GJ型轨检车原理及应用

GJ型轨检车原理及应用
GJ型轨检车原理及应用

GJ-5轨检车原理及应用

GJ-5型轨检车原理及应用

一、轨道动态检查技术的发展变化

轨道动态检查相比静态检查,更准确,也更能反映线路真实情况,更能评价列车运行安全性指标,因此轨检车一直是检查轨道病害、指导线路养护维修、保障行车安全的重要手段。我国轨道动态检查技术随着计算机技术和检测技术的发展得到迅速的发展,从二十世纪50年代的GJ-1型轨检车发展到目前的GJ-5型轨检车,检测精度和可靠性大大提高。

1、GJ-1型轨检车采用弦测法,机械传动,可以将轨距、水平、三角坑、摇晃(用单摆测量)项目的幅值绘在图纸上,人工判读超限并计算扣分。

2、GJ-2型轨检车仍采用弦测法,但改为电传动,检测项目比GJ-1型增加了高低,也是需要人工判读超限和计算扣分。我局1988-1993年使用该型车。

3、GJ-3型轨检车于80年代初期研制成功,是我国轨检车技术的一次大飞越,采用先进的传感器技术、计算机技术和惯性基准原理,可以检测高低、水平、三角坑、车体垂直和水平振动加速度等项目,计算机采集各检测项目数据后,判断超限等级并计算扣分。我局GJ-3型轨检车

(SY997737)于1994年初开始运用,是全路GJ-3型运用时间最长的,也是用得比较好的。

a、1999年我局轨检车技术人员研发的Ⅲ型轨检车实用软件成果是工务部门汇总分析轨检车检查数据、指导养护维修线路的工具,它使轨检车的工作效率和工作质量得到了大大的提高,该成果达到了国内领先水平,于2000年通过了局级鉴定,并于2002年获得路局科技进步三等奖。

b、为了均衡地提高线路养护维修的质量,我局轨检车技术人员研发了轨道质量指数(TQI)应用软件,并于2003年局工务维修会议上向各工务段推广应用,便于向各工务段掌握线路的动态质量,科学指导线路养护维修,真正做到状态修,收到了很好的效果。

c、2004年我局轨检车技术人员研发GPS(全球定位系统)自动校正里程系统,该系统能自动校正轨检车里程,消除轨检车测量的里程累计误差,便于各段准确定位检查病害处所,查找和整治线路病害,保证行车安全和提高线路保养质量。

d、2004年我局轨检车技术人员在原GJ-3型轨道检测系统的基础上,完成轨道几何参数变化率设计和开发,轨道几何参数变化率大大方便线路病害的查找和整治。

4、GJ-4型轨检车。1985年我国引进美国ENSCO公司T-IO轨检车,研制成功XGJ-1型轨检车,并在此基础上研制成功GJ-4型轨检车。GJ-4型轨检车采用惯性基准检测原理,“捷联式”系统结构(GJ-3型各子系统采用组合式),

计算机对各种误差信号进行补偿修正,并使用小型计算机集中处理全部检测项目数据。检测项目齐全,包括轨距、轨向、高低、水平、三角坑、车体垂直和水平振动加速度、超高、曲率、地面标志等。

由于GJ-3型和GJ-4型轨检车所使用的轨距梁存在严重的安全隐患,目前GJ-3型轨检车已基本报废,大多GJ-4型轨检车也进行了改造,淘汰了原用轨距伺服跟踪测量系统,采用和GJ-5型轨检车一样的激光摄像测量系统。

GJ-4型轨检车轨检车原理

轨检车的检测原理:1、轨距的检测原理:GJ-4型轨检车所采用的轨距检测系统为激光光电伺服跟踪轨距测量装置。在测量梁上安装激光光电传感器、位移计、驱动马达及伺服机械。当钢轨产生位移,使轨距变化时,光电传感器感受其变化并输出相关电信号。经调制解调器处理后,成为与轨距变化成线形比例的电压信号,再经过信号处理器、功放、驱动马达使光电传感器在伺服的推动下,发出的光束投身到左右股钢轨顶面下16mm处(16mm处是有效位置),跟踪钢轨位移。经计算显示轨距。(光电头被堵住、就不能检测轨距、同时也不检测方向)。监测范围1415mm---1480mm;+45mm、–20mm,误差为±1mm。2、曲率的检测原理:曲率为一定弦长曲线轨道(如30米)对应的圆心角a,即、度/30m、度数大、曲率大、半径小。反

之,度数小、曲率小、半径大。轨检车通过曲线时、测量轨检车每通过30米后车体方向角的变化值,计算出轨检车通过30米后的相应圆心角的变化值。即曲率。曲率、曲率变化率是检测曲线圆度的波形通道、仅供参考、不作考核内容。能正确判断曲线正矢连续差和曲线的圆度。曲率变化率的波形通道有突变、正矢肯定不好,(50×曲率)=正矢、如:某曲线曲率为0.46、正矢=50×0.46=23mm。在直线上存在碎弯、小方向或轨距递减不好。3、水平的检测原理:水平为轨道同一横断面内钢轨顶面之高差。曲线水平称为超高。GJ-4型轨检车采用补偿加速度系统测量水平,利用补偿加速度系统测量车体对地垂线滚动角,利用位移计测量车体与轨道相对滚动角,二者结合计算出轨道倾角。利用两轨道中心线间距(1500mm)计算出水平值。监测范围±200mm,误差±1.5mm。4、高低的检测原理:高低是指钢轨顶面纵向起伏变化。GJ-4型轨检车采用惯性基准的原理测量轨道变化的实际波型,得到高低变化的空间曲线,数据采集处理系统实时采集数据的间隔距离为0.305m,同时可换算成5米、10米、20米或其它弦长之测量法测量。测量高低的传感器除了测量曲率、水平外,另外还有2个垂直加速度计。通过车体位移,计算出轨面相对惯性空间的位移变化,进行必要的处理,得到高低数值。监测范围±60mm,误差±1.5mm。高低摸拟弦长18.6米。5、方向的检测原理:方向指钢轨

内侧面轨距点沿轨道纵向水平位置的变化。利用左右股轨距测量装置所测的左右股轨距变化或位移,轨距点相对纵向轨迹—轨向。监测范围±100mm,误差±1.5mm 。摸拟弦长18.6米。6、扭曲(三角坑)的检测原理:扭曲反映了钢轨顶面的平面性。如图:设轨顶面abcd四个点不在一个平面上,c点到abd三个点组成的平面的垂直距离h为扭曲。扭曲会使车轮抬高面悬空,使车辆产生3点支撑1点悬空,极易造成脱轨掉道。扭曲值h为:h=(a-b)-(c-d)h=△h1-△h2。△h1为轨道横断面I---I的水平值,△h2为轨道断面Ⅱ--Ⅱ的水平值,△h1-△h2为基长L(断面I—I与断面Ⅱ--Ⅱ之间距)时两轨道断面的水平差。水平已经测出,所以只要按规定基长取两断面水平差即可计算出扭曲值。

二、GJ-5型轨检车检测原理简介

2002年我国从美国IMAGEMAP公司引进GJ-5型轨检车。GJ-5型轨检车仍然采用惯性基准测量原理,但引入了全新的激光摄像测量、网络和数据库技术,包含轨道几何测量系统、车体振动加速度测量系统、GPS里程自动修正系统,环境监视系统等。轨道几何测量系统包含轨距、轨向、高低、水平、三角坑、超高、曲率等项目,车体振动加速度测量系统包含车体垂直加速度和水平加速度两个项目。根据新的轨道动态管理标准,GJ-5型轨检车在原有项目上增加了高低、轨向长波长(70m)、轨距变化率、曲率变化率和

横加变化率。新增加的长波长高低、轨向和三个变化率指标主要用于评价高速区段的列车运行的安全性与舒适性。变化率是轨道不平顺局部波形特征描述的方法之一,其反应的是幅值的变化快慢,不同于单纯的幅值大小。

1、轨距

轨距是钢轨轨头部踏面下16mm范围内两股钢轨工作边之间的最小距离。使用激光摄像技术测量。

2、轨向

钢轨内侧,轨距点沿轨道延长方向的横向凹凸不平顺。使用激光摄像技术和惯性基准原理测量。

3、高低

钢轨顶面沿延长方向的垂向凹凸不平顺。使用惯性基准原理测量。

4、水平

同一横截面上左右高低测量值的代数差,但不含曲线上按规定设置的超高值及超高顺坡量。

5、三角坑(扭曲)

左右两轨顶面相对轨道平面的扭曲,用相距一定基长水平的代数差表示。新车采用2.5m基长。

6、超高

使曲线地段外股钢轨高于内股钢轨或其差值。通过滚动陀螺测量轨检梁与地面倾角,计算出轨道超高。

7、曲率

曲率定义为一定弦长的曲线轨道对应之圆心角,度数越大,曲率越大,半径越小,通过度数或每公里的弧度来表示。也可以说是曲线半径的另一种提法。两者关系:曲线半径=1000m/曲率值。

8、车体垂直加速度

轨检车车体在垂直方向的振动强度。

9、车体水平加速度

轨检车车体在水平方向(即左右横向)的振动强度。

10、轨距变化率

轨距变化率是以2.5m基长轨距测量值的差值与基长的比值。

11、曲率变化率

曲率变化率是以18m基长曲率测量值的差值与基长的比值。

12、横加变化率

横加变化率是以18m基长车体横向加速度测量值的差值与车体通过基长所用时间的比值。

三、轨道检测基本知识

1、超限峰值的摘取

从超过一级再回到一级算一处超限。最大峰值作为超限峰值,达到最大峰的里程为超限里程,超限长度为达到一级点与再回到一级点之间的距离。

2、轨检车各检测项目正号定义如下:

(1)、轨距(偏差)正负:实际轨距大于标准轨距时轨距偏差为正,反之为负;

(2)、高低正负:高低向上为正,向下为负;

(3)、轨向正负:顺轨检车正向,轨向向左为正,向右为负;

(4)、水平正负:顺轨检车正向,左轨高为正,反之为负;

(5)、曲率正负:顺轨检车正向,右拐曲线曲率为正,左拐曲线曲率为负;

(6)、车体水平加速度:平行车体地板,垂直于轨道方向,顺轨检车正向,向左为正;

(7)、车体垂向加速度:垂直于车体地板,向上为正。

3、静态和动态轨道不平顺的关系

(1)静态轨道不平顺

无轮载作用时,人工或轻型测量小车测得的不平顺通常称为静态不平顺。静态不平顺不能如实反映暗坑、空吊板、刚度不均匀等形成的不平顺,往往只能部分反映道床路基不均匀残余变形积累形成的不平顺。静态不平顺只是轨道不平顺部分的、不确定的表象。

(2)动态轨道不平顺

用轨检车测得的在列车车轮荷载作用下才完全显现出来的轨道不平顺通常称为动态不平顺。

真正对行车安全,轮轨作用力,车辆振动产生实际影响的轨道不平顺是动态不平顺。因此,轨道不平顺的各种监控管理标准,尤其是安全管理标准,大多是依据动态不平顺来制定。

(3)静态和动态轨道不平顺的差异

通常情况下,同一地段动态不平顺与静态不平顺的波形,往往有较大差异。暗坑、吊板越多,不良扣件越多,道床密实度越不均匀,差异越大。

动态不平顺的幅值越大,静态和动态轨道不平顺的差异也越大。

起道捣固、拨道作业的质量越好、越均匀,静态和动态轨道不平顺的差异越小。

具有高平顺性的高速铁路,静态和动态轨道不平顺的差异较一般轨道小。

无碴轨道静态和动态轨道不平顺的差异较小。

(4)动、静态不平顺幅值间的关系

动、静态不平顺幅值一般不存在一一对应的函数关系。通过大量数据统计分析,可以得出以下结论:一个静态值可以对应一组动态值。同样一个动态值也可能对应一组静态值。相同轨道结构、不同种类的轨道不平顺,动、静态幅值之间的差异和相互关系各不相同。

四、GJ-5型轨检车在维修养护工作中的应用

1、数据资料

目前GJ-5型轨检车提供如下数据资料:一、二、三、四级超限资料,曲线摘要,公里小结,区段汇总简要,区段汇总表,轨道质量指数(TQI)以及波形文件等详细文件名及内容如下表:

(1)、超限资料:记录所选区段所有超限,CLASS1、

CLASS2、CLASS3_4三个文件中只包含轨距、轨向、高低、水平、三角坑、车体垂直加速度、车体水平加速度,其他类型超限存放在CLASS_OTHER中。超限资料是查找和消灭线路病害,确保行车安全和指导养护维修线路的极为重要的数据。

(2)、曲线摘要:记录了所选区段所有曲线实测资料,包含曲线平均半径、平均加宽、平均超高以及用75mm欠超高计算出的最高允许速度、限制该速度的极限点里程、半径、超高等数据资料。结合波形图,有助于计算、设置曲线超高和整治曲线病害。

(3)、公里小结表:记录了所选区段所有公里小结,用来评定和分析线路质量。

(4)、区段汇总简要:记录了所选区段简要汇总情况。

(5)、区段汇总表:所选区段详细汇总表。

(6)、轨道质量指数:记录了所选区段所有轨道质量指数,超限一列有感叹号表示这200米TQI超过管理值或者某一单项超过管理值。GJ-5型轨检车TQI数据格式与GJ-3型不同,我们原来使用的TQI管理软件已不能使用。

以上文件都是超文本文件,也就是网页文件,可以用IE 浏览器和WORD打开,建议用EXCEL打开并另存为EXCEL 文件,便于以后汇总统计和分析。

2、波形图查看及分析

(1)、波形图查看工具的使用

轨检车提供的*.ste文件是波形文件,采用部检测中心提供的专用看图软件(波形查看工具IAE)打开浏览,波形图各项目零线以上为正。

(2)、轨检车地面标志识别

轨道上的道口、道岔、桥梁、轨距拉杆等含有金属部件,安装于轨检梁上的地面标记传感器(ALD)可以检测到这些金属部件,输出的信号可以和里程、轨道不平顺同步显示在轨道检测波形图上。由于道口、道岔、桥梁、轨距拉杆等含有金属部件大小形状、位置不同,ALD信号响应不同。因此根据ALD信号特征可以识别道口、道岔、桥梁、轨距拉杆位置。

a、道岔(图)

b、桥梁(图)

c、道口(图)

(3)、如何结合波形图查找现场病害

平时我们到现场查找病害都是使用绝对里程定位,即根据轨检车提供的里程到现场查找病害,由于轨检车里程存在累计误差,往往找不到。

我们可以通过相对定位来查找病害,根据波形图地面标志,可以方便地识别道岔、桥梁、电容枕、道口,根据曲率和超高,也可以很容易定位曲线起、终点、缓和曲线、圆曲

线。再从波形图上计算病害与这些特定地面标志的距离即相对位置,在现场就很容易查找病害了。

(4)、波形图分析及病害的确认

轨检车检出病害,可以通过对波形图的分析来最后确认,应对比相关的项目,但不要对比相同传感器所对应的项目,因为同一路信号会导致几个项目出现样情况。单个项目出现尖刺,应是信号干扰,不是轨道病害。

a、高低出现大超限,垂加应有反应,反过来垂加出现大超限,高低应有反应。

b、轨向出现大超限,横加应有反应,反过来横加出现大超限,轨向应有反应。

c、水平、三角坑出现大超限,超高应有反应,此时不应去看高低,因为三角坑由水平计算而来,而水平由高低计算而来。

城市轨道交通动态检查--轨检车主要检测项目原理及危害分析

城市轨道交通动态检查--轨检车主要检测项目原理及危害分析 摘要:本文主要针对轨检车检查项目:水平、三角坑、高低、轨距、轨向和车体振动加速度进行检测原理及危害成因分析,对现场进行检测,掌握现场的几何尺寸,分析可能产生的原因进行及时处理并跟踪分析,来保证列车运行。 关键词:轨检车城市轨道线路危害成因 Abstract: This paper mainly for track inspection vehicle inspection items: horizontal, triangular pit, height, gauge, rail to body vibration acceleration detection theory and hazard cause analysis, on-site detection, master geometry of the scene, the analysis may producethe reasons for the timely processing and tracking analysis, to ensure that the trains run. Keywords: urban rail, line track ,inspection car, hazard causes. 随着城市轨道交通的不断发展,动态检查密度也随着加大,动态检查已作为指导城市轨道交通线路养护维修的重要依据,因此,动态分析质量直接关系到线路养护维修优劣。线路动态不平顺是指线路不平顺的动态质量反映,主要通过轨道检查车进行检测。如何利用轨检车资料帮助现场找准病害及分析产生原因是技术人员分析工作的重中之重。 1、主要检测项目及性能指标 轨道检查车对轨道动态局部不平顺(峰值管理)检查的项目为轨距、水平、高低、轨向、三角坑、车体垂向振动加速度和横向振动加速度七项。各项偏差等级划分为四级:Ⅰ级为保养标准,Ⅱ级为舒适度标准,Ⅲ级为临时补修标准,Ⅳ级为限速标准。 2、轨检车检测项目原理与分析 2.1、水平(超高) 2.1.1、水平病害的危害 水平定义为同一横截面上左右轨顶面相对所在水平面的高度差(在曲线上定义为超高)。 水平不平顺将使车辆产生侧滚振动,导致一侧车轮增载,一侧减载。许多专家认为曲线上严重的水平不平顺,往往是引起列车脱轨的重要原因。若轨道方向、水平两种不平顺同时存在且逆向复合时,引起脱轨的危险性更大。

GJ-5型轨检车的检测原理及数据处理

GJ-5型轨检车的检测原理及数据处理 摘要:轨道检查车是检查轨道病害的大型动态检测设备,对运输安全具有重要作用。文章简要探讨GJ-5型轨检车所采用的激光和摄像检测技术对常见病害的检测原理,介绍轨检车在病害检测中所产生的数据的识读及处理方式,分析我国两种轨道质量评价法的利弊以及应用方法。 关键词:轨检车;检测原理;数据处理 1引言 上世纪80年代以来,通常采用一维光电位移传感器,为满足测量系统的定位要求,安装基准一般选择在以轮对为刚体的结构上。 从测量原理角度来看,测量链的简捷有助于提高测量系统的精度。但是,随着检测速度的提高,轮轨作用力的增大,轴箱的振动随之增大,工作环境的恶劣束缚了检测系统的性能。随着传感器技术及计算机技术的发展,开始采用二维光电位移传感器,上世纪90年代末期,满足于更高精度的检测速度的激光和摄像技术获得应用并逐步取代了原有的其他检测系统。 目前,当今世界高速铁路发达的国家,激光和摄像检测技术获得了广泛的应用,而且,已成为目前世界上轨道检测系统的主流。如日本、美国、法国、德国、意大利等,均不同程度采用了该检测技术,从而提高了系统检测速度、精度和可靠性。在此背景下,我国引进了GJ-5型轨检车,采用激光和摄像检测技术,可测项目有:轨距、左右轨向、三角坑、曲率、车体加速度、轨底坡(可选项)、钢轨断面(可选项)等。 2GJ-5型轨检车对病害的检测原理 2.1高低检测原理 高低的测量基于惯性基准原理与图像测量原理。 测量梁相对于钢轨的位移分为两部分,第一部分为测量梁自身的位移,这部分由测量梁中的惯性包测量出梁的垂直加速度,并由系统对其修正,除去重力分量等不利因素,对加速度进行二次积分可得位移值。第二部分为测量梁移动后与钢轨之间的距离,由图像处理系统获得。两项位移之和为钢轨的高低数值。

充分利用轨检车数据及图纸(20210309024312)

充分利用轨检车数据及图纸 及时消灭线路病害创建高平顺线路 伴随我国铁路第 五次提速的顺利完成,我段管内铁路已普遍提 速至160km/h 。随着列车速度的提高,原有的管理方式、检测方式、 作业方式难以与 快速铁路对线路高平顺性的要求相适应。为适应快 速铁路对线路高 平顺性的要求,就需要我们提高对轨检车数据及图 纸的利用。我国 高速铁路技术已获突破性进展,秦沈客运专线已经 建成,试验段时 速已达321.5km/h 。伴随我国既有线的继续提速以及 新型高速客运专 线相继建成,就需要我们及早掌握利用轨检车数据 及图纸,及时消灭线路病害作业方式,为将来管理、维修更高运营 速度线路作准备。 铁路轨道支承在 密实度和弹性都很不均匀的道床和路基上,却要 承受很大的随机 均匀残余变形。 进行养护维修, 术性很强,花费 很难做好线路维修工作。 一、轨道不平顺 (一)轨道不平顺的分类 1. 轨道不平顺按对车辆激扰方向区分 ⑴.垂向轨道不平顺(高低、水平、三角坑、轨面短波不平顺、 新轨垂向周期性 不平顺) ⑵.横向轨道不平顺(轨向、轨距、新轨横向周期性不平顺) ⑶.复合不平顺(方向水平逆向复合、曲线头尾的几何偏差) 2. 轨道不平顺按波长区分 性列车动荷载的反复作用,轨道不可避免地产生不 其几何尺寸、平顺状态是经常变化的,它需要不断 校正轨道不平顺,经常保持轨道的平顺性是一项技 很大,十分繁重的工作。对平顺性问题不了解,就

(二)轨道不顺特征对行车安全的影响 轨道不平顺的幅值、波长、波数、周期性对轮轨相互作用力、机车车辆振动和列车脱轨安全性均有重要影响。 当幅值、速度一定时,波长的不同的病害对行车平稳性的影响大不相同,幅值同时1mm勺不平顺,在速度相同情况下,波长为1m 时引起的振动加速度是波长10m的100倍。见图1 对于货车波长为5~10 m的轨道不平顺影响最大,对于客车波长为 10~20m的影响最大(20-120km/h)。提速后因客车速度提高,应将波长上限提高至30m国外日本新干线(时速210km/h)波长管理上限为50m欧洲高速线路的管理上限为70m。 轨道不平顺的波数也有明显影响。当幅值和波长一定时,连续的多波不平顺比单波影响大,三波大于两波,两波大于一波,但三波以上与三波差别不大。 (三)《维规》第7.2.7条应引起重视的三种轨道不平顺 1.周期性连续及多波的轨道不平顺中,幅值为10mm勺轨向不平顺,12mnm勺水平不平顺,14mm勺高低不平顺。 2.对于50m范围内有3处大于以下幅值的轨道不平顺:12mm勺轨向不平顺,12mm勺水平不平顺,16mm勺高低不平顺。 3.轨向、水平逆向复合不平顺。 连续性的多波不平顺容易引发激振,有导致脱轨系数增大、行车严重不稳甚至脱线的危险。周期性的连续不平顺引发共振的危险性更大。轨向、水平逆向复合不平顺,有反超高的特征,这几种不平顺应是脱轨事故的主要诱因。 二、如何利用轨检车图纸及数据查找和消灭病害 (一)轨检车图纸里程的核对 轨检车在实际运行和检测中所测得的里程和现场实际里程存在误差,一般在1?100 m范围内,给现场查找带来一定困难。因此在利用轨检车图纸 和数据过程中,首先应进行里程核对。利用已知某标志里程减去图上的该标志里程(利用铁科院图形查看工具,在计算机上可直接测得图上里程),得出里程差值,即可将轨检车图纸及数据中的里程和现场里程对应起来。 1.利用轨检车图纸中的地面标志。(桥上护轨、电容、道岔、道口)

最新轨检车波形图分析处理教程文件

教学目的与要求: 1.能熟练掌握轨检车波形图的基本知识。 2.了解波形图的基本原理,并且学会简单的分析。 3.能够对着轨检车进行现场作业。 主要内容及课时分配: 1.轨检车波形图的基本知识。2课时 2.了解波形图的基本原理,并且学会简单的分析6课时 3.轨检车波形图与现场情况。4课时重点、难点及要求(掌握、熟悉、了解、自学): 掌握:能熟掌握轨检车波形图的基本知识。 熟悉:波形图的认识、分析。 了解:波形图的基本原理。 自学:波形图与现场的对应情况。

一.轨检车波形图的基本原理 参考资料: 中华人民共和国《安全生产法》、《铁路运输安全保护条例》和铁道部《铁路实施〈中华人民共和国防汛条例〉细则》、《铁路技术管理规程》、《轨检车原理及分析资料》、《修轨》、《安规》、《工区安全与应急处理》、《工务安全与应急处理》等。 总体要求: 通过对轨检车波形图的分析,能够处理现场中的轨距、左右轨向、左右高低、水平(超高)、三角坑、曲率(弧度或半径)、车体横向加速度、车体垂向加速度、轨距变化率、曲率变化率、车体横向加速度变化率、钢轨断面等。 一、概况 轨道检查车是根据惯性基准法检测测原理,应用光电、陀螺、电磁、电子、伺服、数字处理、计算机等先进技术,对高低、轨向、轨距、水平、三角坑、垂直加速度、水平加速度、曲率变化率、轨距变化率、横加变化率、70米波长高低和70米波长轨向综合检测。同时,将各项目检测结果实时显示在汁算机上和波形记录纸上,并存磁盘内,具有检测项目齐全、精度高、可靠性强、技术先进及很强的数据

处理特点。 轨道检查车各项目门限的设定根据“修规”制定。 轨道检查车对各轨道几何尺寸及舒适度的全面检测,是对线路动态质量的系统评估,是铁路工务维修管理部门获取动态轨道状态信息、指导现场进行养护维修与施工作业、评估新线施工和既有线养护维修作业质量、实施轨道科学管理的重要手段。 二、轨检车对线路的评价方式 1.线路峰值管理 线路峰值管理即线路局部不平顺峰值的检测,根据超限峰值大小,分为四个等级,即I级分(保养标准)、Ⅱ级分(舒适度标准)、Ⅲ级分(临修标准)、Ⅳ级分(限速标准)。并按超限峰值等级进行惩罚性扣分,一个I级分扣1分、Ⅱ级分扣5分、Ⅲ级分扣100分、Ⅳ级分扣301分;对每公里也是按惩罚性扣分来评价的,优良:50分及以下,合格:51-300分,失格:301分及以上。 2.线路均值管理(即通常说的TQI) 线路均值管理即线路区段整体不平顺的动态质量管理。采用计算200m单元轨道区段的单项几何参数的统计特征值——标准差的方法来评价轨道区段的平均质量。 三.轨检车报表及运用 (一)报表类型

轨检车检测数据

轨检车检测数据及波形图的应用 摘要 随着铁路的不断发展,轨检车的重要性不断得到肯定。但是,车间和工区对轨检车检测数据及波形图的应用并不十分充分。本文从影响检测结果的一些因素入手,谈了谈波形与现场病害的对应关系、病害点的补充及监控和病害实际里程的确定等几个方面,以解决轨检车数据在应用中遇到的一些实际问题。这些方法的运用,在指导工区现场维修和监控管内病害发展上起到了积极的作用。 关键词轨检车数据及波形图应用 前言 随着铁路向着高速、重载的方向不断发展,动态检测的手段也日趋多样化、精细化。我们需要利用先进的动态检测手段对线路设备质量进行检查监控;同时需要根据动态检测数据发现线路存在什么样的具体问题,以此指导工区维修。动态检测的最终目的是应用检测结果对轨道质量状态进行评价,指导维修工作。为了方便对病害点的查找应利用峰值指标,指导工区手工作业消灭Ⅲ级或Ⅱ级以上超限,关注I级病害是否有所发展,以解决线路局部不平顺问题。 1对检测结果产生影响的一些因素 1.1检测方式 轨检车对轨道进行的是动态检测,是线路在列车实际动载作用下、轨道几何尺寸存在的偏差,不同于静态测量值。因此与静态测量值有出入是正常的。当线路存在较为严重的空吊时,就会发现线路动态高低的测量值非常大。当曲线钢轨存在磨耗或木枕地段的扣件扣压力不足,就会发生轨距动态检测与静态检测值有较大出入的现象。 1.2偏差等级的确定 1.2.1因偏差等级数据采集标准不同而产生的检测差异 轨检车每进行一个采样距离时,计算机对轨道的各个几个参数项目的检测结果采样一次,当某个项目的检测结果连续3次采样值都超过某一级病害界限值时,计算机统计为一处病害,并依据病害的最大值确定超限病害的相应级数。如图所示,一、二、三级为病害界限值,A、B、C、D分别表示4个采样点,则s为一个采样距离,A为病害起点,D为病害终点,L表示超限病害长度。 由轨检车超限等级的定义可知,如果超限级数划定的标准不同,那么对同一病害做检测其检测结果也不一样。同理,当使用不同的检测标准,检测结果也会不完全一样,进而会影响到线路整体状态的评定。 1.3检测里程的误差 轨检车的运行位置依靠轮轴速度来进行定位,误差累计依靠人为观测公里标进行纠正。所以检测里程的确定就存有明显的缺点:客观上误差随着运行时间的增长而会不断累积,轮缘磨耗、侧线通过等原因也会产生里程误差;主观上人眼识别公里标进行标定时产生的熟练程度和反应时间的不同而产生人为误差。里程产生较大误差时,就会对现场病害的查找及整修带来影响,阻碍轨检车数据在现场的应用。 2不平顺波长与现场病害的对应关系 2.1短波不平顺与现场病害的对应关系 长度小于数米,这种不平顺主要源于轨面的凹凸不平及轨道的支承不均匀性,易于激发行车噪声及轮重变化,可通过打磨钢轨(特别是打磨焊缝)和消除轨枕“空吊板”以降低其不利影响。 1-10米短波轨面不平顺的判定:两边平,中间凹或凸,且波形较尖锐(如图1所示)。拿不准时看轨向:如果是轨面高低则对轨向不会产生较大峰值,但如果是空吊则对轨道动态

充分利用轨检车数据及图纸

充分利用轨检车数据及图纸 及时消灭线路病害创建高平顺线路 伴随我国铁路第五次提速的顺利完成,我段管内铁路已普遍提速至160km/h。随着列车速度的提高,原有的管理方式、检测方式、作业方式难以与快速铁路对线路高平顺性的要求相适应。为适应快速铁路对线路高平顺性的要求,就需要我们提高对轨检车数据及图纸的利用。我国高速铁路技术已获突破性进展,秦沈客运专线已经建成,试验段时速已达321.5km/h。伴随我国既有线的继续提速以及新型高速客运专线相继建成,就需要我们及早掌握利用轨检车数据及图纸,及时消灭线路病害作业方式,为将来管理、维修更高运营速度线路作准备。 铁路轨道支承在密实度和弹性都很不均匀的道床和路基上,却要承受很大的随机性列车动荷载的反复作用,轨道不可避免地产生不均匀残余变形。其几何尺寸、平顺状态是经常变化的,它需要不断进行养护维修,校正轨道不平顺,经常保持轨道的平顺性是一项技术性很强,花费很大,十分繁重的工作。对平顺性问题不了解,就很难做好线路维修工作。 一、轨道不平顺 (一)轨道不平顺的分类 1.轨道不平顺按对车辆激扰方向区分 ⑴.垂向轨道不平顺(高低、水平、三角坑、轨面短波不平顺、新轨垂向周期性不平顺) ⑵.横向轨道不平顺(轨向、轨距、新轨横向周期性不平顺) ⑶.复合不平顺(方向水平逆向复合、曲线头尾的几何偏差)

(二)轨道不顺特征对行车安全的影响 轨道不平顺的幅值、波长、波数、周期性对轮轨相互作用力、机车车辆振动和列车脱轨安全性均有重要影响。 当幅值、速度一定时,波长的不同的病害对行车平稳性的影响大不相同,幅值同时1mm的不平顺,在速度相同情况下,波长为1m 时引起的振动加速度是波长10m的100倍。见图1 对于货车波长为5~10m的轨道不平顺影响最大,对于客车波长为10~20m的影响最大(20-120km/h)。提速后因客车速度提高,应将波长上限提高至30m,国外日本新干线(时速210km/h)波长管理上限为50m,欧洲高速线路的管理上限为70m。 轨道不平顺的波数也有明显影响。当幅值和波长一定时,连续的多波不平顺比单波影响大,三波大于两波,两波大于一波,但三波以上与三波差别不大。 (三)《维规》第7.2.7条应引起重视的三种轨道不平顺 1.周期性连续及多波的轨道不平顺中,幅值为10mm的轨向不平顺,12mm的水平不平顺,14mm的高低不平顺。 2.对于50m范围内有3处大于以下幅值的轨道不平顺:12mm的轨向不平顺,12mm的水平不平顺,16mm的高低不平顺。 3.轨向、水平逆向复合不平顺。 连续性的多波不平顺容易引发激振,有导致脱轨系数增大、行车严重不稳甚至脱线的危险。周期性的连续不平顺引发共振的危险性更大。轨向、水平逆向复合不平顺,有反超高的特征,这几种不平顺应是脱轨事故的主要诱因。 二、如何利用轨检车图纸及数据查找和消灭病害 (一)轨检车图纸里程的核对 轨检车在实际运行和检测中所测得的里程和现场实际里程存在误差,一般在1~100m范围内,给现场查找带来一定困难。因此在利用轨检车图纸和数据过程中,首先应进行里程核对。利用已知某标志里程减去图上的该标志里程(利用铁科院图形查看工具,在计算机上可直接测得图上里程),得出里程差值,即可将轨检车图纸及数据中的里程和现场里程对应起来。

轨检车波形图分析及应用

轨检车波形图分析及应用 总则 ν 轨道检查车(以下简称轨检车)是检查轨道状态,查找轨道病害,评定线路动态质量,指寻线路维修的动态检查设备,其作用是通过检查了解和掌握线路局部丌平顺(峰值管理)、线路区段整体丌平顺(均值管理)的动态质量,对线路养护维修工作迕行指寻,实现轨道科学管理。 轨检车检测的项目 ν ν ν 轨道几何参数:左高低、右高低、左轨向、右轨向、水平、轨距、三角坑、超高、曲率以及长波轨道丌平顺;车体响应参数:车体横向加速度、车体垂向加速度;辅助评价参数:轨道质量指数、各单项轨道质量指数 波形显示软件是用亍运行过程中实时显示戒者事后回放波形的软件,并能迕行波形的的对比、测量、实时打印等。其波形参数包括轨距、轨距变化率、70米高低、70米轨向、曲率、曲率变化率、左史轨向、左史高低、超高、三角坑、ALD、水平加速度、垂直加速度等,迓可以自己调整。整个界面分为(A)波形显示区、(B)参数显示区和公里显示区(C)如图所示: 高低:钢轨顶面沿轨道延长垂向凹凸丌平顺。 高低的检测原理: ν 高低是指钢轨顶面纵向起伏变化。GJ-4型轨检车采用惯性基准的原理测量轨道变化的实际波型,得到高低变化的空间曲线,数捤采集处理系统实时采集数捤的间隔距离为0.305m,同时可换算成5 米、10米、20米戒其它弦长之测量法测量。测量高低的传感器除了测量曲率、水平外,另外迓有2 个垂直加速度计。通过车体位移,计算出轨面相对惯性空间的位移变化,迕行必要的处理,得到高低数值。监测范围±60mm,误差为±1.5mm。高低摸拟弦长18.6米。

超高:同一横截面上左右轨顶面相对在水平面的高度差水平:同一横截面上左右轨顶面相对在水平面的高度差,但丌含曲线上按规定设置的超高值及超高顺坡量。 水平的检测原理: 水平为轨道同一横断面内钢轨顶面之高差,曲线水平称为超高。GJ-4型轨检车采用补偿加速度系统测量水平,利用补偿加速度系统测量车体对地垂线滚动角,利用位移计测量车体不轨道相对滚动角,二者结合计算出轨道倾角。利用两轨道中心线间距(1500mm)计算出水平值。监测范围±200mm,误差±1.5mm。

轨检车波形图分析

轨检车波形图分析 一、基础篇 在分析轨检车波形图之前,首先要掌握分析标准,也就是《铁路线路修理规则》第6.3.1条轨道动态允许偏差管理 值。 安装查看轨检车波形图的软件,第一步在电脑硬盘上找到署名的程序文件(一个小电脑的图标), 然后双击打开,按照提示点击下一步,到第四步时将 署名的文本文档打开,将文本内的一串数字复制, 粘贴到提示框的序列号方框里,然后点击下一步直至完成。 安装完成后双击桌面上的文件(一个动车组的车头 标志)进入波形图查看软件后,用鼠标点击左上角工具栏内 的“文件”工具,选择“打开几何数据文件”弹出一个对话 框,从对话框中找到以“AJTX-JINING-ZHELIMU”命名的轨 检车数据文件单击文件名,然后点击对话框右下角“打开” 键完成文件打开,打开文件可能需要几秒或2分钟时间。 新安装的波形图查看软件打开文件后,在屏幕右侧所显示的通道标签(即轨检车所检测的项目)不全,一般显示的 只有左、右高低、水平、超高等项目,其他的项目需要进行 手动设置,在设置前我们必须要认识所要设置项的英文标 码,下面是常用的轨检车英文标码和相对应的汉字,请大家 认识一下。 通道序号 1 2 3 4 5 6 7 8 10 11 18 英标Lprf Rprf Laln Raln Gage Cant Xlvl Warp_1 Lacc_1 Vacc Gant_rate 汉字左高 低 右高 低 左轨 向 右轨 向 轨距超高水平三角坑横加垂加轨变

设置通道时,用鼠标点击左上角工具栏内的“配置”工具然后点击“通道设置”出来一个对话框,用鼠标在对话框右上方的下拉框(小三角)上点击出下拉菜单,然后在菜单中选择缺少的通道,选择后将对话框里的两个小方框用鼠标点击出现“√”后,点击“OK”键即完成一个通道标签的设置。 二、查看篇 进入波形图查看软件后,首先要了解各个通道的显示值,我们可以看清,每条通道都有一条虚线为基线,基线以上的波形显示的数值为正值,基线以下的波形显示的数值为负值。从图上可以看到每20米一个单元格,每个单元格都有一条纵向比例线格,每一个线格都按照比例代表一个数值,这个数值决定于通道设置的比例,一般我们在设置通道比例时高低、水平、三角坑为2:1,轨向为3:1,轨距为1:1设置,超高为5:1。 三、分析篇

铁道部轨检车波形图文件(.ste)分析

本软件开发的宗旨是: 全心全意为铁路工务线路一线整治指 导服务 欢迎使用铁道部(铁路局)轨检车、晃车仪(车载式)、添乘仪(ZT-X、SY-X)、轨检小车、人工添乘检测数据综合精细分析软件。 轨道检查车(以下简称“轨检车”)是检查铁路轨道几何状态,查找轨道病害,评定线路动态质量,指导线路维修的动态检查设备,其作用是通过动态检查从轨检资料中(包括文字资料和波形图资料)了解和掌握线路局部不平顺(峰值管理)、线路区段整体不平顺(均值管理)的动态质量,对线路养护维修工作进行指导,对工务部门的工作质量进行有效评价,从而实现轨道的科学管理工作。 轨检车检测数据分析软件是铁路工务设备检查维修保质量稳定的利器,欢迎使用. 轨检车检测出的线路设备状况准确性高真实性强这是全国铁路工务管理人员都知道的,可是要如何全面利用轨检车的检测数据对线路设备进行病害整治呢?这个我们每个管理人员都在慢慢捉摸的. 我从学校学交通工程(铁道)本科毕业到工务工作后一直在一线车间工作,在工作中,我充分利用自己对轨检车检测数据的研究并结合线路设备的现场实际情况,把自己所学的理论知识与现场实际相结合.充分利用工作之余对这一项目进行了

深层次地探索,总结出了如何能更快更准地把轨检车检测数据发布到一线指导线路巡养站整治线路,让他们在有准确依据的条件下有目的地对线路设备进行检查养护及修理.为了达到这个目的,在我发现轨检车数据精细准确且很有规律后我想到了编程.我是一个很喜欢研究电脑程序设计的人,对编程与是情有独钟的.经过几个月的研究设计及调试,终于让她---轨检车检测数据分析软件来到了这个世界. 使用此软件,可以加快铁路线路设备状态的技术分析速度,在提高工作效率的同时又能准确生成线路整治指导书,保证线路设备的整修依据更清楚更准确. 此软件最好各个车间及巡养站直接使用,将分析结果直接应用到现场. 使用此软件,可以加快铁路线路设备状态的技术分析速度,在提高工作效率的同时又能保证线路设备的整修依据更清 楚更准确,对线路设备的整治达到了实质高效地指导. 一、铁道部轨检车波形图文件(*.ste)分析 本软件对波形图的分析绝对超出你的想像。想让线路、道岔自始至终都稳如初吗?想让高铁的道岔和轨道的各类 检测都稳如初吗?使用本软件绝对让您心想事成。(分析数据精确到线路的每根枕及道岔的每根枕上的现状,生成重点晃车处所在枕位的起拨改指导书直接指导一线对线路进行 精细准确到位的整治.)

GJ-5型轨检车原理及应用

GJ-5轨检车原理及应用

GJ-5型轨检车原理及应用 一、轨道动态检查技术的发展变化 轨道动态检查相比静态检查,更准确,也更能反映线路真实情况,更能评价列车运行安全性指标,因此轨检车一直是检查轨道病害、指导线路养护维修、保障行车安全的重要手段。我国轨道动态检查技术随着计算机技术和检测技术的发展得到迅速的发展,从二十世纪50年代的GJ-1型轨检车发展到目前的GJ-5型轨检车,检测精度和可靠性大大提高。 1、GJ-1型轨检车采用弦测法,机械传动,可以将轨距、水平、三角坑、摇晃(用单摆测量)项目的幅值绘在图纸上,人工判读超限并计算扣分。 2、GJ-2型轨检车仍采用弦测法,但改为电传动,检测项目比GJ-1型增加了高低,也是需要人工判读超限和计算扣分。我局1988-1993年使用该型车。 3、GJ-3型轨检车于80年代初期研制成功,是我国轨检车技术的一次大飞越,采用先进的传感器技术、计算机技术和惯性基准原理,可以检测高低、水平、三角坑、车体垂直和水平振动加速度等项目,计算机采集各检测项目数据后,判断超限等级并计算扣分。我局GJ-3型轨检车

(SY997737)于1994年初开始运用,是全路GJ-3型运用时间最长的,也是用得比较好的。 a、1999年我局轨检车技术人员研发的Ⅲ型轨检车实用软件成果是工务部门汇总分析轨检车检查数据、指导养护维修线路的工具,它使轨检车的工作效率和工作质量得到了大大的提高,该成果达到了国领先水平,于2000年通过了局级鉴定,并于2002年获得路局科技进步三等奖。 b、为了均衡地提高线路养护维修的质量,我局轨检车技术人员研发了轨道质量指数(TQI)应用软件,并于2003年局工务维修会议上向各工务段推广应用,便于向各工务段掌握线路的动态质量,科学指导线路养护维修,真正做到状态修,收到了很好的效果。 c、2004年我局轨检车技术人员研发GPS(全球定位系统)自动校正里程系统,该系统能自动校正轨检车里程,消除轨检车测量的里程累计误差,便于各段准确定位检查病害处所,查找和整治线路病害,保证行车安全和提高线路保养质量。 d、2004年我局轨检车技术人员在原GJ-3型轨道检测系统的基础上,完成轨道几何参数变化率设计和开发,轨道几何参数变化率大大方便线路病害的查找和整治。 4、GJ-4型轨检车。1985年我国引进美国ENSCO公司T-IO轨检车,研制成功XGJ-1型轨检车,并在此基础上

轨检车检测原理及分析

一、对轨检车检测性能应了解的内容: 用轨检车对轨道进行动态检测,掌握线路在列车实际动载作用下、轨道几何尺寸偏差(四大项、是了解掌握线路局部不平顺、是峰值管理的考核内容)与相关的各项参数(曲线要素、区段总结报告、公里总结报告)及相应的轨道质量指数(各种偏差的加权平均值、TQI是了解掌握线路区段整体不平顺、是均值管理的考核内容)。每250mm可测7项的加权平均值。维规规定每200米质量指数大于15g,要按排维修。对线路状态作出评价。是线路动态质量检查的重要手段。以便科学地指导线路养护维修工作。即是工务管理科学化的一个重要组成部分。也是上级领导衡量、考核设备状态的重要措施之一(应该说轨检车是为我们检查线路、发现问题、指导我们维修保养的工具,现已成为考核的工具、又提倡检后修。这就需要我们努力、对我们的日常工作提出了更高的要求。不过上级领导考核线路质量凭轨检车是比较科学的)。并用于各级管理部门之间决策的依据。要消灭轨检车三级分,就要了解掌握它的检测原理。但是轨检车成绩好能代表线路基础好吗?也不完全说明线路质量好。要认真对待。如;-----。我国利用轨道检查车检测动态已有40佘年的历史,经过更新、改造、引进技术、目前路局应用的是GJ-4型轨检车车号997990。车底是160km/h(997740、997519是3型轨检车、车底是120km/h、997519、04年3季度已报废)(今天主要讲997990,因它出分多,优良率低,三级分时有发生)。自1996年投入使用,(04年5—9月份在南京对车辆进行了大修,其它设备要逐步更换)。它采用了当今世界上最先进的惯性基准检测原理,被设计成捷联式检测系统。(现部轨检车已定GJ--5型)监测原理和GJ-4型一样,也是采用惯性基准的检测原理。不一样的是它采用摄像形式,能看到就能监测到,包括钢轨飞边、垂直、侧面磨耗,还能测出脱轨糸数。(公式:Q/P≤1.2。Q表示横向力、P表示垂直力。当超过1.2时即认为是危险的)。钢梁桥的水平振幅大小,但是看不到就检测不到,如:堵住摄像镜头、就什么也不检测。其它检测功能比GJ—4型有所改进,它可随时调整检测标准,提供网上服务,与历史图形比较、按区段导出数据、等)。如;检测水平的速率陀螺是引进美国导弹上使用的陀螺,相当准确。运用计算机进行数据处理,完全在计算机内合成轨道几何参数。轨检车进入曲线后曲线半经、超高、正矢、加宽、缓和曲线、圆曲线长度、曲线允许速度等:都可以通过计算机进行处理。如:(一条曲线超高成段大、在微机上不显示2个半经)(不是复心曲线)计算机判水平误差、直线地段成段水平加号大或成段水平减号大,就显示了超高,计算机不显示半经、正矢计算机判水平误差。全面衡量动态(检测项目)轨距、水平、方向、高低、三角坑、车体垂直振动加速度、和横向振动加速度等七项是否良好状态。能正确显示各种数据。(轨

轨检车检测数据及波形图的应用

轨检车检测数据及波形图的应用 轨检车检测数据及波形图的应用 随着铁路的不断发展,轨检车的重要性不断得到肯定。但是,车间和工区对轨检车检测数据及波形图的应用并不十分充分。本文从影响检测结果的一些因素入手,谈了谈波形与现场病害的对应关系、病害点的补充及监控和病害实际里程的确定等几个方面,以解决轨检车数据在应用中遇到的一些实际问题。这些方法的运用,在指导工区现场维修和监控管内病害发展上起到了积极的作用。 关键词轨检车数据及波形图应用 前言 随着铁路向着高速、重载的方向不断发展,动态检测的手段也日趋多样化、精细化。我们需要利用先进的动态检测手段对线路设备质量进行检查监控;同时需要根据动态检测数据发现线路存在什么样的具体问题,以此指导工区维修。动态检测的最终目的是应用检测结果对轨道质量状态进行评价,指导维修工作。为了方便对病害点的查找应利用峰值指标,指导工区手工作业消灭Ⅲ级或Ⅱ级以上超限,关注I级病害是否有所发展,以解决线路局部不平顺问题。 1对检测结果产生影响的一些因素 1.1检测方式 轨检车对轨道进行的是动态检测,是线路在列车实际动载作用下、轨道几何尺寸存在的偏差,不同于静态测量值。因此与静态测量值有出入是正常的。当线路存在较为严重的空吊时,就会发现线路动态高低的测量值非常大。当曲线钢轨存在磨耗或木枕地段的扣件扣压力不足,就会发生轨距动态检测与静态检测值有较大出入的现象。

1.2偏差等级的确定 1.2.1因偏差等级数据采集标准不同而产生的检测差异 轨检车每进行一个采样距离时,计算机对轨道的各个几个参数项目的检测结果采样一次,当某个项目的检测结果连续3次采样值都超过某一级病害界限值时,计算机统计为一处病害,并依据病害的最大值确定超限病害的相应级数。如图所示,一、二、三级为病害界限值,A、B、C、D分别表示4个采样点,则s为一个采样距离,A为病害起点,D为病害终点,L表示超限病害长度。 由轨检车超限等级的定义可知,如果超限级数划定的标准不同,那么对同一病害做检测其检测结果也不一样。同理,当使用不同的检测标准,检测结果也会不完全一样,进而会影响到线路整体状态的评定。 1.3检测里程的误差 轨检车的运行位置依靠轮轴速度来进行定位,误差累计依靠人为观测公里标进行纠正。所以检测里程的确定就存有明显的缺点:客观上误差随着运行时间的增长而会不断累积,轮缘磨耗、侧线通过等原因也会产生里程误差;主观上人眼识别公里标进行标定时产生的熟练程度和反应时间的不同而产生人为误差。里程产生较大误差时,就会对现场病害的查找及整修带来影响,阻碍轨检车数据在现场的应用。 2不平顺波长与现场病害的对应关系 2.1短波不平顺与现场病害的对应关系 长度小于数米,这种不平顺主要源于轨面的凹凸不平及轨道的支承不均匀性,易于激发行车噪声及轮重变化,可通过打磨钢轨(特别是打磨焊缝)和消除轨枕“空吊板”以降低其不利影响。 1-10米短波轨面不平顺的判定:两边平,中间凹或凸,且波形较尖锐(如图1所示)。

轨检车、动检车检测名词解释

轨检车、动检车检测名词解释 第一部分京广线轨检车概述 我讲的第二部分内容为轨检车检测基本知识。我根据检测数据的不同,分别以轨道几何尺寸检测和动力学指标检测分类进行讲解。 一、动力学检测标准 在动检综合车检测提供的7个报告中,第一个报告为综合检测车轨道几何状态检测报表、第二个报告为综合检测车动力学检测报表。这两个报表是考核我们的主要技术指标。我针对动力学检测报表中的一些专业术语进行一下分解。 列车脱轨是影响行车安全的重要因素。在分析脱轨事故时往往会遇到下述情况:列车经过很长线路的运行均未脱轨,而恰在某处线路脱轨,说明该线路可能有问题。但时该处线路通过了许多列车均未发生脱轨事故,唯独该趟列车脱轨,又可能说明该趟列车有问题。上述事实说明,列车脱轨事故的产生是影响脱轨的各种不利因素综合作用的结果。同时也表明,某一行业设备的完善与工作的改进,会补偿其它行业设备的不足和工作的缺陷,避免脱轨事故的发生。绝大多数列车脱轨事故抣由车辆脱轨引起,因此,在进行列车脱轨分析时,将集中研究车辆的受力情况、脱轨原因和机理,以及应采取的预防措施。动检综合车所进行的动力学检测指标,主要是围绕此工作而开展的工作。 (一)脱轨系数(Q/P) 轨道随着垂直、横向和纵向三个方面的荷载。纵向荷载主要由温度力、列车牵引力与制动力组成。 1、垂向轮轨作用力主要由下述两个部分组成。 ⑴垂直动力荷载。在进行脱轨分析时,轨道上承受的垂直动力荷载应只考虑速度的影响,通常按下式计算垂向动荷载 P d =P j (1+α) P d -动轮载 P j -静轮载 α-速度系数。各国速度系数者根据大量试验资料与运营经验确定的。 ⑵偏载。列车在运行时各种因素引起的偏载。曲线上未被平衡的过超高、欠超高,货物装载偏心引起的轨道偏载。 2、轨道承受的横向作用力Q 纳达奥(Nadal)于1908提出的“单个车轮的最大横向力Q与垂直力P的比值 Q/P作为衡量车轮轮缘爬轨引起脱轨的程度”论点,纳达奥(Nadal)方程是由轮轨接触点上力平衡关系推导出来的。如果法向力和切向力2个分力的合力能支撑起车轮的垂直载荷,则有可能引起脱轨。 研究结果表明,脱轨系数Q/P除受轮轨接触角、摩擦系数影响外,还受到冲角的影响。这起因于轮轨间横向和纵向蠕滑力的饱和特性:在有纵向切线力作用时,由于纵向的滑动,接触面内的蠕滑力基本饱和,横向蠕滑力变小,Q/P的限度值变大。这可以用来作为解释机车不易脱轨的理由。 车轮爬轨时的脱轨系数Q/P值,随着车轮轮缘的爬起,轮轴侧滚角的增大,逐渐加大,达到极大值后,又随轮缘前端接触角减小的影响而逐渐减小。在接触

相关文档
最新文档