大一线性代数复习题

大一线性代数复习题
大一线性代数复习题

《线性代数》复习题

1、设10001001?? ?= ? ???

k P ,则1-P =______________.

2、设100001010?? ?= ? ???

A ,则1-A =______________.

3、(1)已知四阶行列式D 中第一行元素依次为1,1,1,1它们的代数余子式依次分别为1,2,3,4,则D =________.

(2) (1)已知四阶行列式D 中第一行元素依次为1,1,1,1它们的余子式依次分别为1,2,3,4,则D =________.

4、已知23123456789?????? ? ? ?= ? ? ? ? ? ???????

A 1000100101000-11001,则A =__________. 5、齐次线性方程组???=--=++0

20321321

x x x x x x 的解空间的维数为___________. 6、设A 为3阶方阵,*A 为A 的伴随矩阵,且A 3=,而100001.010?? ?= ? ???

A B 则

*=A B _______ .

7、设11110420812-?? ?- ?= ?- ???

k A ,且()2r =A ,则k =_____________. 8、已知3阶方阵A 与P ,P 可逆且满足1100020,003-?? ?= ? ???

P AP 则_____.+=A E

9、设,A B 为同阶方阵,k 为实数,判断下列命题是否正确:

(1) ±=±A B A B ;

(2) ;=AB BA

(3) ();T T T =AB A B

(4);=AB B A

(5);=k k A A

(6)若,=AB 0,则;==A 0B 0或

(7)A B A B ;T T =

(8)若,A B 可逆,则()111.---=AB B A

10、设n 阶方阵,,,,A B C D 满足,=ABCD E 则必有

A .;=BCDA E

B .;=CDAB E

C .;=ABDC E

D ..=BACD E

11、设1α(1,0,0,0)=,2α(0,1,0,0)=,3α(0,0,1,0)=,4α(0,0,0,1)=,5α(1,2,3,4)= 则下列命题正确的是

(1).α1,、α2、α3线性无关;

(2).α3可由α1、α2线性表示;

(3).α1可由α2、α3线性表示;

(4).α1、α2、α3的秩等于3;

(5).α4可由α,α,α,α1234线性表示;

(6).α5可由α,α,α,α1234线性表示

12、若n 阶方阵A 与B 等价,下列说法是否正确,说明理由. (1).=A B ;

(2).=-A B ;

(3).()()=r r A B ;

(4). A 列向量组的秩等于B 列向量组的秩;

(5)A 行向量组的秩等于B 列向量组的秩.

13、计算行列式1

23423413

4124123

=D . 14、已知101123020,456,101789-???? ? ?== ? ? ? ?-????

A B =+AX X B ,求X . 15、求齐次线性方程组

?????=++-=++-=--+0377*******

32143214321x x x x x x x x x x x x 的基础解系与通解. 16、已知向量组A :T )0,2,1(1=α,T )2,3,1(2=α,T )1,2,3(3=α,T

)5,5,1(4-=α求:

(1) 求此向量组的一个极大无关组,并指出A 的秩;

(2) 把不是极大无关组的向量用极大无关组线性表示.

17、设向量组 1231112,2,2,032-?????? ? ? ?==+=-- ? ? ? ? ? ?-+??????a b a a b ααα,1β3.3?? ?= ? ?-??

(1)当,a b 满足什么条件时,β不能由α,α,α123线性表示;

(2)当,a b 满足什么条件时,β能由α,α,α123线性表示,且表达式唯一?写出表达式;

(3)当,a b 满足什么条件时,β能由α,α,α123线性表示,且表达式不唯一?写出表达式。

18、设1212(,,,),(,,,)T T n n a a a b b b == αβ. 证明()

2.T T r +≤ααββ

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

大一线性代数期末试卷试题卷及标准答案解析.doc

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 诚信应考 ,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 号 位 座 注意事项: 1. 考前请将密封线内填写清楚; 线 2. 所有答案请直接答在试卷上(或答题纸上 ); 3.考试形式:开(闭)卷; 4. 本试卷共五大题,满分100 分,考试时间 120 分钟。 题号一二三四五总分 业得分 专 评卷人 ) 一、单项选择题(每小题 2 分,共 40 分)。 题 封 答1.设矩阵A为2 2矩 阵, B 为2 3矩阵 , C为3 2矩阵,则下列矩阵运算无意义的是 院 不 内 【】学 线 封 密 A. BAC B. ABC C. BCA D. CAB ( 2.设 n 阶方阵 A 满足 A2+ E =0,其中 E 是 n 阶单位矩阵,则必有【】 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 3.设 A 为 n 阶方阵,且行列式det(A)= 1 ,则 det(-2A)= 【】 n C. -2n A. -2 D. 1 B. -2 号密 4.设 A 为 3 阶方阵,且行列式det(A)=0 ,则在 A 的行向量组中【】学 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 5.设向量组a1,a2, a3线性无关,则下列向量组中线性无关的是【】名A.a1 a2 , a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2 姓

C. a 2 ,2a 3 ,2a 2 a 3 D. a 1- a 3 , a 2 ,a 1 6.向量组 (I): a 1 , ,a m (m 3) 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余 m-1 个向量线性表出 B.(I)中存在一个向量 ,它不能由其余 m-1 个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数 k 1 , , k m , 使 k 1 a 1 k m a m 0 7.设 a 为 m n 矩阵,则 n 元齐次线性方程组 Ax 0存在非零解的充分必要条件是 【 】 A . A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 a 1x 1 a 2 x 2 a 3 x 3 0 8.设 a i 、 b i 均为非零常数( i =1, 2, 3),且齐次线性方程组 b 2 x 2 b 3 x 3 b 1 x 1 的基础解系含 2 个解向量,则必有 【 】 a 1 a 2 B. a 1 a 2 a 1 a 2 a 3 a 1 a 3 0 A. b 1 b 2 0C. b 2 b 3 D. b 2 b 3 b 1 b 1 b 2 9.方程组 2x 1 x 2 x 3 1 x 1 2x 2 x 3 1 有解的充分必要的条件是 【 】 3 x 1 3x 2 2 x 3 a 1 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η 1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系, 则下列向量组中也为该方程 组的一个基础解系的是 【 】 A. 可由 η 1, η2, η3 线性表示的向量组 B. 与 η1, η2 , η3 等秩的向量组 C.η 1-η2, η2- η3, η3- η1 D. η 1, η1-η3, η1-η 2-η 3 11. 已知非齐次线性方程组的系数行列式为 0 ,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解, 也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵 A 相似于对角矩阵的充分必要条件是 A 有 n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间 R n 的子空间的是 【 】 n A. {( a 1 , a 2 , ,a n ) | a 1a 2 0} B. {( a 1 , a 2 , , a n ) | a i 0} C. {( a 1, a 2 , , a n ) | a i z,i 1,2, , n} D. {( a 1 , a 2 , i n 1 1} , a n ) | a i 1 0 i 1 14.若 2 阶方阵 A 相似于矩阵 B - 3 ,E 为 2 阶单位矩阵 ,则方阵 E –A 必相似于矩阵 2

同济大学2010-11线性代数B期末考试试卷_A卷_

同济大学课程考核试卷(A 卷) 2010—2011学年第一学期 命题教师签名: 审核教师签名: 课号:122009 课名:线性代数B 考试考查:考试 此卷选为:期中考试( )、期终考试( √ )、重修( )试卷 年级 专业 学号 姓名 任课教师 题号 一 二 三 四 五 六 七 总分 得分 (注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟. 要求写出解题过程,否则不予计分) 一、填空与选择题(均为单选题)(27分) 1、 已知4阶方阵1234 567890 54 a b A c d ????? ? =?????? ,函数()||f x xE A =?,这里E 为4阶单位阵,则函数()f x 中3x 项的系数为_______a+b+c+d____________. 2、 设12312,,,,αααββ均为4维列向量,已知4阶行列式 1231,,,m αααβ=,又 1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=______n m ?_______________. 3、 已知3阶方阵A 满足320A E A E A E +=?=?=,其伴随矩阵为* A ,则行列式 *A =_____36_________. 4、 已知α是3维实列向量,且111111111T αα?????=????????? ,则α=5、设α是3 R 空间中的某一向量,它在基123,,εεε下的坐标为()123,,T x x x ,则α在基 1323,,k εεεε+下的坐标是_________1231(,,)T x x x kx ?________________. 6、 下列关于矩阵乘法的结论中错误的是____________B_________. 1(). ). (). ().n A A A A B C n cE c D ?若矩阵可逆,则与可交换 (可逆阵必与初等矩阵可交换任一个阶方阵均与可交换,这里为任意常数 初等矩阵与初等矩阵乘法未必可交换 7、 设A B 、均为n 阶方阵,且()2 AB E =,则下列式子中成立的是_____D_______. ()2 2 2 (). (). (). ().A AB E B AB E C A B E D BA E ==?== 8、 设Ax b =为n 元非齐次线性方程组,则下面说法中正确的是_____C____ (). 0 (). 0 (). 0 ().() A Ax Ax b B Ax Ax b C Ax b Ax D Ax b R A n =======?=若只有零解,则有唯一解若有无穷多个解,则有无穷多个解若有两个不同的解,则有无穷多个解 有唯一解 9、 下列向量组中线性无关的是_______C__________. ()()()()()()()()()()()()()() (). 1,1,0,20,1,1,10,0,0,0). ,,,,,,,,,,, (). ,1,,0,0,,0,,1,0,,0,,0,1().1,2,1,5,1,2,1,6,1,2,3,7,0,0,0,1A B a b c b c d c d a d a b C a b c d e f D ??,, ( 二、(10分) 已知n 阶行列式1 231 200 1 0301 00n n D n ="""###%#",求第一行各元素的代数余子式之和.

线性代数B复习题(2012)

线性代数B 复习资料(2012) (一)单项选择题 1.设A ,B 为n 阶方阵,且()E AB =2 ,则下列各式中可能不成立的是( A ) (A )1-=B A (B)1-=B ABA (C)1-=A BAB (D)E BA =2 )( 2.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( C ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 3.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( D ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 4.设A 为n ×n 阶矩阵,如果r(A)

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

(完整word版)同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1 ( 2学时) 本试卷共七大题 一、填空题(本大题共7个小题,满分25分): 1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是 , 则的属于的两个线性无关的特征向量是 (); 2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随 矩阵, 则的行列式(); 3.(4分)设, , 则 (); 4.(4分)已知维列向量组所生成的向量空间为,则的维数dim(); 5.(3分)二次型经过正交变换可化为 标准型,则();

6.(3分)行列式中的系数是(); 7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个 解向量, 其中, , 则该方程组的通解是 ()。 二、计算行列 式: (满分10分) 三、设, , 求。 (满分10分) 四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分) 五、设向量组线性无关, 问: 常数满足什么条件时, 向量组 , , 也线性无关。 (满分10分) 六、已知二次型, (1)写出二次型的矩阵表达式; (2)求一个正交变换,把化为标准形, 并写该标准型; (3)是什么类型的二次曲面? (满分15分) 七、证明题(本大题共2个小题,满分15分): 1.(7分)设向量组线性无关, 向量能由线性表示, 向量 不能由线性表示 . 证明: 向量组也线性无关。 2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组 必有非零解。

《线性代数》期终试卷2 ( 2学时) 本试卷共八大题 一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分): 1. 若阶方阵的秩,则其伴随阵 。() 2.若矩阵和矩阵满足,则 。() 3.实对称阵与对角阵相似:,这里必须是正交 阵。() 4.初等矩阵都是可逆阵,并且其逆阵都是它们本 身。() 5.若阶方阵满足,则对任意维列向量,均有 。()

大学线性代数必过复习资料

复习重点: 第一部分行列式 1. 排列的逆序数(P.5例4; P26第2、4题) 2. 行列式按行(列)展开法则(P.21例13;P.28第9题) 3. 行列式的性质及行列式的计算(P.27第8题)第二部分矩阵 1. 矩阵的运算性质 2. 矩阵求逆及矩阵方程的求解(P.56第17、18题;P.78第5题) 3. 伴随阵的性质(P.41例9; P56第23、24题;P.109第25题)、正交阵的性质(P.116) 4. 矩阵的秩的性质(P.69至71; P100例13、14、15) 第三部分线性方程组 1. 线性方程组的解的判定(P71定理3; P.77定理4、5、6、7),带参数的方程组的解的判定 (P.75 例13 ; P80 第16、17、18 题) 2. 齐次线性方程组的解的结构(基础解系与通解的关系) 3. 非齐次线性方程组的解的结构(通解)第四部分向量组(矩阵、方程组、向量组三者之间可以相互转换)1?向量组的线性表示 2. 向量组的线性相关性 3. 向量组的秩第五部分方阵的特征值及特征向量 1. 施密特正交化过程 2. 特征值、特征向量的性质及计算(P.120例8、9、10; P.135第7至13题) 3. 矩阵的相似对角化,尤其是对称阵的相似对角化(P.135第15、16、19、23题) 要注意的知识点: 线性代数 1、行列式 1. n行列式共有n2个元素,展开后有n!项,可分解为2n行列式; 2. 代数余子式的性质: ①、A j和a j的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ; 3. 代数余子式和余子式的关系:M j ( 1y j A j A j ( 1/ j M j 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积;

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数总复习题

复习题 1.计算下列各行列式(): (1),其中对角线上元素都是,未写出的元素都是0; (2); (3) ; 提示:利用范德蒙德行列式的结果. (4) (5),. 2.有非零解? 解 , 齐次线性方程组有非零解,则 即 得 不难验证,当该齐次线性方程组确有非零解. 3.设方阵满足,证明及都可逆,并求及 . 证明 由得 两端同时取行列式: 即 ,故  所以可逆,而 故也可逆. 由 又由 4.设,,求. 解 由可得 5.(1) 设,求使; (2) 设,求使. 解 (1) (2)

. 故 6.取何值时,非齐次线性方程组 (1)有唯一解;(2)无解;(3)有无穷多个解? 解 (1) ,即时方程组有唯一解. (2)  由 得时,方程组无解. (3) ,由, 得时,方程组有无穷多个解. 7.求下列齐次线性方程组的基础解系: (1) 解 (1) 所以原方程组等价于 取得 取得 因此基础解系为 8.设,求一个矩阵,使,且 . 解 由于,所以可设则由 可得 ,解此非齐次线性方程组可得唯一解 , 故所求矩阵. 9.求一个齐次线性方程组,使它的基础解系为 . 解 显然原方程组的通解为 ,() 即消去得 此即所求的齐次线性方程组. 10.设四元非齐次线性方程组的系数矩阵的秩为3,已知是它

的三个解向量.且 , 求该方程组的通解. 解 由于矩阵的秩为3,,一维.故其对应的齐次线性 方程组的基础解系含有一个向量,且由于均为方程组的解,由非齐次线性方程组解的结构性质得 为其基础解系向量,故此方程组的通解:, 11.设都是阶方阵,且,证明. 证明 设的秩为,的秩为,则由知,的每一列向量 都是以为系数矩阵的齐次线性方程组的解向量. (1) 当时,该齐次线性方程组只有零解,故此时, ,,结论成立. (2) 当时,该齐次方程组的基础解系中含有个向量,从而 的列向量组的秩,即,此时,结论成立。 综上,. 12.求下列向量组的秩和一个最大无关组: (1) .(1) ,,,, 解 (1) A=(,,,,)= , 所以第1、2、3列构成一个最大无关组,秩为3. 13.设,且向量组 线性无关,证明向量组线性无关. 证明设则 因向量组线性无关,故 因为故方程组只有零解 则所以线性无关 14.设是非齐次线性方程组的一个解,是对应的齐 次线性方程组的一个基础解系,证明:

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数期末复习题 (2)

线性代数 一. 单项选择题 1.设A 、B 均为n 阶方阵,则下列结论正确的是 。 (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b)若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d)若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A)=m 时,则方程组 . (a) 可能无解 (b)有唯一解 (c)有无穷多解 (d)有解 4.矩阵A 与对角阵相似的充要条件是 . (a)A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5.A 为n 阶方阵,若02 =A ,则以下说法正确的是 . (a) A 可逆 (b) A 合同于单位矩阵 (c) A =0 (d) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B )CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A|=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数总复习大纲及复习题

04-05(2) 线性代数总复习大纲及复习题: 一、 概念 1、 行列式的 定义 2、 向量组相关与无关的定义 3、 对称阵与反对称阵 4、 可逆矩阵 5、 矩阵的伴随矩阵 6、 基与向量的坐标 7、 矩阵的特征值与特征向量 8、 正定矩阵 9、 矩阵的迹 10、 矩阵的秩 11、 矩阵的合同 12、 二次型与矩阵 13、 齐次线性方程组的基础解系 二、 性质与结论 1、 与向量组相关与无关相关的等价结论 2、 行列式的性质 3、 克莱姆规则(齐次线性方程组有非零解的充要条件) 4、 矩阵可逆的充要条件及逆矩阵的性质 5、 初等变换与初等矩阵的关系 6、 A A A A A E **== 7、 n 维向量空间坐标变换公式 8、 相似矩阵的性质 9、 合同变换 10、 矩阵正定的充要条件 11、 线性方程组解的性质与结构定理 三、复习题及参考答案 1.若三阶行列式1 23 11 22 331 2 3 2226a a a b a b a b a c c c ---=,则 1 23 1 231 2 3 a a a b b b c c c = 12 2.若方程组12312312 3000 tx x x x tx x x x tx ++=?? ++=??++=?有非零解,则t=????1???。

3.已知齐次线性方程组32023020x y x y x y z λ+=?? -=??-+=? 仅有零解,则λ≠ 0 4.已知三阶行列式D=123 312231,则元素12a =2的代数,余子式12A = -1 ; 3.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。( 对 ) 4.行列式 0020 023 16.02342345 = ( 对 ) 5.对向量1234,,,αααα,如果其中任意两个向量都线性无关,则1234,,,αααα线性无关。( 错 ) 6. 如果A 是n 阶矩阵且0A =,则A 的列向量中至少有一个向量是其余各列向量的线性组合。( 对 ) 7. 向量组s ααα,,,21 线性无关的充分必要条件是其中任一部分向量组都线性无关。( 对 ) 8 矩阵212111215A ?? ? = ? ??? 是正定的。( 对 ) 9. n 阶矩阵A 与B 相似,则A 与B 同时可逆或同时不可逆。( 对 ) 10.已知向量组123(1,2,1),(,1,1),(1,,1).a a ααα===则当a= 1 或a= 2 时向量组321,,ααα线性相关。 ( 对 ) 11.n 阶矩阵A 满足2320,A A E -+=则A-3E 可逆,A-2E 可逆。 ( 对 ) 12.阵A 与其转置T A 具有相同的行列式和特征值。 ( 对 ) 13.如果n 阶矩阵 A 的行列式┃A ┃=0,则A 至少有一个特征值为零 。( 对) 14. 设A 为n 阶方阵,k 为常数,则kA k A =。 ( B ) 15.设6阶方阵A 的秩为3,则其伴随矩阵的秩也是3。 ( B )

线性代数复习题带参考答案(2)

线性代数考试题库及答案 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数期末复习题

线性代数复习题 一、判断题 (正确在括号里打√,错误打×) 1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即 3 3333222221 1111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 若一个行列式等于零,则它必有一行(列)元素全为零,或有两行(列)完全相同,或有两行(列)元素成比例. ( ) 3. 若行列式D 中每个元素都大于零,则D > 0. ( ) 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. ( ) 5. 若矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. ( ) 6. 若矩阵A 与矩阵B 等价,则矩阵的秩R (A ) = R (B ). ( ) 7. 零向量一定可以表示成任意一组向量的线性组合. ( ) 8. 若向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. ( ) 9. 向量组s ααα,...,,21中,若1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. ( ) 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. ( ) 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. ( ) 12. 齐次线性方程组一定有解. ( ) 13. 若λ为可逆矩阵A 的特征值,则1 -λ为1-A 的特征值. ( ) 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. ( ) 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. ( ) 16. 若矩阵A 与矩阵B 相似,则R R =A B ()(). ( ) 二、单项选择题 1. 设行列式 , ,21 23 121322 21 1211n a a a a m a a a a ==则行列式 =++23 2221 131211a a a a a a ( ) n m + )A ( )( )B (n m +- m n - )C ( n m - )D ( 2. 行列式7 012156 83的元素21a 的代数余子式21A 的值为 ( ) 33 )A ( 33 )B (- 56 )C ( 56 )D (-

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

相关文档
最新文档