有铅工艺和无铅工艺的区别

有铅工艺和无铅工艺的区别
有铅工艺和无铅工艺的区别

黄金冶炼工艺流程

黄金冶炼工艺流程 我国黄金资源储量丰富,分布较广,黄金冶炼方法很多。其中包括常规的冶炼方法和新技术。冶炼方法、工艺的改进,促进了我国黄金工业的发展。目前我国黄金产量居世界第五位,成为产金大国之一。 黄金的冶炼过程一般为:预处理、浸取、回收、精炼。 1.黄金冶炼工艺方法分类 1.1矿石的预处理方法 分为:焙烧法、化学氧化法、微生物氧化法、其他预处理方法。 1.2浸取方法 浸取分为物理方法、化学方法两大类。其中,物理方法又分为混汞法、浮选法、重选法。化学方法分为氰化法(又分:氰化助浸工艺、堆浸工艺)与非氰化法(又分:硫脲法、硫代硫酸盐法、多硫化物法、氯化法、石硫合剂法、硫氰酸盐法、溴化法、碘化法、其他无氰提金法)。 1.3溶解金的回收方法 分为:锌置换沉淀法、炭吸附法、离子交换法、其它回收方法。 1.4精炼方法 主要有全湿法,它包括电解法、王水法、液氯法、氯化法、还原法火法、湿法一火法联合法。 2.矿石的预处理

随着金矿的大规模开采,易浸的金矿资源日渐枯竭,难处理金矿将成为今后黄金工业的主要资源。在我国已探明的黄金储量中,有30%为难处理金矿。因此,难处理金矿的预处理方法成为当前黄金工业提金的关键问题。 难处理金矿,通常又称为难浸金矿或顽固金矿,它是指即使经过细磨也不能用常规的氰化法有效地浸出大部分金的矿石。因此,通常所说的难处理金矿是对氰化法而言的。 2.1焙烧法 焙烧是将砷、锑硫化物分解,使金粒暴露出来,使含碳物质失去活性。它是处理难浸金矿最经典的方法之一。焙烧法的优点是工艺简单,操作简便,适用性强,缺点是环境污染严重。含金砷黄铁矿一黄铁矿矿石中加石灰石焙烧,可控制砷和硫的污染;加碱焙烧可以有效固定S、As等有毒物质。美国发明的在富氧气氛中氧化焙烧并添加铁化合物使砷等杂质进入非挥发性砷酸盐中,国内研发的用回转窑焙烧脱砷法,哈萨克斯坦研发的用真空脱砷法以及硫化挥发法,微波照射预处理法,俄罗斯研发的球团法等都能有效处理含砷难浸金矿石。 2.2化学氧化法 化学氧化法主要包括常压化学氧化法和加压化学氧化法。 常压化学氧化法是为处理碳质金矿而发展起来的一种方法。常温常压下添加化学试剂进行氧化,如常压加碱氧化,在碱性条件下,将黄铁矿氧化成Fe2(SO )3, 砷氧化成As(OH)3和As203,后者进一步生成砷酸盐,可以脱除。主要的氧化剂有臭氧、过氧化物、高锰酸盐、氯气、高氯酸盐、次氯酸盐、铁离子和氧等。加压氧化是采用加氧和加热的方法,通过控制化学反应过程来使硫氧化。根据不同的反应过程,可采用酸性或碱性条件。

无铅与有铅锡的工艺区别

无铅和有铅工艺技术特点对比表: 类别无铅工艺特点 有多种焊料合金可供选择,目前逐步同意为 Sn96.5Ag3Cu0.5(SAC305);最好回流焊接和波峰焊接无论是何种焊接方式,焊料合金一焊料合金成分都选择同一款焊料合金。但是考虑到成本,许多厂家波直采用Sn63Pb37,不会对生产现峰焊接会选择Sn99.3Cu0.7焊料。对生产现场焊料合 金的使用造成混乱 焊料合金使用混乱,目前有人提倡使用Cu的质量分数 焊料合金单一混乱 焊料合 波峰焊接用的锡条和手工焊接用的锡线,成本提高2.7 xx焊料成本 倍。回流焊接用的锡膏成本提高约1.5倍 焊料合金熔点 温度 焊料可焊性 焊点特点 焊料/焊端兼容 焊端中不能含铅性无论是波峰焊/回流焊/手工焊接,能耗比有铅焊接多 能耗焊接能耗 10%~15%

设备需 回流焊求手工焊接炉体长 更换烙铁头度曲线调整的灵活性 不需要更换需要添加新的波峰焊机不需要(提升产能例外)能耗较低焊端中可以含铅差 焊点脆,不适合手持和振动产品好焊点韧性好温度高217℃ 温度低183℃焊料成本低在1%~2%的合金,但是市场上还没有此类产品场焊料合金的使用造成混乱有铅工艺特点设备温区数量要多,以增加调整回流温度曲线灵活性。也可以采用多温区的设备,增强温印刷/贴片机 水清洗工艺不需要更换,但是印刷/贴片精度要求更高 不建议使用不需要更换 可以使用工艺窗口小,温度曲线调整较难。焊点空洞难以消除。工艺窗口大,温度曲线调整较易。 回流焊接 焊点xx不好 焊接工 焊点xx较好,锡槽合金杂质含量艺 波峰焊接 频繁度加大,有可能生产现场需要检测仪器 检测仪器手工焊接烙铁头损耗加快 可以沿用有铅时用的板材,最好采用高Tg板材。采用

无铅焊接工艺温度曲线

无铅回流焊接工艺温度曲线冷却速率至关重要 https://www.360docs.net/doc/ed12623833.html, 作者:Ursula Marquez, 工艺研究工程师和Denis Barbini博士,高级技术经理,维多利绍德(Vitronics Soltec)有限公司 良好可控的回流工艺影响焊接质量。对无铅焊接,各种不同的回流参数及工艺、材料与成品率和质量的关系,再次成为今天研究的主题。由于现在的强制对流回流炉子的设计可以获得并控制很好的热稳定性和一致性,许多问题已经可以得到回答或解决,比如最高温度对零件可靠性的影响,如何降低回流最高温的要求,焊料成份的影响,减小ΔT的重要性,焊料在液态的滞留时间,以及焊料和助焊剂的匹配兼容性,等。但是人们通常忽略了对冷却速率在焊接质量和成品率影响的研究和评估。 传统电子组装的冷却仅仅强调PCB板子的出炉温度和快速的回流回流速度,当无铅材料出现的时候,这个问题又被重新拿出来讨论。最近的研究显示冷速率影响了焊接的微细构造的形成和最终焊接质量。更快的冷却速率被采纳和应用,还因为快冷却速率的好处包括降低出炉温度,降低PCB板子、板子的镀层、热敏感性元器件、助焊剂和焊料在高温的时间, 减少金属化合物的形成。然而,人们仍然面临这样的矛盾,即比较慢的冷却率可以减少不同热膨胀或热容量系数材料中的内应力。这份报告研究和阐述了冷却的速率在回流工艺中的重要影响。其中描述了冷却过程中焊接剪切力及微观组织的变化趋势,和不同板子的焊接表面材料对焊接力的影响。为发展复杂无铅工艺找到了几把钥匙。 实验 研究使用了一个标准的有可控冷却系统的回流炉。板子是一块放满元器件的中等尺寸的板子(33cmx40.6cm,1.25kg)。当三个冷却区被配置达到慢的和快速的冷却率的时候,加热部分的温度曲线保持不变。温度测量使用了一个标准的数据装置和新的标准的热电偶。用紫外线可修整的粘胶把热电偶粘在二个代表板子最冷的和最热的位置的器件上。先前就对这些元器件做过了一些评估。无铅回流曲线的冷却斜率是以最高温度和200°C之间来计算取值的。 在当今使用典型的板子和现代的强制对流的回流回流炉时,冷却速率决定了焊料在液态的时间和冷却的速度。 本研究共使用三种板子,它们是铜有机(Cu-OSP),无电镀的镍-金(ENIG)和渗锡(ImmSn)表层的板子。板子基体材料包括玻璃化的,四功能化合物FR-4环氧基树脂,它具有175°C的玻璃化转变温度,厚度有0.81毫米。焊接区域直径是0.56毫米。 所有对无铅做的回流模拟实验都使用了一种非洁净的有点粘的助焊剂。助焊剂是用一个小模板手动刷到板子上的。使用小镊子人工把焊球放置在板子上。实验选用了63Sn/37Pb和95.5Sn/3.8Ag/0.7Cu材料,0.76毫米的焊球。 回流曲线 样品大小需要裁减以适合热量计(DSC)的大小。热量计是一个在氮环境中工作的炉子。每一组实验配置,无论无铅还是有铅焊料,每一个板子都跑8次同样的回流曲线。每块板子上焊4个焊球。每个曲线都用了Omega型号K的热电偶和可用紫外修整的粘结剂。实验设计调查了焊料在液相上面的时间(60或90秒),直线加热升温曲线(L),或经过升温、恒温浸润、再融化的温度曲线(RSS)对焊接力的影响和最高温度后的冷却速率的影响。无铅的最高温度是244℃-245℃,有铅的最高温度是210℃-211℃。无铅最快速的冷却速率是-2.5℃/sec,有铅最快速的冷却速率是-2.4℃/sec。最慢的冷却速率两个都是-0.5℃/sec。

有铅工艺和无铅工艺的区别

有铅工艺和无铅工艺的区别 趋势 首先我们来看看有铅和无铅的趋势,随着国际环保要求逐步提高,无铅工艺成为电子产业发展的一个必然过程。尽管无铅工艺已经推行这么多年,仍有部分企业使用有铅工艺,但无铅工艺完全代替有铅这是一个必然的结果。但是无铅工艺在使用方面有些地方也许还不如有铅工艺,所以我们以后要研究的是如何让无铅工艺更好地替代有铅工艺。让rosh环保更广泛的普及,达到既盈利又环保的双赢目标。 现状 当前国内许多大公司也没有完全采用无铅工艺而是采取有铅工艺技术来提高可 靠性,在机车行业中西门子和庞巴迪等国际知名公司也没有完全采用无铅工艺进行生产,而是尽量豁免。 当前有许多专业也认为无铅技术还有许多问题有待于进一步认识,如著名工艺专家李宁成博士也认为当前的无铅工艺技术的发展还没有有铅技术成熟,如先前的无铅焊接采用的最多的Sn3Ag0.5Cu焊料合金,最近发现由于Cu的含量稍低,焊点可靠性有些问题,有人建议将Cu的质量分数提高到1%~2%,但是现在时常上还没有这种焊料合金的产品。同时无铅焊接的电子产品的可靠性数据远远没有有铅焊接生产的电子产品丰富。 比较 有铅工艺技术有上百年的发展历史,经过一大批有铅工艺专家研究,具有交好的焊接可靠性和稳定性,拥有成熟的生产工艺技术,这主要取决于有铅焊料合金的特点。 有铅焊料合金熔点低,焊接温度低,对电子产品的热损坏少;有铅焊料合金润湿角小,可焊性好,产品焊点“假焊”的可能性小;焊料合金的韧性好,形成的焊点抗震动性能好于无铅焊点。

无铅焊接工艺从目前的研究结果中摸索有可替代合金的熔点温度都高于现有的 锡铅合金。例如从目前较可能被业界广泛接受的“锡——银——铜”合金看来,起熔点是217℃,这将在焊接工艺中造成工艺窗口的大大缩小。理论上工艺窗口的缩小为从锡铅焊料的37℃降到23℃。实际上,工艺窗口的缩小远比理论值大。因为在实际工作中我们的测温法喊有一定的不准确性,加上DFM的限制,以及要很好地照顾到焊点“外观”等,回流焊接工艺窗口其实只有约14℃。 图:有铅工艺窗口和无铅工艺窗口对比 不只是工艺窗口的缩小给工艺人员带来巨大的挑战,焊接温度的提高也使得焊接工艺更加困难。其中一项就是高温焊接过程中的氧化现象。我们都知道,氧化层会使焊接困难、润湿不良以及造成虚焊。氧化程度除了器件来料本身要有足够的控制外,拥护的库存条件和时间、加工前的处理(例如除湿烘烤)以及焊接中预热(或恒温)阶段所承受的热能(温度和时间)等都是决定因素。 由于无铅焊接工艺窗口比起含铅焊接工艺窗口有着显著的缩小,业界有些人认为氮气焊接环境的使用也许有必要。氮气焊接能够减少熔锡的表面张力,增加其湿润性。也能防止预热期间造成的氧化。但氮气非万能,它不能解决所有无铅带来的问题。尤其是不可能解决焊接工艺前已经造成的问题。 在目前的回流焊接设备中,使用强制热风对流原理的炉子设计是主流。热风对流技术在升温速度的可控性以及恒温能力方面较强。在加热效率和加热均匀性以重复性等方面较弱。这些弱点,在含铅技术中体现的并不严重,许多情况下还可以被接受。随着无铅技术工艺窗口的缩小和对重复性的更高要求,热风对流技术将受到挑战。

无铅分析报告

分析报告 测试名称:焊点的可靠性分析 Testing Name:Solder joint reliability analyzing 测试机构:无铅焊接研发中心 Testing Organization:Lead-free Soldering R&D Center 报告分析人:胡强,李大乐 Report Analyzer:HU Qiang,LEE Da-le 测试日期:2004-11-6 Test Date:2004-11-6 测试板的工艺参数如表1所示 表1测试板的工艺参数 参数值 PCB材质 PCB厚度(mm) 1.6 引脚镀层 焊盘镀层 焊料牌号M705 焊料成分Sn-3.0Ag-0.5Cu 助焊剂牌号ESR-260S 助焊剂流量(ml/min) 波峰焊设备名称Suneast SAC-3JS 轨道传输速度(m/min) 1.2 预热温度(℃)130,135 锡炉温度(℃)265 冷却速度(℃/s) 5.7 通过体式显微镜对PCB焊点的表面进行观察,存在焊点表面裂纹等焊接缺陷,如图1所示。 图1焊点的表面裂纹 从图中可以看出,表面裂纹发生在焊点的弯月面位置,而且裂纹方向大部分平行于元器件引线。通过对PCB其它焊点表面裂纹的观察,基本上都存在这种方向性。通过对表面

裂纹的高倍观察,发现表面裂纹并没有延伸到焊点底部,终止于很浅的位置,如图1所示。为了更好的观察裂纹增长的长度和分析裂纹产生的原因,对焊点作截面分析,如图2所示。 图2裂纹的截面图 裂纹产生的原因是多方面的,PCB所用的材料、无铅焊料的特性、焊接工艺等因素不当都有可能产生裂纹这种焊接缺陷。 1.当PCB的线膨胀系数过大时,在冷却过程中容易产生较大的收缩量,从而容易在焊点凝固过程中产生内应力,导致裂纹的产生。 2.无铅焊料的特性是否满足要求,最好是共晶成分,特别不能受到铅的污染。另外如果无铅焊料中含有合金元素Bi,则更容易产生裂纹。 3.对于工艺因素来说,预热温度应当适中,避免波峰焊接时对PCB的热冲击,造成PCB的热变形,造成裂纹的产生,同时建议采用焊后快速冷却,可以避免裂纹的产生。 从图1和图2中分析可知,裂纹尖端比较圆滑,从而说明裂纹是在冷却过程中产生的液相裂纹,其原因是由于PCB的收缩产生向下的应力,靠近元器件引线的钎料收缩亦产生内应力,从而在焊点位置出现应力集中,当焊点局部冷却速率相对于其它位置较慢时,钎料之间的结合力相对较弱,很容易产生这种液相裂纹。 产生裂纹的最主要原因就是PCB材质,当PCB材质的线膨胀系数较大时,在焊接过程中产生较大的变形,从而很容易产生裂纹等焊接缺陷。特别是对于无铅焊接,由于预热稳定的升高和焊接温度的升高,对PCB材质的要求更高,要求更高Tg值的PCB材质,以满足无铅焊接的要求。 通过对热冲击试验板的分析,发现此种圆滑尖端的裂纹并没有扩展,从而更进一步说明了此种裂纹是在焊接过程种产生的液相裂纹。通过热冲击试验后在PCB焊点中出现了极少量的微裂纹,如图3所示。 图3热冲击中形成的微裂纹 从图中可知,此种裂纹终止于尖端,产生的原因是固态下由于内应力的作用产生的撕裂,明显不同于液相裂纹的圆滑尖端。 通过对PCB焊点的分析,无铅钎料对焊盘和元器件引线的润湿性以及通孔的填充性都

黄金冶炼工艺流程

黄金冶炼工艺流程 我国黄金资源储量丰富,分布较广,黄金冶炼方法很多。其中包括常规的冶炼方法和新技术。冶炼方法、工艺的改进,促进了我国黄金工业的发展。目前我。国黄金产量居世界第五位,成为产金大国之一 黄金的冶炼过程一般为: 预处理、浸取、回收、精炼。 1. 黄金冶炼工艺方法分类 1.1 矿石的预处理方法 分为: 焙烧法、化学氧化法、微生物氧化法、其他预处理方法。 1.2 浸取方法浸取分为物理方法、化学方法两大类。其中,物理方法又分为混汞法、浮选法、重选法。化学方法分为氰化法(又分:氰化助浸工艺、堆浸工艺)与非氰化法(又分: 硫脲法、硫代硫酸盐法、多硫化物法、氯化法、石硫合剂法、硫氰酸盐法、溴化法、碘化法、其他无氰提金法)。 1.3 溶解金的回收方法 分为: 锌置换沉淀法、炭吸附法、离子交换法、其它回收方法。 1.4 精炼方法主要有全湿法,它包括电解法、王水法、液氯法、氯化法、还原法火法、湿法一火法联合法。 2. 矿石的预处理随着金矿的大规模开采,易浸的金矿资源日渐枯竭,难处理金矿将成为今后黄金工业的主要资源。在我国已探明的黄金储量中,有30%为难处理金矿。因此,难处理金矿的预处理方法成为当前黄金工业提金的关键问题。 难处理金矿,通常又称为难浸金矿或顽固金矿,它是指即使经过细磨也不能用常规的氰化法有效地浸出大部分金的矿石。因此,通常所说的难处理金矿是对氰化法而言的。

2.1 焙烧法 焙烧是将砷、锑硫化物分解,使金粒暴露出来,使含碳物质失去活性。它是处理难 浸金矿最经典的方法之一。焙烧法的优点是工艺简单,操作简便,适用性强,缺点是环境污染严重。含金砷黄铁矿一黄铁矿矿石中加石灰石焙烧,可控制砷和硫的污染;加碱焙烧可以有效固定S、As等有毒物质。美国发明的在富氧气氛中氧化焙烧并添加铁化合物使砷等杂质进入非挥发性砷酸盐中,国内研发的用回转窑焙烧脱砷法,哈萨克斯坦研发的用真空脱砷法以及硫化挥发法,微波照射预处理法,俄罗斯研发的球团法等都能有效处理含砷难浸金矿石。 2.2 化学氧化法化学氧化法主要包括常压化学氧化法和加压化学氧化法。 常压化学氧化法是为处理碳质金矿而发展起来的一种方法。常温常压下添加化学试剂进行氧化,如常压加碱氧化,在碱性条件下,将黄铁矿氧化成Fe(SO ),23砷氧化成As(OH)和AsO,后者进一步生成砷酸盐,可以脱除。主要的氧化剂 323 有臭氧、过氧化物、高锰酸盐、氯气、高氯酸盐、次氯酸盐、铁离子和氧等。加压氧化是采用加氧和加热的方法,通过控制化学反应过程来使硫氧化。根据不同的反应过程,可采用酸性或碱性条件。 加压氧化法具有金回收率高(9O% ~98% )、环境污染小、适应面广等优点,处理大多数含砷硫难处理金矿石或金精矿均能取得满意效果。加压氧化包括高压氧化、低压氧化和高温加压氧化。如加压硝酸氧化法,用硝酸将砷和硫氧化成亚砷酸和硫酸,使包裹金充分解离,金的浸出率在95% 以上,缺点是酸耗较高。 2.3 微生物氧化法微生物氧化又称细菌氧化,它是利用细菌氧化矿石中包裹了金的硫化物和砷化物而将金裸露出来的一种预处理方法。目前,细菌浸出可用于处理矿石和精矿,对精矿一般 采用搅拌浸出,对于低品位矿石则多采用堆浸。 所使用的细菌最适宜的是氧化亚铁硫杆菌,目前已在工业上获得应用。氧化亚铁硫

SMT无铅化工艺

SMT无铅化工艺 一.无铅焊料: 与传统的含铅焊料相比,无铅焊料的原理就是由一些合金混合物 来替代原有的铅,其特点就是这种合金的熔融温度要略高于含铅焊料。 以Sn/Ag合金为例,其熔融温度为221摄氏度,高于含铅焊料的熔融温度183 摄氏度,而另一些无铅焊料Sn/Ag/Cu 熔点为218摄氏 度、Sn/Ag/Cu/Sb熔点为217摄氏度。 二.无铅焊接工具: 无铅焊接工具与以往含铅焊接相比,生产设备方面不会有太多的 改变,而对于返修工艺来说,将面临更大的挑战。 如前段无铅焊料中,已提及无铅焊料的原理就是由一些合金混合 物来替代原有的铅,而这些合金材料的成分中Cu的使用最多。Cu是易氧化物,其氧化物CuO2与Cu相比硬度降低,就如同氧化铁(铁锈)。一旦无铅焊料中的Cu 在焊接过程中焊接时间过长,就容易造成被氧化,最终会成为产品质量的缺陷。 由此可以得出结论,焊接过程越短,焊接质量就越为可靠!在目前市场上有多款面向于无铅焊接领域的烙铁,对此做出了一个实验 以下是2个试验条件和结果:

1. 4种烙铁头的温度都设在329CO,每个烙铁头连续完成10 个焊点,每个焊点的温度达到同样的温度232CO时,完成 下一个焊点。 当10 个焊点都完成后,记录每种烙铁所用的全部时间如下: METCA——150 秒PACE204 秒 WELLE——245 秒HAKK 316 秒 该试验表明,METCAI烙铁所用时间最短,说明其功率输出效率 高,比HAKKO勺速度快一倍以上。 2.如果使这4 种烙铁都保持同样的焊接速度,即使每一个烙铁所 用时间都保持在150 秒,其它烙铁就必须升高烙铁头的温度,而METCA烙铁仍维持329Co的温度不变: METCA—L—150 秒——329 CO PACE——150 秒——349 CO WELLE—R—150 秒——380 CO HAKKO——150 秒——409 CO 我们可以得出结论,Metcal SP200的升温速度比其它至少快25% 而比Hakko926ESD!y要快一倍以上。 无铅焊接虽然对焊接工具提出了更高的要求,但经实验我们发现 部分无铅烙铁已经能满足现有无铅焊料的要求,使用Metcal 烙铁更能有效的防止焊接过程中氧化现象的产生,确保了无铅焊接的可靠性。三. 无铅焊接环境: 无铅焊接环境是指在无铅焊接过程中,对无铅焊接成功与否造成 决定性因素的一些周围环境。较为典型的例子,就是在无铅回流焊、无

电解铅的冶炼工艺流程

电解铅的冶炼工艺流程 铅冶金是白银生产的最佳载体:一般铅对金银的捕集回收率都在95%以上,因此金银的回收是与铅的生产状况直接相关的。现在世界上约有80%的原生粗铅是采用传统的烧结一鼓风炉熔炼工艺方法生产的。传统法技术成熟,较完善可靠,其不足之处在于脱硫造块的烧结过程中,烧结烟气的SO2浓度较低,硫的回收利用尚有一定难度,鼓风炉熔炼需要较昂贵的冶金焦炭。为了解决上述问题,冶金工作者进行了炼铅新工艺的研究。八十年代以来,相继出现了QSL法、闪速熔炼法、TBRC转炉顶吹法、基夫赛特汉和艾萨熔炼法等新的炼铅方法。其中,QSL法是德国鲁奇公司七十年代开发的直接炼铅新工艺,加拿大、韩国和我国虽然先后购买了此专利建厂,但生产效果不甚理想;闪速熔炼法尚未实现工业化生产;TBRC法是瑞典波里顿公司所创,但此法作业为间断性的,且炉衬腐蚀严重;基夫赛特法由原苏联有色金属研究院研究成功,现已有多个厂家实现了工业化生产,是一种各项指标先进、技术成熟可靠的炼铅新工艺,但采用该法单位投资大,只有用于较大生产规模的工厂时,才能充分发挥其效益。 艾萨炼铅技术基于由上方插入的赛罗浸没喷枪将氧气喷射入熔体。产生涡动熔池,让强烈的氧化反应或者还原反应迅速发生。在第一段,熔炼炉产出的高铅渣经过流槽送还原炉,氧化脱硫所产的烟气经除尘后送制酸系统。在第二段还原炉中,所产粗铅和弃渣从排放口连续放出,并在传统的前床中分离,所产烟气进行除尘处理后经烟囱排放。 艾萨法熔炼流程。该工艺流程先进,对原料适应性广、生产规模可大可小,比较灵活、指标先进、SO2烟气浓度高,可解决生产过程中烟气污染问题;同时冶炼过程得到强化,金银捕集率高,余热利用好,能耗低。它不仅适应308厂铅银冶炼的改建要求,而且能够对我国的银铅冶金生产和技术进步起到推动作用,故推荐引进艾萨法作为本项目粗铅冶炼生产工艺的第一方案。 传统的鼓风烧结——鼓风炉法虽然在烟气制酸方面尚有一定困难,但近年来,我国株洲冶炼厂、沈阳冶炼厂、济源冶炼厂等大型铅厂的改扩建工程仍然采用此法,是因为它具有建设快、投产、达产快的优点。 粗铅精炼工艺有火法和电解法两种。一般来说,电解法对银、金、铋和锑的分离效果好,铅、银等金属的回收率高,劳动条件好,机械化自动化程度高。电解法的缺点是基建投资较火法高。采用火法需要处理大量中间产物,能耗较高,致使其生产成本较电解法高。鉴于本项目粗铅含银、铋等金属较多。 常规方法处理铅阳极泥是采用火法——电解法流程获得金、银,渣进行还原熔炼,精炼得精铋等,流程简单、技术成熟,工人易操作,但有价金属回收率不高,锑、铅呈氧化物形态挥发进入烟尘,不但不便于综合回收,而且造成第二次污染。

SMT无铅制程工艺要求及问题解决方案

一、锡膏丝印工艺要求 1、解冻、搅拌 首先从冷藏库中取出锡膏解冻至少4小时,然后进行搅拌,搅拌时间为机械2分钟,人手3分钟,搅拌是为了使存放于库中的锡膏产生物理分离或因使用回收造成金属含量偏高使之还原,目前无铅锡膏Sn/Ag3.0/Cu0.5代替合金,比重为7.3,Sn63/Pb37合金比重为8.5因此无铅锡膏搅拌分离时间可以比含铅锡膏短。 2、模板 不锈钢激光开口,厚度80-150目(0.1-0.25mm)、铜及电铸Ni模析均可使用。 3、刮刀 硬质橡胶(聚胺甲酸酯刮刀)及不锈钢金属刮刀。 4、刮刀速度\角度 每秒2cm-12cm。(视PCB元器件大小和密度确定);角度:35-65℃。 5、刮刀压力(图一) 1.0-2Kg/cm2 。 6、回流方式 适用于压缩空气、红外线以及气相回流等各种回流设备。

7、工艺要求 锡膏丝印工艺包括4个主要工序,分别为对位、充填、整平和释放。要把整个工作做好,在基板上有一定的要求。基板需够平,焊盘间尺寸准确和稳定,焊盘的设计应该配合丝印钢网,并有良好的基准点设计来协助自动定位对中,此外基板上的标签油印不能影响丝印部分,基板的设计必需方便丝印机的自动上下板,外型和厚度不能影响丝印时所需要的平整度等。 8、回流焊接工艺 回流焊接工艺是目前最常用的焊接技术,回流焊接工艺的关键在于调较设置温度曲线。温度曲线必需配合所采用的不同厂家的锡膏产品要求。 二、回流焊温度曲线 本文推荐的无铅回流焊优化工艺曲线说明(如图二):推荐的工艺曲线上的四个重要点: 1、预热区升温速度尽量慢一些(选择数值2-3℃/s),以便控制由锡膏的塌边而造成的焊点桥接、焊球等。 2、活性区要求必须在(45-90sec、120-160℃)范围内,以便控制PCB基板的温差及焊剂性能变化等因数而发生回流焊时的不良。 3、焊接的最高温度在230℃以上保持20-30sec,以保证焊接的湿润性。 4、冷却速度选择在-4℃/s。 回流温度曲线如下:(图二)

无铅化挑战组装和封装材料

无铅化挑战组装和封装材料 用镂板印刷或电镀制作的晶圆凸点,显示了无铅在倒装芯片和芯片级封装和组装领域的可行性。 无铅是90年代末期发自日本的信息,而今差不多被欧洲联盟以严格的法律加以响应。铅的毒性差不多广为人知,人们尽管仍在争论电子元件中的铅是否确实对人类和环境造成威胁,但人们差不多更为关注废弃的电子器件垃圾中铅的渗透并产生的污染。另外,含铅器件的再利用过程中有毒物质的扩散也是一个关注的热点。大多数可行的替换方案并不是类似于铅毒性的威胁,而是对环境的其它负面阻碍,例如,高熔点意味的高能耗。因此,使用先进的设备和新的回流焊温度设置在某种程度上也许有可 能得到高熔点低能耗的效果。另外,假如用含银的材料来替代铅锡焊料,会产生另一个负面的对生态环境的阻碍,那确实是需要大量开采和加工贵重的金属矿石。 立法规定最后期限 历经了数年的磋商和议论之后,现在有25个欧洲联盟成员

国,差不多在执行禁止在电子器件中使用铅的法律。2006年7 月1月开始,所有用于欧洲市场的电子产品必须是无铅的,包括信息和通讯技术设备、消费类电子、家用电器等等。 该项法律也规定了多项例外。用于服务器、存储器、以及特种网络设施的焊料,到2010前仍然能够含铅。另外,含铅量超过85%的焊料也不在此项规定之列。欧洲委员会还在启动一项针对更多免责的评估,比如用于高端PC处理器的倒装芯片封装的互连中的含铅焊料。大多数这种互连是将高度含铅的C4焊球。欧盟关于铅等危险物的限制原则是尽量替换铅,只有在“技术上无法替换”时才能够使用铅。指令的适用范围有时定义得也不太明确。例如,消费电子不能够用铅,而汽车电子能够,那么,汽车内的收音机如何办?目前同意汽车收音机含铅,然而还有些类似情况仍然有待进一步裁决。 欧联的无铅法律将阻碍全球的电子产业,一来是由于供应链的全球化,再者也是由于在其它国家差不多开始有类似的法律。例如,中国差不多提出了禁止同样物质的类似法律,而且最后期限也设定为2006年7月1日。

SMT 无铅工艺对无铅锡膏的几个要求

SMT无铅工艺对无铅锡膏的几个要求 杨庆江张辛郁 (Henkel Loctite (China) Co.,Ltd.) 摘 要:SMT无铅工艺的步伐越来越近,无铅锡膏作为无铅工艺的重要一环,它的性能表现也越来越多引起人们的关注。本文结合汉高乐泰公司的最新无铅锡膏产品Multicore?96SC LF320 AGS88分析了无铅锡膏如何满足无铅工艺的几个要求。 关键词:SMT无铅工艺 Sn/Ag/Cu合金 低温回流 空洞水平 众所周知铅是有毒金属,如不加以控制,将会对人体和周围环境造成巨大而深远的影响。欧洲议会2003年底已经通过立法,要求从2006年7月开始,在欧洲销售的电气和电子设备不得含有铅和其它有害物质。中国等国家的相关法律也正在酝酿之中。由此可见,SMT的无铅工艺已经成为我们必然的选择。本文以无铅锡膏的研发为基础,针对无铅工艺带来的几个问题,如合金的选择、印刷性、低温回流、空洞水平等展开讨论,同时,向大家介绍了最新一代无铅锡膏产品Multicore?96SC LF320 AGS88相应特性。 1.无铅合金的选择 为了找到适合的无铅合金来替代传统的Sn-Pb合金,人们曾做过许多的尝试。这是因为无铅合金的选择需要考虑的因素很多,如熔点、机械强度、保质期、成本等。表1列举了三种主要无铅合金的比较结果。 合金类型 熔点(度)主要问题 Tin Rich 209—227 熔点稍有升高 Tin Zinc (Bi) 190 容易氧化,保质困难 Tin Bi 137 强度很差 表1 三种无铅合金的比较结果 人们最终把目标锁定在富含Tin的合金上,在富含Tin的合金中,Sn/Ag/Cu 系列又成为选择的目标。而Sn,Ag,Cu三种合金成份比例的确定也经历了一段探索的过程,这主要是考虑到焊点的机电性能,如抗拉强度、屈服强度、疲劳强度、塑性、导电率等等。最终两种具有相同熔点(217°C)且性能相似的合金成分:SnAg3Cu0.5(96.5%Sn,3%Ag,0.5%Cu)和SnAg3.8Cu0.7(95.5%Sn,3.8%Ag,0.7%Cu)成为无铅合金的主要选择。其中,SnAg3Cu0.5被日本、韩国厂商广泛采用,欧美企业更多选择 SnAg3.8Cu0.7合金。以上两种合金Multicore?均可以提供,代号分别为97SC和96SC。 2.印刷性 由于Sn/Ag/Cu合金的密度(7.5 g/mm3)比Sn-Pb合金的密度 (8.5g/mm3) 低,使用该种合金的无铅焊锡膏的印刷性比有铅锡膏差一些,如容易粘刮刀等。尽管如此,由于保证锡膏的良好的印刷性对于提高SMT的生产效率、降低成本十分重要,在合金成分相同的情况下,只有通过助焊剂成分的调

无铅波峰焊接工艺

无铅波峰焊接工艺 介绍无铅波峰焊工艺的特点,并从波峰焊接工艺流程分别介绍了无铅波峰焊设备的各个子系统。从无铅焊料的润湿性、易氧化性、金属间化合物的形成特点等方面分析了无铅焊接相对于锡铅焊接的工艺特点,提出了无铅焊接过程中应注意的问题及解决的方法。 从无铅焊接工艺特点分析,整个波峰焊接过程是一个统一的系统,任何一个参数的改变都可能影响焊接接头(焊点)的性能。通过分析需要对波峰焊接过程中的参数进行优化组合,得到优良的焊接接头。 综观整个波峰焊工艺过程,包括助焊剂涂敷系统、预热系统、波峰焊接系统、冷却系统和轨道传输系统。每个系统对整个焊接工艺来说都是非常重要的,直接影响到PCB焊接的质量。 在得到一个良好的波峰焊焊接质量来说,还需要有最重要的三点:被焊件的可焊性、焊盘的设计、焊点的排列。这三个条件是最基本的焊接条件。 下面我们就波峰焊的各个系统进行逐个的分析: 一:助焊剂涂敷系统 无铅波峰焊助焊剂采用的涂敷方法主要有两种:发泡和喷雾。在此我们主要介绍一下喷雾,喷雾法是焊接工艺中一种比较受欢迎的涂敷方法,它可以精确地控制助焊剂沉积量。助焊剂喷雾系统是利用喷雾装置,将助焊剂雾化后喷到PCB 上,预热后进行波峰焊。影响助焊剂喷量的参数有四个:基板传送速度、空气压力、喷嘴的摆速和助焊剂浓度。通过这些参数的控制可使喷射的层厚控制在1-10微米之间。 对于无铅波峰焊来说,由于无铅焊料的润湿性比有铅焊料要差,为了保证良好的焊接质量,对助焊剂的选择和涂敷的要求更高。在选择助焊剂时还应考虑无铅PCB的预涂层和无铅焊料的润湿性。波峰焊设备在助焊剂喷雾上要求均匀涂敷,而且涂敷的助焊剂的量要求适中。当助焊剂的涂敷量过大时,就会使PCB 焊后残留物过多,影响外观。另外过多的助焊剂在预热过程中有可能滴落在发热管上引起着火,影响发热管的使用寿命,当助焊剂的涂敷量不足或涂敷不均匀时,就可能造成漏焊、虚焊或连焊。 二:预热系统 在基板涂敷助焊剂之后,首先是蒸发助焊剂中多余的溶剂,增加粘性。这就要在焊接前进行预热基板。如果粘性太低,助焊剂会被熔融的锡过早的排挤出,造成表面润湿不良。干燥助焊剂也可加强其表面活性,加快焊接过程。在预热阶段,基板和元器件被加热到100-105℃,使基板和熔融接触时降低了热冲击,减少基板翘曲的可能。 在通过波峰焊接之前预热,有以下几个理由: 1.提升了焊接表面的温度,因此从波峰上要求较少的温带能量,这样有助于助 焊剂表面的反应和更快速的焊接。 2.预热也减少波峰对元器件的热冲击,当元器件暴露在突然的温度梯度下时可 能被削弱或变成不能运行。

铅冶炼工艺流程

铅冶炼工艺流程选择 氧气底吹熔炼—鼓风炉还原法和浸没式顶吹(ISA或Ausmelt)熔炼—鼓风炉还原法在工艺上都是将冶炼的氧化和还原过程分开,在不同的反应器上完成,即在熔炼炉内主要完成氧化反应以脱除硫,同时产出一部分粗铅和高铅渣。高铅渣均是通过铸渣机铸成块状再送入鼓风炉进行还原熔炼,产出的粗铅送往精炼车间电解,产出的炉渣流至电热前床贮存保温,前床的熔渣流入渣包或通过溜槽进入烟化炉提锌。随着我国对节能减排和清洁生产政策的不断贯彻落实,上述工艺的弊端也显现出来,鼓风炉还原高铅渣块,液态高铅渣的潜热得不到利用,还要消耗大量的焦炭,随着焦炭价格的提升,炼铅成本居高不下。电热前床消耗大量的电能和石墨材料,也增加了冶炼成本,同时需要占用大量的土地和投资。 为了适应环保、低炭、节能降耗的需求,新的技术不断出现,目前在河南省济源豫光金铅,金利公司、万洋集团各自采用的液态高铅渣直接还原的三种炉型代表了我国铅冶炼发展的最高水平。 一、豫光金铅底吹还原工艺: 取消鼓风炉,不用冶金焦,实现液态渣直接还原,与原有富氧底吹炉氧化段一起,形成完整的液态渣直接还原工业化生产系统。具体技术方案为:铅精矿、石灰石、石英砂等进行配料混合后,送入氧气底吹炉熔炼,产出粗铅、液态渣和含尘烟气。液态高铅渣直接进入卧式还原炉内,底部喷枪送入天然气和氧气,上部设加料口,加煤粒和石子,采用间断进放渣作业方式。天然气和煤粒部分氧化燃烧放热,维持还原反应所需温度,气体搅拌传质下,实现高铅渣的还原。工艺流程如图1。 图1 豫光炼铅法的工艺流程图 生产实践效果 8万t/a熔池熔炼直接炼铅环保治理工程主要包括以豫光炼铅法为主的粗铅熔炼系统、大极板电解精炼系统和余热蒸汽回收利用系统等。项目09年2月正式开工,09年8月进行设备安装,2010年元月开始空车调试,3月28日熔炼系统氧化炉点火烘炉。目前氧化炉、还原炉、烟化炉、硫酸及制氧系统均正常生产,经几个月的生产检验,各项环保指标优于国标,技经指标达设计水平。

黄金的冶炼工艺流程

黄金的冶炼工艺流程简介 摘要:我国黄金资源储量丰富,分布较广,黄金冶炼方法很多。其中包括常规的冶炼方法和新技术。冶炼方法、工艺的改进,促进了我国黄金工业的发展。目前我国黄金产量居世界第五位,成为产金大国之一。黄金的冶炼过程一般为:矿石的预处理、矿石的浸取、溶解金的回收、黄金的精炼。 关键词:黄金冶炼 一、矿石的预处理 随着金矿的大规模开采,易浸的金矿资源日渐枯竭,难处理金矿将成为今后黄金工业的主要资源。在我国已探明的黄金储量中,有30%为难处理金矿。因此,难处理金矿的预处理方法成为当前黄金工业提金的关键问题。矿石的预处理方法分为:焙烧法、化学氧化法、微生物氧化法、其他预处理方法。 焙烧法是将砷、锑硫化物分解,使金粒暴露出来,使含碳物质失去活性。它是处理难浸金矿最经典的方法之一。焙烧法的优点是工艺简单,操作简便,适用性强,缺点是环境污染严重。含金砷黄铁矿一黄铁矿矿石中加石灰石焙烧,可控制砷和硫的污染;加碱焙烧可以有效固定S、As等有毒物质。美国发明的在富氧气氛中氧化焙烧并添加铁化合物使砷等杂质进入非挥发性砷酸盐中,国内研发的用回转窑焙烧脱砷法等都能有效处理含砷难浸金矿石。 化学氧化法主要包括常压化学氧化法和加压化学氧化法。常压化学氧化法是为处理碳质金矿而发展起来的一种方法。常温常压下添加化学试剂进行氧化,如常压加碱氧化,在碱性 条件下,将黄铁矿氧化成Fe 2(SO ) 3 ,砷氧化成As(OH) 3 和As 2 3 ,后者进一步生成砷酸盐,可 以脱除。主要的氧化剂有臭氧、过氧化物、高锰酸盐、氯气、高氯酸盐、次氯酸盐、铁离子和氧等。加压氧化是采用加氧和加热的方法,通过控制化学反应过程来使硫氧化。根据不同的反应过程,可采用酸性或碱性条件。加压氧化法具有金回收率高(90% ~98% )、环境污染小、适应面广等优点,处理大多数含砷硫难处理金矿石或金精矿均能取得满意效果。 微生物氧化法和其他预处理方法,在这里就不做详细表述了。 二、矿石的浸取 金的化学性质非常稳定,通常情况下不与酸、碱反应,但与混合酸和一些特殊试剂反应生成可溶性配合物。从含金矿石中提取金的方法有多种,具体选择哪种方法取决于矿石的化学组成、矿物组成、金的赋存状态及对产品的要求。浸取分为物理方法、化学方法两大类。 物理方法分为混汞法、重选法、浮选法。混汞法是回收粗粒单体金的有效方法。该方法是将含黄金的矿石与汞碾磨,使Au溶于汞中成金汞齐,再将汞蒸发便得到粗金。混汞法提金收率在50%—60%之间,该法对高品位黄金矿处理比较适合。重选法是利用黄金与脉石的密度差异进行重力分选的方法,是人们从金矿中回收黄金的最古老的方法。重选法在脉金矿的选矿或提取工艺中,主要用于磨矿回路回收粗粒单体金,对砂矿的提金该法占主导。浮选法是一种重要而有效的富集金属矿的方法。该法很适宜回收0.84mm的金粒。冶炼低品位金矿和金矿尾矿常用此法,该法对含金、铜、铅、锌的硫化矿也适用。 化学方法分为氰化法(又分:氰化助浸工艺、堆浸工艺)与非氰化法(又分:硫脲法、硫代硫酸盐法、多硫化物法、氯化法、石硫合剂法、硫氰酸盐法、溴化法、碘化法、其他无氰提金法)。 氰化助浸工艺主要有富氧浸出和液相氧化剂辅助浸出,如添加过氧化氢或高锰酸钾,氨 氰助浸,加温加压助浸,加Pb(NO 3) 2 助浸等。富氧浸出和过氧化物助浸:添加氧化剂可提高 金的浸出率,缩短浸出时问,减少氰化物消耗。因此,在氰化浸出过程中,通过改善供氧条件,如加大充气量,充氧,加氧炭浸和加氧树脂浸出等提高矿浆中溶解氧的含量,从而提高金的浸出效果。氨氰助浸:在氰化时加入氨,使Au在形成Au(CN) 2 -的同时生成铜氨配离子 Cu(NH 3) 4 +,有利于金的浸出和铜的沉淀,而且使氰化物得到有效利用。加温加压助浸和加 Pb(N0 3) 2 助浸,在这里就不做详细表述了。 堆浸工艺,在这里就不做详细表述了。

无铅工艺的技术要求

无铅工艺的要求 一、对材料的要求 a、PCB板 无铅PCB设计 (1)提倡为环保设计,需要考虑WEEE在选材、制造、使用、回收成本等方面因素,但到目前为止还没有对无铅PCB焊盘设计提出特殊要求,没有标准。 (2)有一种说法值得讨论:由于浸润性(铺展性)差,无铅焊盘设计可以比有铅小一些。(3)还有一种说法:无铅焊盘设计应比有铅大一些。 (4)业界较一致的看法: (a)为了减小焊接过程中PCB表面△t,应仔细考虑散热设计,例如均匀的元器件分布、铜箔分布,优化PCB板的布局。尽量使印制板上△t达到最小值。 (b)椭圆形焊盘可减少焊后焊盘露铜现象 (c)BGA、CSP 采用SMD焊盘设计有利于排气。 (d)过度时期双面焊(A面再流焊,B面波峰焊)时,A面的大元件也可采用SMD焊盘设计,可减轻焊点剥离现象。 (e)为了减少气孔,BGA、CSP 焊盘上的过孔应采用盲孔技术,并要求与焊盘表面齐平。 b、焊料 ①根据不同公司产品要求选择不同的无铅合金焊料 ②助焊剂: 使用低固态免洗助焊剂会提高可焊性和减少焊点变色的可能性 c、电子元器件 ①耐高温,抗热冲击强 ②元件焊端镀层与元器件的合金,铅的含量需低于无铅IPC标准。 二、对焊接设备的要求 a、回流焊机 ①耐350 ℃以上高温,抗腐蚀。 ②设备横向温度均匀,横向温差<±2℃,必要时对导轨加热或采用特殊材料的导轨。 ③升温、预热区长度要加长,满足缓慢升温的要求。 ④要求有两个回流加热区或提高加热效率。 ⑤增加冷却装置,使焊点快速降温。 ⑥对于大尺寸的PCB需要增加中间支撑。 ⑦增加助焊剂回收装置,减少对设备和环境的污染。 对无铅再流焊设备的主要要求: ? 缓慢升温 ? 助焊剂活化区快速升温,要求回流区热效率高,能够快速升到回流温度。 ? 快速冷却 b 、波峰焊机 ①耐高温,抗腐蚀,采用钛合金钢Sn锅、或在锅内壁镀防护层。并要求Sn锅温度均匀,<±2℃。 ②预热区长度要加长,满足缓慢升温的要求。 ③预热区采用热风加热器或通风,有利于水汽挥发。 ④增加中间支撑,预防高温引起PCB变形。 ⑤增加冷却装置,使焊点快速降温。

无铅化工艺进程

加速无铅转换的进程 作者:Mike Maekawa和Phil de Guzman, Toshiba America Electronic Components Inc. 半导体和电子制造商目前都必须面对一个环境保护问题,即如何符合欧共体颁布的两个管理规定,《电子电气设备废弃物(WEEE)》和《有害物质的限制法案(RoHS)》。 电子工业正面临环境保护的挑战,不仅电子产品需要是环保的,电子制造的过程也必须满足环境友好的要求。欧共体颁布的二个用于环境保护的管理规定,即《电子电气设备废弃物(WEEE)》和《有害物质的限制法案(RoHS)》,要求铅和其它有害物质在电子产品及其生产过程中的使用,必须在2006年7月1号之前得到管理。半导体和电子制造商都必须对此采取相应措施。 几乎所有电子电气产品都是将半导体器件焊在印制板上。这些产品达到使用寿命报废后,通常被进行填埋处理。锡铅焊料由于其使用方便、价格经济、电气和机械性能良好的特性,多年来一直被广泛用于电气连接。然而,近年来由于环境污染,酸雨开始与填埋的铅废料发生化学反应,酸雨将铅转化成很易溶于水的离子化合物,污染水源。无铅焊料和焊接工艺的研发因此成为重要的环境问题。 虽然美国迄今还没有类似的立法规定,但欧州要求在半导体和电子设备中减少铅的使用,并规定在2006年7月1日完全实行无铅装配。这将会对全球市场产生广泛影响。在过渡期间,全球的供应商必须选择,是否完全从有铅转换至无铅生产,还是使用有铅和无铅参混的生产模式。后者必须在生产、材料和产品等方面进行细仔的跟踪。为了减少混合生产模式中供应商和客户长期面临的供应链风险,同时也为尽快转换到生产环保产品,Toshiba建议工业界缩短此过渡期,在2004年完成从有铅到无铅组装的转换。 为缩短向无铅转换的时间,OEM、合同制造商(CM)和半导体供应商需要紧密合作。业界对各个环节的支持以及承担的义务,是有效实现无铅、开发更宽泛的工艺窗口和生产制程的关键。为帮助业界理解眼前面临的问题,以下综述了与无铅化转换有关的商业和技术问题。 商业问题 面对无铅转换,制造商必须首先作出的一个重要的决策是,应该完全采用无铅的封装器件和焊料,还是应该保持双模式的生产?需要考虑的因素包括:来料供应(涉及到晶园的制造过程) ;客户服务问题;制造设施、成本和库存管理;原料供应的连续性;元件编号和物料清单(BOM)管理;工业界的合作等。 客户服务问题 针对无铅的需求,制造商首先需要弄清客户所优先考虑的问题,向客户提供及时而有价值的信息,调查客户需要,与客户交换无铅转换进程,等等。这些对无铅的平稳过渡是必不可少的。公开无铅转换计划,可以更好为完成转换做好准备。 由于欧盟法律还有将近三年的时间生效,在美国目前还无类似规定,一些客户没有考虑采取无铅生产。此外,一些特殊工业部门,其中包括网络硬件产品公司,现在可不受RoHS规则的限制(或享有延长的限期)。满足这类无须进行无铅转换的客户的需求,需要继续提供原先的有铅元器件,或对新的无铅元器件予以再次鉴定,确保它们能否适应有铅工艺。 另一方面,产品销往欧州和亚州的制造商,正在慎重地寻找无铅的替代制程。许多日本公司已经制定了它们的进程表,已经或计划在2003或2004转换至无铅制造。此外,许多电子制造服务厂商(EMS),也己经建立了合格的无铅产品生产线。 Toshiba一直在努力进行无铅制造转换的规划。我们的目标是顺利、有效地转至无铅产品生产。这是一项挑战性的任务,因为仅在北美,我们就向几千客户出售上千种产品,而这些产品都会受到无铅过渡的影响。此外,由于我们的每位客户都有各自不同的无铅转换进程安排,这使得过渡过程更为复杂。 工厂和客户的库存管理 转换至无铅制造需要使用新的物料,并对新物料的供应链重新进行检验和鉴定。双模式物料清单(BOM)需要额外的库存管理,并进行细心的安排和预测,防止双模式生产中物料互混;对现有的有铅产品的厍存以及线上的产品,更须在无铅转换期的前后加以严格管理,以确保有铅和无铅产品互不相混;无铅产品须要采用新编号,比如使用清晰的无铅产品标志。无法在器件上作标志的小尺寸器件,其包装上必须在制造厂的标签上加以标记,并且在再次分包装时,需要特别注意防止参混。有的OEM顾客就要求对无铅的产品进行专门的标记。 生产计划人员和采购人员必须得到充足的相关信息,并得到培训以了解产品的不同特点;对SMT操作员和技术员也要进行培训。一旦无铅产品与有铅产品同时进行制造,就必须对生产进行严格管理,防止参混。许多供应商和客户要求使用两种不同的部件编号和两种不同的物料清单。 工业界的协调与合作 迄今,关于无铅焊料己有许多独立的研究报告,然而,还没有一个得到工业界普遍接受采用的无铅焊料合金。为此,需要各方面协同合作,加以研究解决,一个很好的例子是,IPC和JEDEC对不同研究和开发活动进行的参与和支特。 供应的连续性 在有铅和无铅生产过程中,需要建立双模式BOM并加以管理。整个供应链的管理要在双模式BOM的范围下进行评估;双模式BOM以及转换进程的变化,都会使维护和跟踪BOM的成本显著增加;缺乏现行的工业标准和时间进度表,也会对双模式供应产生很大影响;电子元器件供应商的无铅转换日程各不相同,使供应的连续性变得更为复杂;另外,如同多数新技术那样,突发事件常有发生,这会导致无铅技术转换过程中,生产

相关文档
最新文档