谈线段的和差倍分问题

谈线段的和差倍分问题
谈线段的和差倍分问题

谈线段的和差倍分问题的证明

东方市四更中学董崇雄

在初中几何中,证明线段的相等关系是一个重要的教学内容,而有关线段的和、差、倍、分问题,则是其中的教学难点。如何搞好线段的和差倍分的教与学?本文通过一些例题,谈谈它的一般证明方法。

一、运用定理法

即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。

于D,M为BC中点.

1AB

求证:DM =

2

1AB等于△ABC的

分析:如图,因为

2

中位线NM的长,所以原命题就转化为证明DM=NM。∵DN为Rt△ADC斜边上的中线,∴DN=NC;∴∠2=∠C,又∵2∠C=∠B=∠1=∠2+∠3,∴∠2=∠3=∠C ,∴DM=MN,问题得证。

说明:证明线段的和差倍分问题,大都是采取间接的方法进行,即把线段的和差倍分问题转化为证明两条线段相等的问题。“转化”是证明线段的和差倍分问题的指导思想,它通过对原问题进行变形,促使矛盾的转移,从而达到化未知为已知,化难为易,化繁为简的目的,一般说来,运用定理法证明线段的和差倍分问题,就是根据有关定理将原命题转化后再证明。

二、割补线段法

这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补”

的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍

分关系,从而将多线段问题转化为两线段问题。

例2 如图,在△ABC 中,BD =FC ,FG ∥DE ∥BA ,D 、F 在BC 上,E 、G 在AC 上. 求证:FG =AB -DE

分析:本题的关键在于构造一条线段,

使之等于(AB -DE ),如图,在AB 上载取线

段AH =DE ,则AB -DE =BH ,从而把原命题转化

为证明FG =BH 的问题,进而通过证△BHD ≌FGC ,使原命题得证。

例3 如图,P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD .

求证:AP =BP +DQ .

证明:延长PB 至E ,使BE =DQ ,

∵四边形ABCD 是正方形,

∴BA =AD ,∠EBA =∠QDA =90°

∴△ABE ≌△ADQ ,∴∠E =∠4,∠3=∠1,

∵∠1=∠2,∴∠3=∠2,∴∠PAQ =∠BAQ =∠4

∴∠E =∠PAE ,∴PE =AP ,既BP +BE =AP ,

∴BP +DQ =AP

说明:例2通过“分割”的形式构造从两条线段之差,例3通过“添补”的形式构造从两条线段之和,从而将原命题转化为两条线段的问题,值得注意的是:在运用“割补法”证明线段的和差倍分关系时,是运用“添补”的形式构造线段的“和”或“倍”,还是运用“分割”的形式构造线段的“差”或“几分之几”,这不能取决于原命题的和差倍分形式。因为“和”与“差”,“倍”与“分”是可以互相转化的。因此,我们在选择割补的形式时要结合图形和题目的已知条件,即所割补的线段不是“孤立”的,而应能够与原来的图形产生联系。

从以上三个例题可知,在证明线段的和差倍分关系时,往往通过添辅助线,

构造出能表示线段的和差倍分关系的线段,促使问题的转化。但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。下面请看一个例子。

例4 如图,△ABC 中,∠BAC =90°,AE 是经过点A 的一条直线,交BC 于F ,且B 、C 在AE 在的异侧,BD ⊥AE 于D ,CE ⊥AE 于E ,

求证:DB =DE +CE 。

分析:通过分析题目的已知条件可知:

△ABD ≌△CAE ,从而得AD =CE ,则DE +CE =AE ,

而BD =AE ,原命题得证。

三、比例线段法 即找出与所证明有关的比例式,通过对比例式进行变形或重新组合,从而得出线段之间的和差倍分关系。

例5 如图,在△ABC 中,BD 是∠B 的平分线,△ABD 的外接园交BC 于E ,若AB =21

AC , 求证:CE =2AD 。

分析与证:

因为“CE =2AD ”与“AB =21

AC ”的倍分关系一致,因此想办法通过比例式将

这些线段联系起来,连接DE ,则∠CDE =∠ABC ,故△CDE ∽△CBA ,得CE :DE =AC :AB =2,又由BD 为∠ABC 的平分线得DE =AD ,所以CE :AD =2,即CE =2AD 。

运用定理法、割补法和比例线段法是证明线段的和差倍分问题常用的方法,它们的共同点是:通过变换,促使问题的转化从而达到证明的目的。鉴于几何问题的复杂多样性,在证明线段的和差倍分问题时,不应局限于这三种方法,而应积极开动脑筋,拓展思路,即能够运用定势思维进行思考,又要防止定势思维的局限性。

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分 一、证明线段或角的倍分 1、方法:①长(或大)折半 ②短(或小)加倍 2、判断:两种方法有时对同一个题都能使用,但存在易繁的问 题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。 3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或 利于利用已知条件而添。 4、传递:在加倍或折半后,还不易或不能证明结论,则要找与 被证二量有等量关系的量来传递,或者添加这个量来传递。此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。参考例 4、例 5、例6。 例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和 AC 为边向形外作的正方形。求证:FH=2AD / BAC+ / ACN=180 证明:延长AD 至N 使AD=DN 则ABNC 是平行四边形 CN=AB=FA AC=AH 又/ FAH+ / BAC=180 ???△ FAHY NCA ??? FH=AN 例 2、△ ABC 中,/ B=2 / C , AD 是高,M 是BC 边上的中点。 $ ???

1 求证:DM=2 AB / 2=Z B ???/ 2=2Z 1 ???/ 1 = / DNM 又 AN=DN=ND ? DM=2 A B 1 贝J BFAC ??? BF=AE ???△ AEC 心 BFD ?DF 二CE 二 CD=2CE 作业: 1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1 线交AC 于F ,求证:AF=2 FC 2、AB 和AC 分别切? O 于B 和C, BD 是直径。求证/ BAC 二Z CBD 3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。求证:BD=2CE 例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E , 证明:取AB 的中点N ,连接MN 、DN 贝J MN // AC / 1 = / C ??? DM=DN 例 3 △ ABC 中,AB=AC , E 是 AB 的中点,D 在AB 的延长线上,且 DB=AC 。求证:CD=2CE 证明:过B 作CD 的中线BF V AB=AC , E 是AB 的中点 又 DB=AC

线段与角的和差倍分计算

专题八__线段与角的和差倍分计算__[学生用书A62] 一线段的和差倍分计算 教材P153作业题第4题) 已知线段AB=a(如图1),延长BA至点C,使AC=1 2AB.D为线段BC的中点. (1)求CD的长; (2)若AD=3 cm,求a的值. 在一条直线上顺次取A,B,C三点,已知AB=5 cm,点O是线段AC 的中点,且OB=1.5 cm,则BC的长是() A.6 cm B.8 cm C.2 cm或6 cm D.2 cm或8 cm 如图2,某汽车公司所运营的公路AB段有四个车站依次是A,C,D,B, AC=CD=DB.现想在AB段建一个加油站M,要求使A,C,D,B站的各一辆汽车到加油站M所花的总时间最少,则M的位置在() A.在AB之间B.在CD之间C.在AC之间D.在BD之间如图3,点D是线段AB的中点,C是线段AD的中点,若AB=4 cm, 求线段CD的长度. 如图4,已知点C是线段AB上一点,AC<CB,D,E分别是AB,CB 的中点,AC=8,EB=5,求线段DE的长.

如图5,线段AC ∶CD ∶DB =3∶4∶5,M ,N 分别是CD ,AB 的中点, 且MN =2 cm ,求AB 的长. 如图6,点C 分线段AB 为5∶7,点D 分线段AB 为5∶11,已知CD = 2 cm ,求AB 的长. 如图7,已知线段AB 上有两点C ,D ,且AC =BD ,M ,N 分别是线段 AC ,AD 的中点.若AB =a cm ,AC =BD =b cm ,且a ,b 满足(a -10)2+???? ??b 2-4=0.求线段MN 的长度. 二 角的和差倍分计算 如图10,已知直线AB 上一点O ,∠AOD =44°,∠BOC =32°,∠EOD =90°,OF 平分∠COD ,求∠FOD 与∠EOB 的度数. 已知∠α和∠β互为补角,并且∠β的一半比∠α小 30°,求∠α,∠β. 如图11,从点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =100°,OF 平分∠BOC ,∠AOE =∠DOE ,∠EOF =140°,求∠ 的度数.

(完整版)线段的和差倍分专项训练题2

线段的和差倍分专项训练题2 1.如图,已知线段AB 长为40mm ,C 是AB 的中点,延长AB 到D 点,使CD=3CB ;E 点在线段AB 的反向延长线上,且BD=2EA ,求线段ED 的中点M 到C 点的距离. 2.如图,已知线段AB=3cm ,请读题、画图、计算并作答:(1)根据下列语句画出图形:在线段AB 上取一点K ,使AK=BK ,在线段AB 的延长线上取一点C ,使AC=3BC ,在线段BA 的延长线上取一点D ,使AD=AB ;(2)在(1)所画出的图形中,求线段BC 、DC 的长;(3)在(1)所画出的图形中,点K 是哪些线段的中点?请写出来. 3.如图,已知线段AB ,点C 在AB 的延长线上,AC=35BC ,D 在AB 的反向延长线上,BD=5 3DC .(1)在图上画出点C 和点D 的位置;(2)设线段AB 长为x ,则BC=;AD=;(用含x 的代数式表示)(3)若AB=12cm ,求线段CD 的长 4.已知线段AB=4,将线段AB 延长至C ,使BC= 2 1AB ,D 为AC 的中点,反向延长AB 至E ,使EA=AD ,根据题意画出图形并求AE 的长

5.如图,延长线段AB 至点C ,使BC=21AB ,反向延长AB 至D ,使AD=3 1AB .(1)依题意画出图形,求BC :AD 的结果;(2)若点E 为BC 的中点,且BD-2BE=10,求AB 的长 6.已知线段AB=a ,小明在线段AB 上任意取了点C 然后又分别取出AC 、BC 的中点M 、N ,的线段MN (如图1),小红在线段AB 的延长线上任意取了点D ,然后又分别取出AD 、BD 的中点E 、F ,的线段EF (如图2).(1)试判断线段MN 与线段EF 的大小,并说明理由;(2)若EF=x ,AD=4x+1,BD=x+3,求x 的值 7.如图,C 为线段AB 上一点,D 是线段AC 的中点,E 为线段CB 的中点.(1)如果AC=6cm ,BC=4cm ,试求DE 的长;(2)如果AB=a ,试探求DE 的长度;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,D ,E 分别为AC ,BC 的中点,你能猜想DE 的长度吗?直接写出你的结论,不需要说明理由 8.已知:点A 、B 、C 在直线l 上,线段AB=10,M 是线段AC 的中点,N 是线段BC 的中点.(1)如图①,若点C 在线段AB 上,且AC=6,求线段MN 的长;(2)若点C 是线段AB 上任一点,其他条件不变,能求出线段MN 的长度吗?请说明理由;(3)若点C 在线段AB 外,M 、N 仍分别是AC 、BC 的中点,你能猜想MN 的长度吗?请在备用图②、③中画出相应的图形,写出你的结论,并说明理由

线段和差倍分

部分内容来源于网络,有侵权请联系删除! 怎样证明线段的和差倍分问题 怎样证明线段的倍分问题 【典型例题】 常规题型1、已知:如图所示,点D 、E 分别是等边ABC ?的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 2 1 = . 常规题型2、已知:如图所示,在ABC ?中,AB=AC ,?=∠120A ,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N .求证:CM=2BM . 能力挑战1、如图所示,在ABC ?中,BC AB 2 1 =,D 是BC 的中点,M 是BD 的中点.求证:AC=2AM . 能力挑战2、已知:如图所示,在ABC ?中,BD 是AC 边上的中线,BH 平分BH AF CBD ⊥∠,,分别交BD 、BH 、BC 于E 、G 、F .求证:2DE=CF . A D P C B Q M A D B A M N B C A E G B D H

部分内容来源于网络,有侵权请联系删除! 【经典练习】 1、如图所示,已知ABC ?中,21∠=∠,AD=DB ,AC DC ⊥.求证:AB AC 2 1 = . 2、已知:如图所示,D 是ABC ?的边BC 上一点,且CD=AB ,BAD BDA ∠=∠,AE 是ABD ?的中线.求证:AC=2AE . 3、已知:如图所示,在ABC ?中,AB=AC ,?=∠120BAC ,D 是BC 的中点,AB DE ⊥于E .求证:EB=3EA . 4、已知:如图所示,在ABC ?中,AB=AC ,?=∠120BAC ,P 是BC 上一点,且?=∠90BAP .求证:PB=2PC . 5、已知:如图所示,锐角ABC ?中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD . A B E D E CE A D E B C A D E B A P B C A D B C 1 2

线段的和差倍分问题的证明2017

线段的和差倍分问题的证明 一、运用定理法 即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。 例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM = 2 1AB 对应练习 1、已知:如图所示,点D 、E 分别是等边ABC ?的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 2 1 = . 2、如图所示,在ABC ?中,AB=AC ,?=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 2 1 =. 3、如图所示,在ABC ?中,BC AB 2 1 = ,D 是BC 的中点,M 是BD 的中点.求证:AC=2AM . 4、已知:如图所示,D 是ABC ?的边BC 上一点,且CD=AB ,BAD BDA ∠=∠,AE 是ABD ?的中线.求证:AC=2AE . Q A D P C B E M A D B A B E D C A

5、已知:如图所示,锐角ABC ?中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD . 二、割补线段法 这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。下面请看一个例子。 例2、P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD . 求证:AP =BP +DQ . 例3、 如图,△ABC 中,∠BAC =90°,AE 是经过点A 的一条直线,交BC 于F ,且B 、C 在AE 在的异侧,BD ⊥AE 于D ,求证:DB =DE +CE 。 对应练习 1、如图所示,已知ABC ?中,?=∠60A ,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O .求证:BE+CD=BC . A D E B C A O E B C D

第三讲--线段的和差倍分问题

如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明. (3)解:BE+DF=EF;理由如下: 延长AB至点N,使BN=DF,连接CN,如图3所示: ∵∠ABC+∠D=180°,∠NBC+∠ABC=180°, ∴∠NBC=∠D, 在△NBC和△FDC中,, ∴△NBC≌△FDC(SAS), ∴CN=CF,∠NCB=∠FCD, ∵∠BCD=140°,∠ECF=70°, ∴∠BCE+∠FCD=70°, ∴∠ECN=70°=∠ECF, 在△NCE和△FCE中,, ∴△NCE≌△FCE(SAS), ∴EN=EF, ∵BE+BN=EN, ∴BE+DF=EF. 26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C 向直线BP作垂线,垂足分别为点E、F,点O为AC的中点. (1)当点P与点O重合时如图1,易证OE=OF(不需证明) (2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明. 【考点】四边形综合题. 【分析】(1)由△AOE≌△COF即可得出结论. (2)图2中的结论为:CF=OE+AE, 延长EO交CF于点G,只要证明 △EOA≌△GOC,△OFG是等边三角 形,即可解决问题. 图3中的结论为:CF=OE﹣AE,延长 EO交FC的延长线于点G,证明方法 类似. 【解答】解:(1)∵AE⊥PB,CF⊥BP,

线段和差倍分及其应用专题

线段的和差倍分及其应用专题【例1】、如图,D是AB的中点, E是BC的中 点 ,BE= 5 1 AC=2cm,线段DE的长,求线段DE的长. 练习: 1、如图,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长. 2、如图,C为线段AB的中点,N为线段CB的中点,CN=1cm。求图中所有线段的长度的和. 3、在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人. (1)若他们分别乘出租车去上班,公司需支付车费多少元? (2)如果你是公司经理,你对他们有没有什么建议?

4、如图所示,沿江街AB 段上有四处居民小区A .C .D .B ,且有AC=CD=DB ,为改善居民的购物环境,想在AB 上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿?为什么? 【例2】、点C 、D 顺次将线段AB 分成三部分,且AC = 2CD,CD :DB = 1 :3,M 、N 分别为AC 、BD 的中点,MN = 7cm,求线段AB 的长度。 练习: 1、M 、N 是线段E 、F 上两点,已知3:2:1:: BF AB EA ,M 、N 分别是EA 、BF 的中点,且MN=8cm ,试求EF 的长。 2、已知点C 在线段AB 上, AC=72AB ,M 是线段BC 的中点,AM=9 cm,试求AB 的长. · · · · · · A B C D M N A B M C

2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略

2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略在几何问题中,要证明一条线段是另外几条线段的和差,或是另一线段的几倍或几分之几,我们统称为线段的和差倍分问题,处理这类问题的指导思想是化归为线段的相等问题. 一、利用全等形或相似形 对于线段的倍分问题,通常可利用图形中特殊的分点为解题的突破口,找出图形中较短线段的倍分线段,再用全等三角形证明它与较长线段相等,或围绕特殊分点对应线段所在三角形寻找相似三角形,利用相似形对应线段的比例关系达到求证的目的.例1如图1,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD =45°,AD与BE交于点F,连CF. (1)求证:BF=2AE; (2)若CD=2,求AD的长. 分析由图形的对称性,不难发现点E为AC的中点,即AC=2AE,故问题(1)只要证明BF=AC. (2)略. 例2如图2,点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于点F. (1)求证:△AEB∽△OFC; (2)AD=2OF.

二、取长补短法 对于线段的和差问题,通常采用延长较短线段或截取较长线段的方式,化归为线段的相等问题(俗称取长补短法). 例3 如图3,已知点A、B、C、D顺次在⊙O上,且AB=BD,BM⊥AC于点M,求证:AM=CD+CM. 证明(延长法) 延长DC至点N,使CN=C M,下面只要证明AM=DN即可.连BN,则由AB=BD,得 ∠ACB=∠ADB=∠BAD=∠BCN, 又CN=CM,BC为公共边, 例4 如图4,在菱形ABCD中,F为BC边的中点,DF与对角线AC交于点M,过点M作ME⊥CD于点E,∠1=∠2. (1)若CE=1,求BC的长; (2)求证:AM=DF+ME.

与线段的和差倍分有关问题的处理

与线段的和差倍分有关问题的处理 1. 如图,已知⊿ABC 中,0 90BAC ∠=,AB=AC ,点P 为BC 边上一动点(BP

3. 如图,正方形ABGE (四边相等,四个角都等于0 90)中,点D 在EG 上,点C 在BG 上,且045DAC ∠=,求证:CD=DE+CB. 一道老题. 4. 如图,在上题中,若点D 在EG 的延长线上,点C 在GB 的延长线上,其余条件不变. 求证:DE=BC+CD. G E A B D 先证明三角形BAC 全等于EA*,然后证明绿蓝两个图形全等,做等边转化. C G E D

5.如图,AB=AE ,AB⊥AE ,AD=AC ,AD⊥AC ,点M为BC的中点,求证:DE=2AM. M D E B A C 1.倍长中线是这道题的第一难点.辅助线做出来就做出了一大半. 2.证明角CAN和角EAD相等是本题的第二关键,在于角BAC和角AED+角ADE的相等转化到三角形ANC当中,做等量代换. 6.如图,AD是⊿ABC的中线,点E在BC的延长线上,CE=AB ,∠BAC=∠BCA,求 证:AE=2AD. 一. 倍长中线的使用,作AD等长的线段DE. 二. 证明蓝绿两三角形全等. A C

线段的和差倍分教案

线段的和差倍分教案 篇一:三角形专题线段的和差倍分 专题:三角形之线段的和差倍分 1、在△ABC中,∠ACB= 900,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E。 (1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE。(2)当直线MN绕点C旋转到图2的位置时,问DE 、AD、BE 有何关系,并说明理由。 A 2、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D. 求证:DE?AD?BE. 3、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)FC=AD; (2)AB=BC+AD 4、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线 垂直于过C点的直线于E,直线CE交BA的延长线于F. 求证:?BD=CF ?BD=2CE.

5、?如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,过D 点作EF∥BC交AB于E, 交AC于F,求证:EF=BE+CF. ?在△ABC中,BD平分∠ABC,CD平分∠ACG,过D点作EF∥BC 交AB于E,交AC于F, 试探究BE、EF与CF的数量关系. 篇二:【教案】2.4线段的和与差 2.4线段的和与差 教学目标 1.理解线段可以相加减,掌握用直尺、圆规作线段的和、差. 2.利用线段的和与差进行简单的计算。 教学重点和难点 重点:用直尺、圆规作线段的和、差。 难点:进行简单的计算。 教学时间:1课时 教学类型:新授 教学过程: 一、复习旧知,作好铺垫 1.已知线段AB,用圆规、直尺画出线段CD,使线段CD=AB. 2.两点间的距离是指() A.连结两点的直线的长度; B.连结两点的线段的长度;

谈线段的和差倍分问题的证明

线段的和差倍分问题的证明 在初中几何中,证明线段的相等关系是一个重要的教学内容,而有关线段的和、差、倍、分问题,则是其中的教学难点。如何搞好线段的和差倍分的教与学?本文通过一些例题,谈谈它的一般证明方法。 一、运用定理法 即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。 例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM = 21AB 分析:如图,因为2 1AB 等于△ABC 的 中位线NM 的长,所以原命题就转化为证明DM =NM 。∵DN 为Rt △ADC 斜边上的中线,∴DN =NC ;∴∠2=∠C ,又∵2∠C =∠B =∠1=∠2+∠3,∴∠2=∠3=∠C ,∴DM =MN ,问题得证。 说明:证明线段的和差倍分问题,大都是采取间接的方法进行,即把线段的和差倍分问题转化为证明两条线段相等的问题。“转化”是证明线段的和差倍分问题的指导思想,它通过对原问题进行变形,促使矛盾的转移,从而达到化未知为已知,化难为易,化繁为简的目的,一般说来,运用定理法证明线段的和差倍分问题,就是根据有关定理将原命题转化后再证明。 二、割补线段法 这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍

分关系,从而将多线段问题转化为两线段问题。 例2 如图,在△ABC 中,BD =FC ,FG ∥DE ∥BA ,D 、F 在BC 上,E 、G 在AC 上. 求证:FG =AB -DE 分析:本题的关键在于构造一条线段, 使之等于(AB -DE ),如图,在AB 上载取线 段AH =DE ,则AB -DE =BH ,从而把原命题转化 为证明FG =BH 的问题,进而通过证△BHD ≌FGC ,使原命题得证。 例3 如图,P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD . 求证:AP =BP +DQ . 证明:延长PB 至E ,使BE =DQ , ∵四边形ABCD 是正方形, ∴BA =AD ,∠EBA =∠QDA =90° ∴△ABE ≌△ADQ ,∴∠E =∠4,∠3=∠1, ∵∠1=∠2,∴∠3=∠2,∴∠PAQ =∠BAQ =∠4 ∴∠E =∠PAE ,∴PE =AP ,既BP +BE =AP , ∴BP +DQ =AP 说明:例2通过“分割”的形式构造从两条线段之差,例3通过“添补”的形式构造从两条线段之和,从而将原命题转化为两条线段的问题,值得注意的是:在运用“割补法”证明线段的和差倍分关系时,是运用“添补”的形式构造线段的“和”或“倍”,还是运用“分割”的形式构造线段的“差”或“几分之几”,这不能取决于原命题的和差倍分形式。因为“和”与“差”,“倍”与“分”是可以互相转化的。因此,我们在选择割补的形式时要结合图形和题目的已知条件,即所割补的线段不是“孤立”的,而应能够与原来的图形产生联系。 从以上三个例题可知,在证明线段的和差倍分关系时,往往通过添辅助线,

七年级上期有关角和线段的和差倍分专项训练经典精品

【关键字】关系、满足 线段有关的计算题 例1.由O 是线段AB 的中点,你能得出哪些关系式? ∵O 是线段AB 中点(已知) ∴AO= ,或AO=21 ,或AB=2 例2:(1)已知:O 是线段AB 中点,AB=10cm ,求OA 的长度。 (2)已知:O 是线段AB 中点,OA=5cm ,则OB= ,AB= 。 例3:线段AB=8cm,C 是AB 的中点,D 是BC 的中点,求AD 的长度。 例4.已知线段AB=10,C 是线段AB 上的任意一点,M 是AC 的中点,N 是BC 的中点,求线段MN 的长。 例5.已知C 为线段AB 的中点,AB=10,D 是AB 上一点,若CD=2,求线段BD 的长。 1. 已知:O 是线段AB 中点,OA=3cm ,则OB= ,AB= 。 2. 已知:O 是线段AB 中点,AB=7cm ,则OA= 。 3.如图,若CB=4cm ,DB=7cm ,且D 是AC 的中点,AC= 。 4.长为 22 cm 的线段 AB 上有一点 C ,求AC 、BC 的 中点间的距离。 【拔高例题】 [例1] 填空如图,把线段AB 延长到点C ,使BC=2AB ,再延长BA 到点D ,使AD=3AB ,则 ① DC=_____AB=_____BC ② DB=_____CD=_____BC [例2] 填空 如图,点M 为线段AC 的中点,点N 为线段BC 的中点 ① 若AC=2cm ,BC=3cm ,则MN=_____cm ② 若AB=6cm ,则MN=_____cm ③ 若AM=1cm ,BC=3cm ,则AB=_____cm ④ 若AB=5cm ,MC=1cm ,则NB=_____cm [例3] 根据下列语句画图并计算 (1)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段BC 的中点,若AB=30cm ,求线段BM 的长 (2)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段AC 的中点,若AB=30cm ,求线段BM 的长 [例4] 如图,已知AB= 40,点C 是线段AB 的中点,点D 为线段CB 上的一点,点E 为线段DB 的中点,EB=6,求线段CD 的长。 [例5] 如图,AE=21EB ,点F 是线段BC 的中点,BF=5 1AC=1.5,求线段EF A B C M N O A B O A B

(完整版)线段和差倍分及其应用专题

线段的和差倍分及其应用专题知识点: A、线段的和、差 如图: ①AB= + ;②AC= -;③BC= -; B、线段的中点 如图: ∵点C是线段AB的中点;∴①= = 2 1 ;②=2 =2 ;解题思想:求线段的长度时,通常需要依据条件将线段表示成两线段的和、差。 ★☆★解题需注意题设条件中的语言表达,能准确地把文字语言转化成图形语言,并要求能准确地书写符号语言。如:“点C在线段AB上”与“点C在直线AB上”,你能根据文字语言将其转化成图形语言吗?试一试! 例题讲解: 【例1】、如图,D是AB的中点, E是BC的中点,BE= 5 1AC=2cm,线段DE的长,求线段DE的长. 练习: 1、如图,AB=24cm,C、D点在线段AB上,且CD=10cm, M、N分别是AC、BD的中点,求线段MN的长. A B C A B C

2、如图,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和. 3、在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人. (1)若他们分别乘出租车去上班,公司需支付车费多少元? (2)如果你是公司经理,你对他们有没有什么 建议? 4、如图所示,沿江街AB段上有四处居民小区A.C.D.B,且有AC=CD=DB,为改善居民的购物环境,想在AB上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿?为什么?

线段的和差倍分问题一

线段的和、差、倍、分问题(一) 1.数有加减乘除四则运算,线段有和差倍分四则运算。 2.线段的和差倍分四则运算,关键是正确地画出图形,有时需要分类讨论。 3.对于比较复杂的,可设某个线段为x,找出等量关系,列一元一次方程求解。 4.结论:已知线段AB,点C是线段AB上任意 ..一点,点M,N分别是线段AC与线段BC的中点,则 MN=1 2 AB. 证明:由于点M是AC中点,所以MC= 1 2 AC,由于点N是BC中点,则CN= 1 2 BC,而MN=MC+CN= 1 2(AC+AB)= 1 2 AB。 典型例题 例1 如果A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,那么AC两点之间的距离为() A、2cm B、6cm C、2或6cm D、无法确定 分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题. 解:本题有两种情形: (1)当点C在线段AB上时,如图:AC=AB-BC,又∵AB=4cm,BC=2cm,∴AC=4-2=2cm; (2)当点C在线段AB的延长线上时,如图:AC=AB+BC,又∵AB=4cm,BC=2cm,∴AC=4+2=6cm. 例2 如果A,B,C在同一条直线上,线段AB=6cm,BC=2cm,M是AB的中点,N是BC的中点,那么M、N两点之问的距离是() A、4cm B、2cm C、4cm或2cm D、8cm或4cm 分析:根据中点定义求出BM、BN的长度,然后分①点C不在线段AB,②点C在线段AB上两种情况进行讨论求解. 解:∵AB=6cm,BC=2cm,M是AB的中点,N是BC的中点,∴BM=1 2 AB= 1 2 ×6=3cm, BN=1 2 BC= 1 2 ×2=1cm, ①如图1,点C在线段AB的延长线上时,MN=BM+BN=3+1=4cm, ②如图2,点C在线段AB上时,MN=BM-BN=3-1=2cm, 综上所述,M、N两点之问的距离是4cm或2cm. 例3 如图,线段AC=6 cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长. 分析:因为点M是AC的中点,则有MC=AM= 12AC,又因为CN:NB=1:2,则有CN= 13BC,故MN=MC+NC 可求. 解:∵M是AC的中点,∴MC=AM=1 2 AC= 1 2 ×6=3cm, 又∵CN:NB=1:2,∴CN=1 3 BC= 1 3 ×15=5cm,∴MN=MC+NC=3cm+5cm=8cm. 答:MN的长为8cm.

【初三】线段、角的和差倍分

初中数学竞赛专题选讲 线段、角的和差倍分 一、内容提要 证明线段、角的和,差,倍,分,常用两种方法:一是转化为证明线段或角的相等关系;一是用代数恒等式的证明方法。 一. 转化为证明相等的一般方法 ㈠通过作图转化 1. 要证明一线段(角)等于两线段(角)的和(用截长补短法) ⑴分解法-- 把大量分成两部分,证它们分别等于两个小量 ⑵合成法一一作出两个小量的和,证它与大量相等 2. 要证明一线段(角)等于另一线段(角)的2倍 ⑴折半法一一作出大量的一半,证它与小量相等 ⑵加倍法-- 作出小量的2倍,证它与大量相等 ㈡应用有关定理转化 1. 三角形中位线等于第三边的一半,梯形中位线等于两底和的一半 2. 直角三角形斜边中线等于斜边的一半 3. 直角三角形中,含30度的角所对的直角边等于斜边的一半 4. 三角形的一个外角等于和它不相邻的两个内角和 5. 等腰三角形顶角的外角等于底角的2倍 6. 三角形的重心(各中线的交点)分中线为2 : 1 7. 有关比例线段定理 二. 用代数恒等式的证明 1. 由左证到右或由右证到左 2. 左右两边分别化简为同一个第三式 3. 证明左边减去右边的差为零 4. 由已知的等式出发,通过恒等变形,到达求证的结论 二、例题 例1.已知:△ ABC中,/ B = 2/ C, AD是高 求证:DC = AB + BD 分析一:用分解法,把DC分成两部分,分别证与AB , BD相等。可以高AD为轴作△ ADB的对称三角形△ ADE,再证EC = AE。 ???/ AEB =Z B = 2 / C 且/ AEB = Z C+Z EAC ,二/ EAC = Z C 辅助线是在DC 上取DE = DB,连结AE。 分析二:用合成法,把AB , BD合成一线段,证它与DC相等。仍然以高AD为轴,作出DC的对称线段DF。 为便于证明,辅助线用延长DB到F,使BF = AB,连结AF,则可得

线段与角的计算及解题方法归纳 (1)

线段与角的计算及解题方法 求线段长度的几种常用方法: 1.利用几何的直观性,寻找所求量与已知量的关系 例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。图1 分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。 解:因为点C分线段AB为5:7,点D分线段AB为5:11 所以 又因为CD=10cm,所以AB=96cm 2.利用线段中点性质,进行线段长度变换 例2.如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA的长。 图2 分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。 解:因为N是PB的中点,NB=14 所以PB=2NB=2×14=28 又因为AP=AB-PB,AB=80 所以AP=80-28=52(cm) 说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。 3. 根据图形及已知条件,利用解方程的方法求解 例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,, 求BC是AB的多少倍? 图3 分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。 解:因为C为AD的中点,所以 因为,即 又

由<1>、<2>可得: 即BC=3AB 例4. 如图4,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。 图4 分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。观察图形,已知量MN=MC+CD+DE+EN,可转化成x的方程,先求出x,再求出PQ。 解:若设AC=2x,则 于是有 那么 即 解得: 所以 4. 分类讨论图形的多样性,注意所求结果的完整性 例5. 已知线段AB=8cm,在直线AB上画线段BC=3cm,求AC的长。 分析:线段AB是固定不变的,而直线上线段BC的位置与C点的位置有关,C点可在线段AB上,也可在线段AB的延长线上,如图5。 图5 解:因为AB=8cm,BC=3cm 所以 或 综上所述,线段的计算,除选择适当的方法外,观察图形是关键,同时还要注意规范书写格式,注意几何图形的多样性等。 1.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,E为BC的中点,求线段AE的长(有两解)。 2.如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA 的长。 3.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长。 4.如图所示,已知B,C是线段AD上的两点,且CD=3 2 AB,AC=30mm,BD=40mm,求线段AD的长. 5、如图,点C在线段AB上,AC = 8厘米,CB = 6厘米,点M、N分别是AC、BC的中点。 (1)求线段MN的长;(2)若C为线段AB上任一点,满足AC +CB = a厘米,其它条件不变,你能猜想MN的长度吗?并说明理由。(3)若C在线段AB的延长线上,且满足AC—BC = b厘米,M、N分别

谈线段的和差倍分问题

谈线段的和差倍分问题的证明 东方市四更中学董崇雄 在初中几何中,证明线段的相等关系是一个重要的教学内容,而有关线段的和、差、倍、分问题,则是其中的教学难点。如何搞好线段的和差倍分的教与学?本文通过一些例题,谈谈它的一般证明方法。 一、运用定理法 即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。 于D,M为BC中点. 1AB 求证:DM = 2 1AB等于△ABC的 分析:如图,因为 2 中位线NM的长,所以原命题就转化为证明DM=NM。∵DN为Rt△ADC斜边上的中线,∴DN=NC;∴∠2=∠C,又∵2∠C=∠B=∠1=∠2+∠3,∴∠2=∠3=∠C ,∴DM=MN,问题得证。 说明:证明线段的和差倍分问题,大都是采取间接的方法进行,即把线段的和差倍分问题转化为证明两条线段相等的问题。“转化”是证明线段的和差倍分问题的指导思想,它通过对原问题进行变形,促使矛盾的转移,从而达到化未知为已知,化难为易,化繁为简的目的,一般说来,运用定理法证明线段的和差倍分问题,就是根据有关定理将原命题转化后再证明。 二、割补线段法 这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补” 的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍

分关系,从而将多线段问题转化为两线段问题。 例2 如图,在△ABC 中,BD =FC ,FG ∥DE ∥BA ,D 、F 在BC 上,E 、G 在AC 上. 求证:FG =AB -DE 分析:本题的关键在于构造一条线段, 使之等于(AB -DE ),如图,在AB 上载取线 段AH =DE ,则AB -DE =BH ,从而把原命题转化 为证明FG =BH 的问题,进而通过证△BHD ≌FGC ,使原命题得证。 例3 如图,P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD . 求证:AP =BP +DQ . 证明:延长PB 至E ,使BE =DQ , ∵四边形ABCD 是正方形, ∴BA =AD ,∠EBA =∠QDA =90° ∴△ABE ≌△ADQ ,∴∠E =∠4,∠3=∠1, ∵∠1=∠2,∴∠3=∠2,∴∠PAQ =∠BAQ =∠4 ∴∠E =∠PAE ,∴PE =AP ,既BP +BE =AP , ∴BP +DQ =AP 说明:例2通过“分割”的形式构造从两条线段之差,例3通过“添补”的形式构造从两条线段之和,从而将原命题转化为两条线段的问题,值得注意的是:在运用“割补法”证明线段的和差倍分关系时,是运用“添补”的形式构造线段的“和”或“倍”,还是运用“分割”的形式构造线段的“差”或“几分之几”,这不能取决于原命题的和差倍分形式。因为“和”与“差”,“倍”与“分”是可以互相转化的。因此,我们在选择割补的形式时要结合图形和题目的已知条件,即所割补的线段不是“孤立”的,而应能够与原来的图形产生联系。 从以上三个例题可知,在证明线段的和差倍分关系时,往往通过添辅助线,

相关文档
最新文档