 ? 保护采用14位的A/D 转换器、可选配的专用测量模块其A/D 转换精度更是高达24位,各项测量指标轻松达到 ? 配置以大容量的RAM 和Flash Memory ,可记录8至50个录波报告,记录的事件数不少于1000条 ? 可独立整定32套保护定值,定值切换安全方便 ? 高精度的时钟芯片,并配置有GPS 硬件对时电路,便于全系统时钟同步 ? 配备高速以太网络通信接口,并集成了IEC870-5-103标准通信规约 ? 尽心的电气设计,整机无可调节器件 ? 高等级、品质保证的元器件选用 ? 优异的抗干扰性能,组屏或安装于开关柜时不需其它抗干扰模件 ? 完善的自诊断功能 ? 防水、防尘、抗振动的机箱设计 ? 免调试概念设计 1.3功能配置 表1 本系列产品的型号及功能配置表 功能 RBC801G RBC802G 差动速断 √ 比率制动式差动 √ CT 断线闭锁差动 √ CT 断线告警 √ 定子过电压保护 定子接地保护 过负荷告警 √ 反时限过流保护 √ 横差保护 √ 失磁保护 √ 转子一点接地保护 √ 转子二点接地保护 √ 复合电压过流保护 √ 反时限负序过流保护 √ PT 断线告警 √ 发电机断水(开关量) √ 发电机热工(开关量) √ 发电机励磁事故(开关量) √ 主汽门关闭(开关量) √ 其它备用非电量开入 √ √ 遥控功能压板 √ √ GPS 对时 √ √ 远方管理 √ √ 二 技术参数 2.1 额定参数 2.1.1额定直流电压: 220V 或110V (订货注明) 2.1.2 额定交流数据: a) 相电压 3/100 V b) 线电压 100 V c) 交流电流 5A 或1A (订货注明)

高压电动机负序电流保护的整定计算的探讨

高压电动机负序电流保护的整定计算的探讨 The Standardization Office was revised on the afternoon of December 13, 2020

高压电动机负序电流保护整定计算方法的探讨 摘要随着电力系统自动化程度的不断提高,电机大量采用综保装置, 其保护功能较原电磁型电动机保护增强、增多了许多。本文将通过对电动机负序电流产生原因和对保护的影响进行分析,对高压电动机综合保护的定值整定方法进行了探讨。经过多年的运行实践, 证实了按介绍的方法进行整定比较合理,保护都能正确动作。 关键词电动机负序电流定值计算 1、电动机负序电流产生的原因 由于综合保护采用了负序电流来实现断相等保护功能,在保护的整定计算中必须考虑以下因素:外部不对称故障产生的负序电流对保护的影响;母线电压不平衡产生的负序电流对保护的影响;CT断线的影响;不对称短路故障对速断保护灵敏度的影响。 电网参数不对称 电网参数不对称包括正常运行时的电源电压不平衡和外部不对称短路产生的不对称电压。这2种情况下都会产生负序电流。 a.正常运行时不平衡电压产生的负序电流

设正常运行时不平衡电压所产生的负序电压为U 2,此时电动机回路的负序电流为: N ST N sc N sc U U I U U Z U Z U Z U I 22222_?=?=≈= 式中:I st 为电动机额定电压下的启动电流;Z -为负序阻抗;Z SC 为启动阻抗;U N 为电动机的额定电压。 由式(1)可知,由于电动机的启动电流I st 可达额定电流的5~8倍,因此,只要有很小的负序电压存在,也会产生较大的负序电流。 例如,设U 2=0.05 U N ,由于I st =5~8I N ,代入式(1)可得: I 2=(5~8)I N (0.05U N /U N )=(0.25~0.4)I N 即只要存在额定电压5%的负序电压,将会在电动机中产生达25%~40%额定电流的负序电流。 b .外部不对称短路产生的负序电流 如果在电动机所属高压母线上或靠母线很近的其它设备上发生两相短路,将在非故障的电动机回路上产生很大的负序电流。 设在电动机所在高压母线上发生BC 相短路。忽略系统阻抗的影响,这时 U a =E 1,U b =U c =-E 1/2

零序电压、电流以及6KV开关柜符号解释、三相四线制

在三相四线电路中,三相电流的相量和等于零,即 Ia+Ib+IC=0。如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)。这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的条件 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。

当中性点直接接地系统(又称大接地电流系统)中发生接地短路时,将出现很大的零序电流。还有在中性点不直接接地系统中当发生单相接地时,也会产生零序电压 零序电压是三相线路中一相或者两相接地产生的,大小取决于接地的程度,是金属接地,非金属接地,就是接地电阻了。 此处小圆圈 就是零序电 压的 符号表示 零序电源在故障点,故障点的零序电压最高,系统中距离故障点越远处的零序电压就越低,取决于测量点到大地间阻抗的大小。

正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量) 三相四线制 三相交流发电机向外供电时,把三组线圈的末端X、Y、Z 联在一起,从联接点引出一条线,这条线叫零线,也叫中性线。再从线圈绕组另一端A、B、C各引出一条线,这三条线叫相线或火线,这种联接方法叫星形联接法 发电机的这种向外输电方法构成三相四线制

正序、负序、零序电流的关系及相关保护

正序、负序、零序电流的关系及保护 对称分量法零序、正序、负序的理解与计算1、求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端箭头处。注意B相只是平移不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量些时是箭头对箭头这个向量就是三相向量之和。最后取此向量幅值的三分一。这就是零序分量的幅值方向与此向量是一样的。 2、求正序分量:对原来三相向量图先作下面的处理,A相的不动B相逆时针转120度C相顺时针转120度因此得到新的向量图。按上述方法把此向量图三相相加及取三分一这就得到正序的A相用A相向量的幅值按相差120度的方法分别画出B、C 两相。这就得出了正序分量。 3、求负序分量注意原向量图的处理方法与求正序时不一样。A相的不动B相顺时针转120度C相逆时针转120度因此得到新的向量图。下面的方法就与正序时一样了。 对电机回路来说是三相三线线制Ia+Ib+Ic=0三相不对称时也成立。当Ia+Ib+Ic≠0时必有一相接地对地有有漏电流对三相四线制则为Ia+Ib+Ic+Io=0成立只要无漏电三相不对称时也成立因此零序电流通常作为漏电故障判断的参数。 负序电流则不同其主要应用于三相三线的电机回路在没有漏电的情况下即Ia+Ib+Ic=0三相不对称时也会产生负序电流负序电

流常作为电机故障判断 注意了 Ia+Ib+Ic=0与三相对称不是一回事 Ia+Ib+Ic=0时三相仍可能不对称。 注意了 三相不平衡与零序电流不可混淆呀 三相不平衡时不一定会有零序电流的 同样有零序电流时三相仍可能为对称的。这句话对吗? 前面好几位把两者混淆了吧 正序、负序、零序的出现是为了分析在系统电压、电流出现 不对称现象时把三相的不对称分量分解成对称分量正、负 序及同向的零序分量。 只要是三相系统一般针对三相三线制的电机回路就能分解 出上述三个分量有点象力的合成与分解但很多情况下某个 分量的数值为零。对于理想的电力系统由于三相对称因此 负序和零序分量的数值都为零。这就是我们常说正常状态下 只有正序分量的原因。 当系统出现故障时三相变得不对称了这时就能分解出有幅 值的负序和零序分量度了有时只有其中的一种因此通过检 测这两个不应正常出现的分量就可以知到系统出了毛病特 别是单相接地时的零序分量。 三相四线电路中:三相电流的相量和等于零即Ia+Ib+IC=0

零序电流及方向

零序电流及方向保护 一、零序电流方向保护的基本原理; 1、基本原理; 零序电流保护: 在正常运行时没有零序电流,只有在接地短路时才有零序电流。 并且流过保护的零序电流大小反应了短路点的远近; 当短路点越近时,保护动作越快,短路点越远保护动作得越慢。 输电线路零序电流保护是反应输电线路一端零序电流的保护。反应输电线路一端电气量变化的保护由于无法区分本线路末端短路和相邻线路始端的短路,为了在相邻线路始端短路不越级跳闸。 所以反应输电线路一端电气量弯化的保护都要做成多段式保护。零序电流一段的任务: 保护本线路的一部分。它的定值按躲过本线路末端(实质是躲过相邻线路始端)接地短路时流过保护的最大零序电流整定(其他整定条件姑且不论)。 零序电流二段的任务: 能以较短的延时尽可能地切除本线路范围内的故障。 零序电流三段的任务: 应可靠保护本线路的全长,在本线路末端金属性接地短路时有一定的灵敏系数。 零序电流四段的任务:

起可靠的后备作用。第四段的定值应不大于300A,用它保护本线路的高阻接地短路。在110KV的线路上,零序电流保护中的第四段还应作为相邻线路保护的后备。 零序电流保护只能用来保护接地故障,所以对于两相不接地的短路和三相短路不能起到保护作用。另外零序一段保护范围受运行方式的影响也较大,有时可能保护范围缩得很小,这一点比同样保护接地故障的接地距离一段要逊色得多。但是零序电流保护的最后一段——零序过电流保护,由于很灵敏,保护过渡电阻的能力很强,这一点又比接地距离第三段强; 所以,现在有一些高压电网中有线路纵联保护,又配有保护接地短路的三段式的接地距离保护,并有双重化的保护配置,所以,生产一种保护装置的型号,把零序电流保护的第一段省略而只配零序电流保护二、三段; 零序电流保护中: 零序电流的大小与中性点接地的变压器的多少有很大关系。 零序方向继电器的原理、实现方法、性能评述: 零序方向继电器的最基本思想是比较零序电压的零序电流的相位来区分正、反方向的接地短路。 零序电流以母线流向被保护线路的方向为其正方向。 如果系统中各元件零序阻抗的阻抗角为80°,正方向短路时,零序电压超前零序电流的角度为:-100°,反方向短路时,零序电压超前

负序过电流知识

负序过电流知识 电动机负序电流保护动作原因讨论? 电动机保护在实际运行中由于各种原因误动的概率较高,因此当保护动作后分析动作原因成为判断动作正确性的难点,现提出以下一些原因,请各位高手做一指点,并请分析原因: 1、电动机相间短路(可通过测绝缘,测阻值平衡分析); 2、母线电压不平衡,单相或两项电压低,导致电流不平衡; 3、母线电压平衡但电压低,由于电动机绕组本身的不平衡,在启动时由于启动堵转电流较大产生电流不平衡从而使负序电流达定值; 4、母线相间短路; 5、断路器缺相; 6、断路器三相动作时间有差异,某项合闸时间滞后或超前,导致电流不平衡 负序电流对同步发电机和异步电机各有何影响?对于同步电机而言:不对称运行时定子负序电流所产生的负序旋转磁场对转子有两倍同步速的相对速度,将在励磁绕组、阻尼绕组以及整块转子的表面感应倍频电流,这些电流在相应的部分引起损耗和发热,是转子容易过热而烧坏。 一般而言,异步电机主要做电动机使用,所以对于异步电机,对其正常工作产生影响的负序分量主要是负序电压分量。而当负序电压存在时,电机中的旋转磁场会由原来的圆形变为椭圆形。造成的后果有以下两点:1.会引起电机振动、转速不匀和电磁噪音,引起电机的功率因数和效率变坏,严重时可造成电机停转。2.增加电机的铜耗和转子的铁耗。 我厂有一台10KV、710KW、6极、CT是75/5的高压电机负序电流应如何整定,定值应是多少, 负序过流保护 1)负序动作电流I2dz I2dz按躲过正常运行时允许的负序电流整定一般地,保护断相和反相等严重不平衡时,可取I2dz =(0.6~0.8)Ie 作为灵敏的不平衡保护时,可取I2dz =(0.2~0.4)Ie 2)负序动作时间常数T2 在母线二相短路时,电动机回路有很大的负序电流存在,因此,T2应整定为大于外部两相短路的最长切除时间。在FC回路中,应躲过不对称短路时熔丝熔断,即负序保护不能抢在熔丝熔断前动作。 3) 设定两段定时限保护你自己算算吧!其实论坛里有这方面的资料 2.1 电动机负序电流产生的原因 2.1.1 电网参数不对称 电网参数不对称包括正常运行时的电源电压不 平衡和外部不对称短路产生的不对称电压;这2种 情况下都会产生负序电流。 a.正常运行时不平衡电压产生的负序电流 由于电动机的启动电流可达额定电流的5—8倍,因此,只要有很小的负序电压存在,也会产生较大的负序电流。即只要存在额定电压5%的负序电压,将会在电动机中产生达25%-40%额定电流的负序电流。 b.外部不对称短路产生的负序电流 如果在电动机所属高压母线上或靠母线很近的其它设备上发生两相短路,将在非故障的电动机回路上产生很大的负序电流。设在电动机所在高压母线上发生BC

电动机的主要保护及计算

电动机的主要保护及计算 一、速断保护 1.速断高值: 动作电流高定值Isdg 计算。 按躲过电动机最大起动电流计算,即: Isdg=Krel ×Kst ×In In=Ie/nTA 式中 Krel ——可靠系数1.5; Kst ——电动机起动电流倍数(在6-8之间); In ——电动机二次额定电流; Ie ——电动机一次额定电流; n TA —— 电流互感器变比。 2. 速断低值:按躲过区外出口短路时电动机最大反馈电流计算。厂用母线出口三相短路时,根据 以 往 实测,电动 机 反馈电流 的 暂 态 值为 5.8 Isdd=Krel ×Kfb ×In=7.8In 式中 Krel ——可靠系数1.3; Kfb ——区外出口短路时最大反馈电流倍数,取Kfb=6。 3.动作时间整定值计算。保护固有动作时间,动作时间整定值取: 速断动作时间: tsd=0s. 二、单相接地零序过电流保护(低压电动机) 1. 一次动作电流计算。有零序电流互感器TA0的电动机单相接地保护,一次三相电流平衡时,由 于三相电流产生的漏磁通不一致,于是在零序电流 2 互感器内产生磁不 平衡电流。根据在不同条件下的多次实测结果,磁不平衡电流值均小于0.005Ip(Ip 为平衡的三相相电流),于是按躲过电动机起动时最大不平衡电流计算,低电压电动机单相接地保护动作电流可取: I0dz=(0.05-0.15)Ie 式中 I0dz ——单相接地零序过电流保护一次动作电流整定值; Ie ——电动机一次额定电流。 当电动机容量较大时可取: I0d z =(0.05-0.075)Ie 当电动机容量较小时可取: I0d z =(0.1-0.15)Ie

相关文档
最新文档