高温柴油机活塞环和缸套摩擦学的发展

高温柴油机活塞环和缸套摩擦学的发展
高温柴油机活塞环和缸套摩擦学的发展

高温柴油机活塞环-缸套摩擦学的发展

摘要

Adiabatics公司在美国陆军坦克车和军备司令部的支持下,研究了在低散热柴油机的滑动接触面使用类金刚石薄膜和钛酸铁的可行性。类金刚石一直是滑动接触摩擦面的优选材料,摩擦损失的明显减少将会提高发动机的效率[1]。已经存在多种应用类金刚石薄膜的技术。本文调查了这些技术中的几种以及它们将来在汽车内燃机上的应用。我们重点研究在军用低散热柴油机上类金刚石的使用,这种柴油机的运行温度和运行压力比常规柴油机的要高。然而,也有将这种薄膜技术直接转移到汽车柴油机或汽油机上的。本文展示了对不同种类的类金刚石薄膜之间试验现象的研究,以及它们在内燃机上的适用性。

引言

随着未来的发展,军用柴油机有望不断地传输更高的功率密度。从这一发展中,用于军用发动机的技术可能也适用于商用高输出发动机。人们在努力地逐步改善高输出柴油机的发展,实施一些关键技术,比如,低散热设计,改进燃油喷射系统,材料和包装设计。我们大部分投入在新材料和低散热摩擦学的考量上。特别地,我们重点研究气缸与活塞环的接触面。未来军用柴油机的目标是使第一环逆转温度在370℃附近变化,以及将油底壳温度控制在205℃左右。这两种温度比商用柴油机的二倍还要高。由于温度会加速磨损,对于军用发动机来说,典型的解决措施是安装类金刚石薄膜以及安装相配合的钛酸铁,这些措施预计能成为适用于商用车的发动机技术。在我们今天所展示的工作中,使该技术商业化是主要目的。

在军用柴油机领域过去的工作中,发展了一种技术:在气缸内壁上喷涂钛酸铁来改善缸内的摩擦和提高耐磨性。钛酸铁陶瓷涂层应用于低温凝胶过程。早期,我们集中于在缸孔配合面上使用钛酸铁涂层,通常是用70%到80%的钼或二硫化钼喷雾喷在活塞环涂层上,再采用Cr2O3进行后处理过程,这项技术在Adiab atics公司已经很成熟。然而,生产这种活塞环所带来的大量的额外费用使它不能进入市场,因为市场致力于形成合理的最低成本。因此,在90年代末,我们开始认真考虑在活塞环上镀类金刚石薄膜。在此,我们要展示如何通过在柴油机上使用类金刚石薄膜来优化摩擦学的运行参数。关于未来的军用高输出低散热柴油机,还必须考虑到其他的工作.

类金刚石与配合表面的选择

我们最先试验的是商业上大量生产的类金刚石薄膜。这种薄膜应用于离子镀膜法,也被称作离子镀膜型的类金刚石。当超出了由脂质酸和多元醇制成的合成润滑剂的临界温度以后,这种膜就会使常规的活塞环涂层上的摩擦大量减少。两种摩擦的比较如图1a所示。在本文中,活塞环的二硫化钼涂层被称为基准涂层。当在钛酸铁缸孔内运行时,很明显,类金刚石薄膜将产生比二硫化钼涂层低得多

的摩擦系数。然而,耐磨性和耐用性成为主要问题。类金刚石薄膜(4-5微米)与“厚”二硫化钼涂层(0.25毫米)相比非常薄。本质上,二硫化钼涂层与离子镀膜型的类金刚石薄膜相比有非常低的磨耗率,如图1b所示。

图1a:两种类金刚石薄膜与二硫化钼涂层的摩擦系数的比较

由于类金刚石薄膜能提供如此低的摩擦系数,所以我们研究了多种类金刚石薄膜,来判断一下是否所有的类金刚石薄膜都相似。除离子镀膜型的类金刚石薄膜以外,我们还选择了来自北京的双离子束脉冲镀膜型的类金刚石薄膜,中国也称作DIBPA PVD,以及美国供应商使用的阴极电弧非晶碳薄膜,又称作AC。还介绍了一种激光镀膜型的类金刚石薄膜,又称作LBA。我们还选择了一种化学蒸汽沉积型的类金刚石薄膜,它是一种低温等离子体增强式射频镀膜型薄膜,又称作PE-CVD。表1列出了每种薄膜的基本特性。

图1b:两种类金刚石薄膜与二硫化钼涂层的磨耗率的比较

表1:各种类金刚石薄膜的特性

液体润滑剂的选择

由于典型的低散热柴油机在极限温度下运行,于是摩擦成为它成功运行的致命要害。在活塞环行程的第一环逆转点处,接触面温度最高,活塞环停止并开始反向运动,液体润滑剂在此处非常关键。为了保护接触面,需要一种好的润滑液来提供合适的油膜厚度。

从先前的工作中[5],我们认识到:润滑油的一个最重要的特性也许就是沉积物行成趋势低。尤其是在环岸和活塞销处,如果润滑油形成积碳或清漆型沉积物,将导致活塞环或者活塞销粘住。这些现象将会导致发动机失效,轻者重度失效,重者将造成灾难性的后果。在我们最初的工作中,我们选择了基本组分由脂质酸和多元醇制成的合成润滑剂,它的临界温度接近350度。它只含有一种抗氧化添加剂。这种润滑剂(称作HXL)是美国新泽西州的海特高公司专门为这种镀膜的低散热发动机合成的。虽然这种减少沉积物形成数量的想法早已有了[6],但是缺少特殊的添加剂可能会产生轴承接触面和凸轮接触面处其它的摩擦问题。这些问题已经得到处理,但没有在我们的工作中呈现出来。虽然使用含添加剂最少的润滑油减少了沉积物数量,然而我们所展示的工作有助于进一步减少在低散热强化发动机运行温度时的沉积物生成量。

尽管我们希望使用单一基料的润滑油能解决沉积物的问题,但是我们还关心发动机其它部位受到的影响,其它部位可能需要a fully formulated润滑油。我

们对这些部位进行了检测,但我们没有在本文中论述。

台架试验

台架试验的试验装置如图2所示。线接触应力是可变的,但开始表示的是预测的活塞环载荷,这一预测值是在低散热高输出柴油机上观测到的。在此试验台上,要进行一项比较类金刚石薄膜的试验阶段,该阶段的摩擦从室温下开始,直到低散热发动机第一环逆转温度达到最大值为止。这一步是在额定负载条件下进行(0.757千克每平方毫米)。最初,摩擦系数很高,但是,随着接触面的不规则处受到磨损,接触面上产生润滑油膜,摩擦系数就会下降。

降低温度同时施加全负荷(1.514千克每平方毫米)。增加负荷以后,温度又恢复到第一环逆转温度并保持该温度直到试验阶段的末期。通常,由于负荷增加摩擦就会增加,但增加量会在许可范围内。当润滑剂的温度达到临界温度时,油膜被破坏,摩擦系数就会达到最大值。当温度超过润滑油的临界温度时,由于润滑油与接触面之间产生化学反应,接触面上形成边界层,边界润滑条件形成,摩擦开始减少[7]。

台架试验装置的照片

1.缸套涂层(在滚子上)的旋转速度:160 米/分钟

2.线接触附加载荷:0.757千克/毫米

3.线接触工作载荷: 1.514千克/毫米

4.润滑油进给速率:2滴/分钟

5.振动10 行程/分钟.40毫米/行程

图2:热磨损摩擦仪实验装置的照片以及运行工况下的示意图

试验矩阵

这项工作的试验矩阵很简单。以M505 80%钼涂层的活塞环作为基准,同时,将每种类金刚石薄膜安装在钛酸铁缸孔涂层上进行试验。基准数据只有使用路博润公司的fully formulated MRI-1润滑油试验获得。所有的类金刚石薄膜试验使用的润滑油都是HXL基料润滑油。实验结果中分析了试样和滚子上的摩擦、磨损和沉积物生成情况。摩擦数据如图3a所示,磨损数据如图3b所示。

图3a:不同类型的类金刚石薄膜之间的摩擦比较.配合面是钛酸铁凝胶,润滑剂是HXL最低合成基料润滑油

图3b:不同类型的类金刚石薄膜之间的磨损比较.配合面是钛酸铁凝胶,润滑剂是HXL最低合成基润滑油

很显然,我们得到的某些试验样本存在质量问题或表面黏着问题。如图4所示已列出了某些故障。

图4:与处于良好状态的样本相比,使用不同类型的类金刚石薄膜出现的问题

试验结果与分析

在所有情况下,类金刚石薄膜都提供了相当低的摩擦系数。除了一个双离子脉冲镀膜型类金刚石薄膜以外,也都产生了比原来低的磨损速率,而且LB

A型类金刚石薄膜没有足够的粘合强度。也许这些类金刚石薄膜经过处理后导致薄膜与基面之间粘着性降低。由于我们没能在适当的时限内获得新的样本,所以这些薄膜没有进行再测验。

所有的类金刚石薄膜都产生了比较低的摩擦效率,然而CVD型类金刚石薄膜表现出最好的耐磨性。很明显,在活塞环样本的行程逆转点处磨损最严重。这与缸套-活塞环应用中的第一环逆转温度有关。从图5中我们可以看到这种出现在逆转点处的特殊的磨损现象。

图5:在试样逆转点处的磨损

不管是通过视觉观察还是通过图3a提供的磨损速率计算值,都可看出:C VD型类金刚石薄膜(PE-CVD)的摩擦系数是最低的。当对图3b的磨损数据进行比较时,说明了PE-CVD型的类金刚石薄膜是与钛酸铁缸孔涂层最匹配的。使用合成基料润滑剂的DIBPA型类金刚石薄膜产生了最优的磨损效果,然而,由于薄膜分裂脱层产生错误的“非试验”结果,使得它不能再生。由于这一原因,PE-CVD型类金刚石薄膜被认为是更加符合的材料。

从初期的试验阶段中,我们只能得出这样的结论:类金刚石薄膜或许并不可靠,因为还存在一些未知的加工问题,或是更为重要的过度磨损问题。由于类金刚石薄膜很薄(通常不大于2微米),所以磨损问题是非常关键的。即使类金刚石薄膜表现出非常低的磨损率,使用寿命却很短。因此,如果开发不出更厚的薄膜,我们就必须消除磨损问题。

润滑剂与添加剂的选择

高分子量的添加剂

现在,我们的重点转向了起决定性作用的润滑油,润滑油的性质将能提高类金刚石薄膜的寿命。我们选择了市场上能买到的多种润滑剂,并在PE-CVD 薄膜和钛酸铁摩擦副上进行了试验。经过多次试验以后,我们明显地发现:含有高分子量基料或者添加剂成分的润滑油对类金刚石薄膜的保护效果最好。

含高分子量基料的液体能提供充分的保护,它要么是高重量高粘度的非合成润滑剂,要么就是氟化原油。高重量高粘度的润滑剂在试验时产生了过多的沉积物。这是不允许的。而另一方面,氟化原油似乎燃烧起来非常清洁,但是在任何情况下价格都非常昂贵。成本很高,甚至大幅提高,使得它不能用在柴油机上。

当处在低散热柴油机的第一环逆转高温(370度)上时,活塞环与缸套的接触面必须依靠润滑剂的解吸附作用或者润滑油中重分子的能力在这一点处

形成一层边界润滑膜。这种油膜能起到保护类金刚石薄膜的作用。

我们解决这一问题的方法就是:在我们现有的润滑剂中加入一种含氟聚合物或是聚四氟乙烯。我们试验了许多市场上买到的产品,并清楚地看到:这些含氟聚合物的使用能形成边界润滑油膜来保护类金刚石涂层,而且能使薄膜有足够高的预期寿命。该试验是为了优化所需的添加剂量,从而形成充分的边界润滑膜。图6a和6b提供了一些含氟聚合物添加剂的试验结果。

图6a:含不同氟聚合物添加剂的润滑剂与专有的类金刚石化合物之间的摩擦比较

图6b:含不同氟聚合物添加剂的润滑剂与专有的类金刚石化合物之间的磨损比较

与高分子量润滑剂一样,用以保护类金刚石涂层的含氟聚合物也产生了沉积物。沉积物的量远远少于那些含常规添加剂或石油基的润滑剂所产生的,但也必须解决。

低沉积氟聚合物润滑剂

通过在实验室试验,以及向润滑油添加剂制造商咨询,我们选择了几种不同的清洁剂和分散剂。我们在润滑剂混合设备中加入许多种添加剂和含氟聚合物基油,但是有一些融入了内部,这是正常的。设备中产生了大约八种新的专有混合物,我们对这八种新的专有混合物进行了试验。图7给出了五种最好的混合物的摩擦结果,图8给出了相应的磨损结果。

图7:混入清洁分散剂包的几种专有含氟聚合物混合物之间的摩擦比较

图8:混入清洁分散剂包的几种专有含氟聚合物混合物之间的磨损比较

虽然我们用可视量表测量出了沉积物,但是这种最佳专有混合物产生了非常合适的摩擦磨损效果和沉积物形成趋势。图9将这种最佳混合物产生的沉积物以及类金刚石的状态与最低添加剂润滑油的高分子量制剂进行了相应的比较。当前的工作正是为了更好地评定这种新润滑油的沉积物形成趋势和抗氧化能力。

图9:沉积物水平与类金刚石状态的比较.HXL高分子量制剂的高沉积现象(左),最佳含氟聚合物混合物的低沉积现象(右)

小缸径发动机的试验

我们在小缸径的单缸发动机上试验了最佳摩擦磨损副和无杂质的专有氟聚合物润滑剂,这个发动机未经冷却且能显示摩擦情况。该发动机的测试与先前的发动机测试一致。[8]

图10a给出了发动机测试装置的图片,图10b描述了隔热设计的示意图,此隔热设计使用的是热障层(TBC)和“气隙”隔热。我们需要用此隔热系统来提高缸套与活塞环接触面的温度,从而确定润滑剂和摩擦表面的可行性。

在这项测试中,摩擦表面有:气缸内壁的钛酸铁涂层,活塞裙部、活塞头部以及活塞环上的强等离子镀膜型类金刚石薄膜。由于沉积物将第一道活塞环粘在环槽里而引起过量的曲轴箱窜气,所以24小时以后试验就停止了。

虽然实验结果有变化,但是,通过使用这次工作中开发的润滑剂和混合物,显示出了在活塞环和活塞裙部上使用PE-DLC型类金刚石薄膜的潜力。特别地,它可以应用在常规的水冷内燃机上,这些内燃机的温度比军用低散热柴油机的低些。

图10a:试验台上未冷却的小缸径试验柴油机

图10b:热障层,材料,“气隙”隔热。小缸径试验柴油机的设计图

本来,镀在铝活塞裙部的PE-CVD型类金刚石薄膜没有出现任何问题(见图11)。而活塞环上却产生了不同的问题。试验中第一道活塞环状况良好,但是中间控油环的前缘出现过度磨损现象(见图12)。因为我们之前做实验时发现:活塞环基底对类金刚石薄膜的影响很大,所以试验结果会有所变化。在试验中我们使用铸铁活塞环,以M2硬化高速钢作为基底。至于第一道环,由于其铸铁中嵌入了二硫化钼涂层,于是我们尝试了很多个环。最终测试的第一道环需要在应用PE-DLC之前覆盖一层铬合金。我们还需要进一步试验来优化类金刚石薄膜的基底。

图11:24小时试验后,铝活塞裙部的PE-CVD型类金刚石薄膜,类金刚石处于良好状态

总结与结论

从对类金刚石薄膜和润滑剂的研究中,我们能得出许多结论。具体如下:1.在润滑和干燥的运行条件下,与常规喷涂二硫化钼的活塞环相比,类金刚石

薄膜形成的摩擦系数明显降低。

2.与IB型,AC型,PVD型的薄膜相比,PE-CVD型类金刚石薄膜形成的摩擦

和磨损速率最低。

3.当温度大于第一环逆转温度(371℃)时,PE-CVD型类金刚石薄膜仍具有

运行能力。

4.当进一步考虑类金刚石薄膜的应用时,磨损成为主要问题。在活塞环试样行

程的逆转点处,高分子量添加剂,比如含氟聚合物,能为类金刚石薄膜提供边界润滑保护。

图12:经过24小时试验后,PE-CVD型类金刚石顶部的状况以及中间控油环的状况.第一道环状况良好,而中间控油环的前缘出现磨损

5.如果没有高分子量添加剂,预计类金刚石薄膜不能使活塞环拥有足够的磨损

寿命,所以不能应用于军用柴油机。

6.除去添加剂包的HXL基润滑剂没有表现出期望的低沉积趋势。然而在高温

下,专有的清洁剂和分散剂能降低沉积物的形成趋势。

7.在本文所述的工作中,我们研发出一种专有的含氟聚合物高温润滑剂,它能

形成低沉积趋势。

8.活塞环基底进一步的对照试验,应该能使结果更加完善。

致谢

特别感谢:中国国家摩擦实验室的金教授和他的团队,海特高公司的Tom Sh aefer,Anatech公司的George Barr和John Roderique。正是由于他们的帮助,我们才完成了这项工作。

参考文献

1. “Diamond and Diamond-Like-Carbon Films for the Transportation Industr y”, Office of Transportation Materials, U.S. Dept. of Energy, Argonne National Laboratory, Argonne, IL, February 199

2.

2. “Structure and Properties of Diamond and Diamond Like Films”, R.E. Cla using, Workshop on: Diamond and Diamond Like Carbon Films, Argonne, IL, 1992.

3. “Advancements in High Temperature Cylinder Liner and Piston Ring Trib ology”, L. Kamo, R. Kamo, W. Bryzik, M. Mekari, Y.S. Jin, S.H. Li, SAE Paper No. 2000-01-1237, Feb. 2000, Detroit, MI

4. “Cylinder Liner and Piston Ring Coatings for Conventional Diesel Engine s”, L. Kamo, R.Kamo, D. Mundy, W. Bryzik, M. Mekari, ASME –ICE Tec

hnical Conference, Columbus, IN, 1998.

5. “Laboratory Development and Engine Performance of New High-Temperat ure Diesel Engine Lubricants”, P. Sutor, W. Bryzik, SAE International Congres s and Exhibition, Detroit, MI, 1989.

6. “Friction and Wear Performance of Low Fric tion Carbon Coating Under O il Lubrication”, A.Kovalchenko, O. Ajayi, A. Erdemir and G. Fenske, Argon ne Natl. Laboratory, STLE Annual Meeting, Houston, TX, 2002.

7. “Experimental Theoretical Model of Wear Intensity” of High Dynamic Loa

d Condition, p. 193-206, N.F. Dmitrichenko, R.G. Mnatsakanov, P.F. Saad, In ternational Univ. of Civil Aviation, Kiev, Ukraine, S. Danyluk, Georgia Institut

e o

f Technology, “Tribology –Theory and Practice”,Issn. 0208-774 year 2/9 8, (158-) Warsaw, Poland.

8. “Evaluation of Ion Beam Assisted Diamond Like Carbon (DLC)Coatings f or Low Heat Rejection Diesel Engine Piston Rings”, Lloyd Kamo, W. Bryzik and M. Mekari, ASME –ICE Div. Spring Conference San Antonio, TX, 2000

活塞环梯形角度测量仪的设计方案说明书

姓名:李洋 学号:0743024017 学院:制造学院 指导老师:赵世平黄玉波陆小龙 2018年1月

活塞环梯形角度测量仪的设计 一·概述 活塞环(Piston Ring> 是用于崁入活塞槽沟的环,分为两种:压缩环和机油环。压缩环可用来密封燃烧室内的压缩空气;机油环则用来刮除汽缸上多余的机油。活塞环是一种具有较大向外扩张变形的金属弹性环,它被装配到剖面与其相应的环形槽内。往复和旋转运动的活塞环,依靠气体或液体的压力差,在环外圆面和气缸以及环和环槽的一个侧面之间形成密封。 活塞环作用包括密封、调节机油<控油)、导热<传热)、导向<支承)四个作用。 密封:指密封燃气,不让燃烧室的气体漏到曲轴箱,把气体的泄漏量控制在最低限度,提高热效率。漏气不仅会使发动机的动力下降,而且会使机油变质,这是气环的主要任务; 调节机油<控油):把气缸壁上多余的润滑油刮下,同时又使缸壁上布有薄薄的油膜,保证气缸和活塞及环的正常润滑,这是油环的主要任务。在现代高速发动机上,特别重视活塞环控制油膜的作用; 导热:通过活塞环将活塞的热量传导给缸套,即起冷却作用。据可靠资料认为,活塞顶所受的的热量中有70~80%是通过活塞环传给缸壁而散掉的; 支承:活塞环将活塞保持在气缸中,防止活塞与气缸壁直接接触,保证活塞平顺运动,降低摩擦阻力,而且防止活塞敲缸。一般汽油发动机的活塞采用两道气环,一道油环,而柴油发动机则采用三道气环,一道油环。 作为发动机的关键零件,活塞环的形状对内燃机的性能有着重要的影响, 活塞环的梯形角是梯形活塞环的一个重要参数, 其角度大小直接影响到活塞环的质量及使用性能。角度过大, 易发生拉缸现象, 角度过小, 则密封性能差, 发动机功率下降且容易发生烧机油现象。要提高活塞环的质量和性能,就必须首先提高其检测技术,为解决梯形活塞环角度测量问题,我们改进设计一种检测系统——活塞环梯形角度测量仪。 二·设计目的及技术指标 1.设计目的 本次设计课题为活塞环梯形角度测量仪的设计,其目的如下: a、巩固所学传感器、检测技术、精密机械设计、机械制图、公差分 析等相关知识;

柴油机活塞环拆卸与装配

柴油机活塞环拆卸与装配 活塞环拆卸: 1、简介 活塞环是装于活塞环槽内具有弹性的金属圆环,是柴油机燃烧室的组成零 件之一,具有保持活塞与气缸套之间的有效密封作用和将活塞热量传递给气缸壁的散热作用,以及调节气缸润滑油的作用。按其功用不同可分为气环(压缩环、密封环)和油环(刮油环)两种。 在十字头式柴油机里,气缸采用专门的润滑机构进行润滑,所以一般只装压缩环,没有刮油环,而另设有承磨环。 气环:主要作用是防止气缸中的气体漏泄和将活塞上的部分热量传递给气缸。并起支撑活塞的作用。以上这些作用中密封作用尤其重要,对于冷却式活塞埸是如此。压缩环的密封作用是靠环本身的弹性将环压紧在缸壁上,间隙很小,形成第一次密封。由于间隙节流在环的上下平面和内侧产生不平衡的气的体力,将环进一步压紧在缸壁和环槽上,形成第二次密封。值得注意的是:第二次密封是建立在第一次密封的基本上的,若环的弹性消失,第一次和第二次密封将均不存在。通常为了保证密封可靠,均安装多道气环,如4~5道气环油环:筒形活塞式柴油机,活塞和气缸套之间是靠飞溅来和滑油进行润滑的。由于飞溅到气缸壁上的滑油一般较多。而且气环会通过泵油作用把滑油泵入燃烧室,这不仅增加了滑油的消油量,而且还会污染活塞、气缸、气阀和排气管道。因此在气环下面安装1~3道刮油环,调节气缸壁面上的滑油以保证良好的气缸润滑,油环工作时在是运动中将油刮下,并把气缸壁上多余的滑油,经环上的泄油孔和环槽上的泄油孔排回曲轴箱 承磨环:十字头式柴油机专门为活塞与气缸的磨合而设置的承磨环(超短裙活塞不设置,短裙活塞设置1~2道承磨环,长裙活塞设置2~4道承磨环)。承磨环在运动中

活塞环的基本材料

活塞环的基本材料 当今活塞环应用各种品质的铸铁材料和钢。首先考察铸铁材料,按照用材料强度、延伸率、疲劳强度和耐磨性等指标表征的承载能力,可选用的铸造品质的全部范围见表1。对于第一道压缩环应特别优先选用一种具有高抗弯强度和弹性模数的球墨铸铁,其基体为马氏体,以获得高的硬度,可使侧面具有较好的耐磨性。 第二道活塞环能应用无镀层环,开发了一种在调质热处理状态下呈现细化片状组织铸造品质的材料,通过生成铬、钒、锰和钨元素的特殊碳化物,以及马氏体基体组织,以获得良好的耐磨性。而GOE44可锻铸铁是一种在细化珠光体基体组织中有针对性地生成残余碳化物成分的材料,能将高抗切向力强度与良好的耐磨性结合起来。 由于对材料强度和疲劳强度以及良好耐磨性的要求越来越高,现在趋向于进一步优化球状石墨的生成,以便在静态(装配状态)和动态负荷下获得特别高的抗弯强度,同时用贝氏体基体组织来获得活塞环侧面和工作表面较低的磨损率。 由于汽油机和柴油机活塞结构高度降低,压缩环的轴向高度相应减小,特别是面对20MPa气缸爆发压力,对机械结构的要求越来越高,这一切都要求提高活塞环侧面的强度和耐磨性。钢材料特别适合于这些要求。与铸铁材料相比,钢具有良好的机械动态承载能力,因此在弯曲负荷增大的情况下具有高的疲劳强度。当然,通过表面镀层和表面处理的效果可部分地缩小铸铁和钢之间动态强度的差异。试验表明,通过附加的化学处理(CPS法)可使氮化钢活塞环的动态强度提高大约30%。 首先应用含铬量为13%或18%的高铬马氏体钢,这种材料通过生成精细分布的铬碳化物和附加生成的渗氮层使表面层硬度明显提高,从而获得良好的耐磨性。如果要使用调质处理的Cr-Si低合金钢的话,则环工作表面镀层是必需的。 在最近15年内,全世界汽油机第1道压缩环都由铸铁环改用钢环,其中特别是欧洲和日本偏爱于氮化钢环。在汽油机高转速的使用条件下,现在轴向高度低的第1道钢环已成为标准零件,在此期间开发的发动机的第1道环超过90%采用氮化钢环,而第2道环大多数采用成本较低的铸铁环,并根据各自的功能要求选择相应的结构型式和工作表面涂层。 在欧洲轿车柴油机,即升功率大于50k W/的高负荷发动机上,第1道压缩环必须使用牌号为52/56的球墨铸铁,第2道环采用牌号为32的调质耐磨灰铸铁。通过采用强化的球墨铸铁(GOE56)或含铬18%铬钢来改善活塞环侧面特别是上侧面的耐磨性。当然,特别是在环轴向高度低的情况下,钢环包含着环槽磨损增大的风险,但是在每种情况下槽和环侧面总磨损量的差异并不大。 在柴油机上,由于活塞环的轴向高度较高,其材料向钢变化的倾向并不明显。这一方面是因为铸铁环和环槽镶圈材料之,间的材料配对非常好,另一方面是因为铸铁材料具有非常良好的加工性。 原则上,商用车柴油机第1道压缩环使用球墨铸铁已有非常丰富的经验,这从球墨铸铁环在欧洲柴油机上占有很高的分额就反映出来了。但是,自从上世纪60年代以来,具有非常低轴向磨损的含铬18%铬钢镀层压缩环在商用车柴油

柴油机“连杆”零件的机械加工工艺规程的编制及工装设计 机械设计毕业论文

柴油机“连杆”零件的机械加工工艺规程的编制及工装设计 前言 毕业设计是在学完了机械制造工艺及夹具和大部分专业课,并进行了生产实习的基础上进行的一个教学环节。这是我们在毕业前对所学课程的一次深入的全面的总复习,也是一次理论联系实际的训练,更是一次毕业总结。因此,毕业设计在这三年的学习中占有十分重要的地位,要求每位毕业生都能发挥所能,搞好自己的设计,给自己的学业划上一个圆满的句号。 我也十分重视这次毕业设计,并希望通过这次设计对自己今后将从事的工作进行一次适应性的训练,锻炼自己分析问题、解决问题的能力。 由于个人能力有限,设计中难免有许多不足之处。希望各位指导老师给予批评指正,我也会在以后的工作中严格要求自己,努力提高自己的专业技能。 摘要 机械制造工业是国民经济最重要的部门之一,是一个国家或地区经济发展的支柱产业,其发展水平标志着该国家或地区的经济实力、科技水平、生活水平和国防实力。机械制造业的生产能力和发展水平标志着一个国家或地区国民经济现代化的程度,而机械制造业的生产能力主要取决于机械制造装备的先进程度,产品性能和质量的好坏则取决于制造过程中工艺水平的高低。 连杆作为传递力的主要部件广泛应用于各类动力机车上,是各类柴油机或汽油机的重要部件。连杆在传递力的过程中,承受着很高的周期性冲击力、惯性力和弯曲力。这就要求连杆应具有高的强度、韧性和疲劳性能。同时,因其是发动机重要的运动部件,故要求很高的重量精度。随着汽车行业的发展,连杆的需求量在不断增加,也出现了许多不同的加工制造工艺。 关键词:机械制造、机械制造装备、连杆、加工工艺

目录 绪论............................................................................ (4) 一. 零件的结构工艺分析 (4) 1.1. 零件的作用及保护措施 (4) 1.2. 毛坯材料的选用、制造并绘制毛坯图 (6) 1.3. 连杆工艺规程的设计 (9) 1.4. 零件的工艺过程分析 (13) 1.5. 工艺方案的确定 (15) 1.6. 机械加工余量、切削用量、工序尺寸的确定 (16) 1.7. 工序工时定额的计算 (19) 二. 连杆机械加工技术近期发展 (22) 三. 连杆的修复 (24) 四. 工装设计 (25) 五. 总结 (33) 六. 致谢 (34) 七. 参考文献 (35) 八. 毕业设计任务 (36)

活塞环基本知识

活塞环基本知识 活塞环是发动机的重要零件之一。活塞环分为气环和油环两种。活塞环的作用:密封气体;均匀分布气缸壁上的润滑油,并防止润滑油窜入燃烧室;导出活塞上的热量;支承活塞,防止活塞直接与气缸壁接触。活塞环工作的好坏直接影响发动机的性能、工作可能性和使用寿命。 1 活塞环的作用 1.1气环的作用 气环起密封气体及导热的作用,其本身具有一定弹力。将环压在缸壁上。当发动机工作时,高压气体进入环槽,一方面将环压紧在环槽上,另一方面环背将更紧密地压在缸壁上起到更好的密封作用。当气体通过第一道环隙窜入第二道时,压力已大大降低。而且第二道环漏泄的气体极少。为了进一步减少摩擦损失,有的发动机只采用一道气环。第二道气环密封任务较轻,而且工作条件较一道好些。为了避免机油窜入燃烧室,所以要求第二道气环除密封气体外,还有一定的刮油作用。 1.2 油环的作用 油环的作用是将一定的润滑油均匀分布在缸壁上,防止润滑油窜入燃烧室并保证活塞环和缸壁的润滑。 油环要刮下缸壁上多余的油,须较大的径向力将环压在缸壁上。由于环背没有气体压力的帮助,故环本身要具有较大的弹力及较小的接触面积,同时刮下的润滑油要能顺利地流回油底壳,所以油环槽背设有回油孔或切口。 2 活塞环的结构分析 2.1活塞环各部分名称,如图1所示。 2.2切口形式 活塞环切口基本上有3种形式:直切口、斜切口和梯形切口,如图2所示。其

中用得最普遍的是直切口。二行程发动机为防止环切口与缸壁上的气口相碰,在切口处用销钉档住,不让环在环槽内转动,如图3所示。 2.3 常用气环断面形状 气环断面形状如图4所示。 矩形环:断面呈矩形,制造简单,广泛采用。 锥形环:将工作面制成小锥度以提高表面接触压力,有利于是磨合密封,并有一定的刮油作用。锥形环用肉眼不一定能看出锥角,所以一定要做标记,不能装反。正确安装应是正锥形,其锥顶向上。 图4 常用活塞环的断面形状 a)矩形 环b)锥面环c)桶面 环d)内切槽环 e)下切槽

柴油机活塞环拆卸与装配

活塞环拆卸: 1、简介 活塞环是装于活塞环槽内具有弹性的金属圆环,是柴油机燃烧室的组成零 件之一,具有保持活塞与气缸套之间的有效密封作用和将活塞热量传递给气缸壁的散热作用,以及调节气缸润滑油的作用。按其功用不同可分为气环(压缩环、密封环)和油环(刮油环)两种。 在十字头式柴油机里,气缸采用专门的润滑机构进行润滑,所以一般只装压缩环,没有刮油环,而另设有承磨环。 气环:主要作用是防止气缸中的气体漏泄和将活塞上的部分热量传递给气缸。并起支撑活塞的作用。以上这些作用中密封作用尤其重要,对于冷却式活塞埸是如此。压缩环的密封作用是靠环本身的弹性将环压紧在缸壁上,间隙很小,形成第一次密封。由于间隙节流在环的上下平面和内侧产生不平衡的气的体力,将环进一步压紧在缸壁和环槽上,形成第二次密封。值得注意的是:第二次密封是建立在第一次密封的基本上的,若环的弹性消失,第一次和第二次密封将均不存在。通常为了保证密封可靠,均安装多道气环,如4~5道气环 油环:筒形活塞式柴油机,活塞和气缸套之间是靠飞溅来和滑油进行润滑的。由于飞溅到气缸壁上的滑油一般较多。而且气环会通过泵油作用把滑油泵入燃烧室,这不仅增加了滑油的消油量,而且还会污染活塞、气缸、气阀和排气管道。因此在气环下面安装1~3道刮油环,调节气缸壁面上的滑油以保证良好的气缸润滑,油环工作时在是运动中将油刮下,并把气缸壁上多余的滑油,经环上的泄油孔和环槽上的泄油孔排回曲轴箱 承磨环:十字头式柴油机专门为活塞与气缸的磨合而设置的承磨环(超短裙活

塞不设置,短裙活塞设置1~2道承磨环,长裙活塞设置2~4道承磨环)。承磨环在运动中若已磨平,也不必更换。 2、活塞环的结构与配置 活塞环的材料为耐磨合金铸佚,共有6道环。第一道是经过镀铬处理,其余表面为镀锡或磷化处理。活塞环一般是4道气环,2道刮油环(按机型大小环环数有所不同):高、中速柴油机2~4道气环,1~2道刮油环;十字头式低速柴油机常用5~6道压缩环,1~4道承磨环。 3、拆卸活塞环 (1)、大中型柴油机活塞环的拆卸必须使用拆装专用工具来进行。专用工具类型很多。如教材这P120图16.1 (2)、在没有专用工具时,一般小型柴油机活塞环可用麻绳或铁丝等物料弯成环形,套在拇指上,另一半分别套在活塞开口两端,缓慢地用力使活塞环张开后移出环槽拆出。 (3)、张开活塞环时务必注意,在使它能够移出环槽的情况下尽可能地张得小些,否则很容易拆断或使活塞环受到内伤,使之良快疲劳断裂。 拆下的活塞环应按该缸的环序放置,不可随意弄乱缸号环序,以备清洁后检查测试。 活塞环装配: 拟装配到活塞上的活塞环,其活塞环的搭口间隙、平面间隙(通常称天地 间隙)和弹力情况,均已检查测量并符合规定要求才能装配。 装配及注意事项: 1、活塞安装时应使用拆装专用工具,将环的开口扩大使之缓慢顺利地装复 到环槽中。

活塞环的机械加工工艺规程设计

机械制造工艺学 课程设计 班级 B120231 姓名王志强 学号 B12023118 2014 年 03 月 14 日

课程设计任务书 机械工程系机械设计制造及其自动化专业学生姓名王志强班级 B120231 学号 B12023118 课程名称:机械制造工艺学 设计题目:活塞环的机械加工工艺规程设计 设计内容: 1.产品零件图1张 2.毛坯图1张 3.机械加工工艺过程综合卡片1份 4.机械加工工艺工序卡片1份 5.课程设计说明书1份 设计要求: 大批生产 设计(论文)开始日期 2014 年 03 月 03 日 设计(论文)完成日期 2014 年 03 月 07 日 指导老师邹聆昊

课程设计评语 机械工程系机械设计制造及其自动化专业学生姓名王志强班级 B120231 学号 B12023118 课程名称:机械制造工艺学 设计题目:活塞环的机械加工工艺规程设计 课程设计篇幅: 图纸共 2 张 说明书共 16 页指导老师评语: 年月日指导老师

目录 1.零件的分析 (1) 1.1.零件的作用 (1) 1.2.零件的工艺分析 (1) 1.2.1.零件图样分析 (2) 1.2.2.零件的技术要求 (3) 2.工艺规程设计 (4) 2.1.确定毛坯的制造形式 (4) 2.2.基面的选择 (5) 2.3.制定工艺路线 (6) 2.4.机械加工余量、工序尺寸及毛坯尺寸的确定 (7) 2.5.确定切削用量及基本工时 (8) 总结 (11) 参考文献 (12) 附表A1-A4:机械加工工艺过程综合卡片 附表B1-B9:机械加工工艺(工序)卡片

1. 零件的分析 1.1.零件的作用 活塞环作用包括密封、调节机油(控油)、导热(传热)、导向(支承)四个作用。密封:指密封燃气,不让燃烧室的气体漏到曲轴箱,把气体的泄漏量控制在最低限度,提高热效率。漏气不仅会使发动机的动力下降,而且会使机油变质,这是气环的主要任务;调节机油(控油):把气缸壁上多余的润滑油刮下,同时又使缸壁上布有薄薄的油膜,保证气缸和活塞及环的正常润滑。在现代高速发动机上,特别重视活塞环控制油膜的作用;导热:通过活塞环将活塞的热量传导给缸套,即起冷却作用。据可靠资料认为,活塞顶所受的的热量中有70~80%是通过活塞环传给缸壁而散掉的;支承:活塞环将活塞保持在气缸中,防止活塞与气缸壁直接接触,保证活塞平顺运动,降低摩擦阻力,而且防止活塞敲缸。 1.2.零件的工艺分析 1.该工艺安排是将毛坯造成筒形状,粗车切下后再进行单件加工。若单件铸造毛坯单件加工,其工艺安排,只是粗加工前的工序与筒形状毛坯不同,其他工序基本相同。 2.活塞环类零件在磨床上磨削加工时,多采用磁力吸盘装夹工件,因此在加工后,必须进行退磁处理。 3.为了保证活塞环的弹力,加工中对活塞环在自由状态下开口有一定的要求,因开口铣削后不能满足图样要求,所以增加一道热定型工序,热定型时需在专用工装上进行,其活塞环的开口处用一个键撑开,端面压紧,键的宽度要经过多次试验后得出合理宽度数据之后,再成批进行热定型。 4.对45°开口的加工采用专用工装进行装夹工件,但每批首件应划线对刀,以保证加工质量。 5.活塞环的翘曲度是将工件放在平台进行检查,采用0.06mm塞尺进行检查,当塞尺未能通过翘曲的缝隙时为合格。

机械连杆毕业论文资料

毕业设计说明书 发动机连杆工艺设计及结构造型 学号 12874107 姓名周海涛 班级机电124 专业机电一体化技术 系部机电技术学院 指导老师张帆 完成时间2014年9 月8 日至2015年4 月24

目录 引言 (1) 第1章柴油机简介 (2) 1.1柴油机的概述 (2) 1.2柴油机的总体结构 (2) 第2章连杆的总体造型分析 (3) 2.1连杆的功用 (3) 2.2连杆组成部分 (3) 2.3连杆的受力分析 (4) 2.4连杆材料的金属性能及特点 (4) 2.5连杆零件图的分析 (5) 2.6连杆工艺分析 (7) 第3章工艺规程设计 (9) 3.1基准面的选择 (9) 3.2制定工艺路线 (9) 3.3工艺过程的安排 (10) 3.4确定合理的夹紧方法 (10) 3.5连杆的加工 (10) 3.6切削用量的选择原则 (12) 第4章确定各工序的加工余量、计算工序尺寸及公差 (14)

4.1确定加工余量 (14) 4.2确定工序尺寸及其公差 (14) 结束语 (17) 参考文献 (18) 附录: (19)

引言 连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。此外,低副面接触的结构使连杆机构具有以下一些优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小;制造方便,易获得较高的精度;两构件之间的接触是靠本身的几何封闭来维系的,它不象凸轮机构有时需利用弹簧等力封闭来保持接触。因此,平面连杆机构广泛应用于各种机械、仪表和机电产品中。 平面连杆机构的缺点是:一般情况下,只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往较多,这样就使机构结构复杂,工作效率降低,不仅发生自锁的可能性增加,而且机构运动规律对制造、安装误差的敏感性增加;机构中作复杂运动和作往复运动的构件所产生的惯性力难以平衡,在高速时将引起较大的振动和动载荷,故连杆机构常用于速度较低的场合柴油机连杆的作用就是把活塞的往复直线运动转变成曲轴的回转运动,以便向外输出,它是主要传动件之一,它在工作中主要承受拉压交变应力,它的质量对柴油机是否能平稳的工作,以及寿命的保证。 由于连杆在工作中受到复杂的交变载荷作用,会发生弯曲,扭曲,大小头孔壁的磨损及螺栓损坏、大头侧面扭伤等。连杆除裂纹外、螺栓弯曲及损坏等明显损伤外,主要是弯曲、扭曲检验。一般应在连杆检验器上进行,用千分表检查弯曲度,用塞尺检查扭曲度。连杆大、小端承孔轴心线应在同一平面,其平行度误差(弯度)应与此平面垂直的方向。这就涉及到零件的工作部位的加工精度要求,这就要求到我们要了解对发动机工艺的设计以及结构造型,制定工艺路线时主要考虑粗、精加工安排、加工方法选择、工序集中与分散、加工顺序等方面的要求。接着确定加工余量、工序尺寸及金属材料性能、热处理、铣、刨、磨削的加工的切削用量。

活塞环的材料

活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2许用应力(㎏)推荐使用范 围 工作 应力 安装应力 灰铸铁合金铸铁亚共晶铸 铁 球墨铸铁碳钢马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油 环 压缩环油 环 压缩环油 环 IST IST OIL刮片 环 IST 钢带衬环 许用剪应力200㎏/mm2

活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si:2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造

04第三章活塞环的设计

第三章活塞环的设计 内燃机的性能与活塞环的设计息息相关。目前世界上活塞环设计已进入标准化系列化时代。 3.1 活塞环的设计原则 根据活塞环的作用和工作条件,活塞环的设计应满足如下要求: 1 有适当的弹力,以利初始密封; 2 有较高的机械强度和热稳定性好; 3 易磨合且有足够的耐磨性和抗结胶能力; 4 加工工艺简单,成本低廉。 活塞环设计采用弹性弯曲理论,综合考虑环装入活塞的张开应力和环在气缸中的工作应力。根据这些应力的最佳比例和环材料的强度和弹性模量,实际环的自由状态开口距离为2.5~3.5倍的环径向厚度,环直径/径向厚度之比在22~34之间。 经长期设计经验之积累和广泛的发动机运转测试,得出了压缩环、油环和环槽设计参数的推荐范围,如表3-1~3-4所示的数据,给活塞环设计提供一个全面的指南。 表3-1 气环侧隙 环直径间隙 顶环第二和第三道环 76~178mm >178~250mm >250~405 mm >405~600mm >600mm 0.064/0.114 mm 0.076/0.127 mm 0.102/0.152 mm 0.152/0.216 mm 0.152/0.229 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-2 油环侧隙 环直径间隙 76~178 mm >178~250 mm >250~405 mm >405~600 mm >600 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-3 闭口间隙 发动机型式单位缸径的闭口间隙 水冷 风冷及两冲程 0.003/0.004 0.004/0.005表3-4 侧面光洁度 活塞环直径侧面光洁度CLA ≤178 mm >178~405 mm >405~920 mm 最大0.4μm 最大0.8μm 最大1.6μm

机械连杆设计说明书毕业论文

机械连杆设计说明书毕业论文 2工艺路线的制定 2.1 零件分析 在制定工艺规程时,必须首先了解零件在产品中所起的作用,了解零件的结构特点,对零件进行工艺分析。以上都是通过对设计原始资料零件图及产品装配图进行分析的基础上完成的。另外,还要审查零件图的完整性和正确性,对产品零件图提出修改意见。 2.1.1连杆的作用 连杆是汽车发动机中的主要传力部件之一,其小头经活塞销与活塞连接,大头与曲轴连杆轴颈连接。燃烧室受压缩的油气混合气体经点火燃烧后急剧膨胀,以很大的压力压向活塞顶面,连杆则将活塞所受的力传给曲轴,推动曲轴旋转。 连杆部件一般由连杆体、连杆盖和螺栓、螺母等组成。在发动机工作过程中,连杆要承受膨胀气体交变压力的作用和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减少惯性力的作用。连杆杆身一般都采用从大头到小头逐步变小的工字型截面形状。 为了减少磨损和便于维修,在连杆小头孔中压入青铜衬套,大头孔衬有具有钢质基底的耐磨巴氏合金轴瓦。 为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大,因此,在连杆部件的大、小两端设置了去不平衡质量的凸块,以便在称重后切除不平衡质量。 连杆大、小头两端面对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运、要求,连杆大、小头的厚度相等(基本尺寸相同)。 在连杆小头的顶端设有有孔,发动机工作时,依靠曲轴的高速转动,把气缸体下部的润滑油飞溅到小头顶端的油孔,以润滑连杆小头铜衬套与活塞销之间的摆动运动副。 2.1.2连杆的技术要求 连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,杆体与杆盖的结合面及连杆螺栓定位孔等。连杆总成的技术要求如下: 1.为了使连杆大、小头运动副之间配合良好,大头孔的尺寸公差的等级取为IT6,表面粗糙度Ra不大于0.4μm ;小头孔的尺寸公差等级约取为IT5(加工后再按

内燃机缸套-活塞环摩擦学研究回顾与展望

内燃机缸套-活塞环摩擦学研究回顾与展望 西安交通大学张家玺高群钦朱均 摘要:内燃机缸套-活塞环摩擦副是一个典型的摩擦学系统,其中含有多种类型的摩擦和磨损,润滑、摩擦、磨损的相互作用十分显著。其摩擦学性能对提高内燃机的可靠性和耐久性,保证内燃机经济、可靠地工作具有决定性的作用。其摩擦学问题的研究一直是人们关注的热点之一。 关键词:内燃机缸套活塞环摩擦学研究 内燃机中缸套-活塞环摩擦副对内燃机工作性能(动力性、经济性以及稳定性等)和使用寿命有着举足轻重的影响。如何控制好这对摩擦副的摩擦学行为是人们魂系梦牵的事情。由于缸套-活塞环摩擦副的工作条件十分苛刻,经常处于高温、高压和高冲击负荷工作状态。为了解决好这对摩擦副的润滑和抗磨问题,国内外许多汽车工程技术人员,长期以来孜孜以求地投入了大量的研究工作,至今仍在探索。 1 缸套-活塞环摩擦学理论研究概述 从缸套-活塞环研究的历史上看,早期对缸套-活塞环的摩擦学研究主要是求内燃机的摩擦功耗,自Stanton,T.E.1925年发表第一个摩擦力研究结果以来,人们围绕着缸套-活塞环的摩擦及润滑问题做了许多工作,Rogowki,A.R.指出活塞连杆系统的摩擦功耗可占到整个内燃机机械损失的75%,而缸套-活塞环的摩擦功耗又占活塞连杆系统的75%,Ricardo,H. 的研究表明当内燃机以1600r/min转速运转时,活塞连杆系统的损失占机械损失的58%,并指出“对所有内燃机来说,活塞连杆系统的摩擦功耗是机械损耗的最大组成部分,但又是最难准确地定量描述的部分。”最早在点火内燃机上进行摩擦力测量的是美国麻省理工学院的学者们,他们通过研究得出了摩擦力随气体压力升高略有增加的结论。Farobarros,A.T Dyson,A.研究了不同粘度润滑油对摩擦力的影响以及在混合润滑区内减摩添加剂的作用。Wakuri,Y.等人通过对摩擦力的测量和分析,指出贫油对摩擦力有巨大的影响,同时还探讨了环组中活塞环的数目对摩擦力的影响以及缸套-活塞环间油膜厚度随润滑油粘度的变化。Furuhama,s.等人在缸套-活塞环摩擦学特性研究作出了巨大的贡献,他们于70年代末期研制的可动缸测量摩擦力装置,有效地克服了惯性力、气体压力等因素的影响,测得了在整个内燃机工作循环中的摩擦力变化过程,提出了内燃机载荷主要由流体润滑膜承担,而摩擦力主要受混合润滑区域影响的论断,这一点已被后来进一步的理论研究所证实。 Riches,M.F.等人侧重于混合润滑效应,从理论和实验两方面对缸套-活塞环间的摩擦力进行了研究,指出在低速及低粘条件下充分考虑混合润滑作用的重要性。活塞环的摩擦影响着内燃机的效率,而缸套-活塞环的磨损则影响着它们的使用寿命,近年来,对高性能内燃机提出要求之一就是延长不解体检测的运行时间。为此,减少缸套-活塞环的磨损就成了首要的任务。缸套-活塞环的磨损是非常复杂的,它受到许多因素的影响,同时其磨损又包含粘着磨损、磨粒磨损、腐蚀磨损等多种磨损形式。针对这种情况,Nealc,M.J.经过广泛调查,于1970年发表文章阐述了缸套-活塞环一般的磨损机理,提出了一些改善措施,指出了需要加强研究的问题。基于Archard,J.F.磨损定律,Ting,L.L.等人提出了一种分析缸套-活塞环磨损的模型,分别计算了缸套上推力面和次推力面的磨损,得出了缸套磨损曲线。国内的

柴油机连杆加工工艺及铣螺栓座面夹具毕业设计论文

1前言 跨入二十一世纪,加入世界贸易组织,当前的中国作为一个社会持续进步,经济稳步增长的楷模,随时迎接着世人或挑剔,或羡慕的眼光。我们和祖国一起站在新世纪的起点,面对着迎面而来的机遇和挑战,除了要不断丰富自己的知识和才干,更要看清当前世界发展的形势。国家经济政治要强大,必须有强有力的重工业作为支撑。于是,振兴东北老工业基地便成了一个摆在我们眼前的鲜明目标。 我只是一个普通的学生,还没有任何实际经验,要说马上就能够运用自己的专业知识做什么高深的研究设计是不可能的,但是我想这次毕业设计的目的重点不是看我这次设计的高瞻远瞩性,因为毕竟自己经验以及知识非常有限,做出来的结果不可能尽善尽美;重点是要我们学会利用校内的大量资源和所能接触到的书籍、媒体,更系统地掌握学习和研究问题的方法,利用毕业设计的机会锻炼自己分析问题与解决问题的能力,了解工作的大致程序,也能初步积累工程技术人员需要必备的经验,以便为日后离开校园的学习和工作打好坚实的基础。而以我们现在的程度需要付出更多的努力才能真正成为一名机械领域的有用之才。 这次设计历时三个月,主要完成的任务有:在已有的知识基础上,制定出合理的柴油机连杆加工工艺;选择其中一道工序——铣螺栓座面,进行夹具设计;进行说明书的编写工作。在工序编排的过程中,充分考虑多方面影响因素、结合中国机械行业现行的技术及装备条件;在夹具设计过程中使用了当前普遍使用的AutoCAD。 中国现在处于飞速发展和向世界市场全面进军的阶段,需要国人都能以饱满的热情投入到自己的岗位中去。二十一世纪这个知识时代,各个国家的竞争异常激烈,归根结蒂是经济上的竞争。一个国家只要综合国力强大,则其他事业也随之繁荣,因为政治是为经济服务,只要经济真正繁荣,那么国家也就能真正找到适合我国国情的政治方略。而通过历史可以清晰看到,每当一个朝代经济突飞猛进的时候,那么这时也是文化走向繁荣的转唳点。总之,衷心希望中国的机械行业能蒸蒸日上,引领世界的机械事业共同前进。 2绪论概述 2.1柴油机发展概况 从18世纪末19世纪初的工业革命的一团蒸汽发展为至今的柴油机,可谓历程坎坷,浸有数代科学家及工程师的心血,而至今仍在发展中。

活塞环的材料

第二章活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2 许用应力(㎏)推荐使用范围工作应力安装应力 灰铸铁 合金铸铁亚共晶铸铁 球墨铸铁 碳钢 马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油环 压缩环油环 压缩环油环 IST IST OIL刮片环 IST 钢带衬环 活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si: 2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造型与浇铸工艺来确保活塞环具有符合设计要求的最佳金相组织。 2 热处理 采用适当的热处理方法,以调整活塞环的金相组织及消除加工应力。 3 刚度 活塞环是一个刚度差的弹性零件,加工时必须合理安排工艺流程、注意装夹方法,以保 许用剪应力200㎏/mm2

活塞环工作原理

活塞环工作原理 乍一看活塞环是一个形态非常简单,具有圆开口的环,但它在摩托车发动机(内燃机)中却是不可缺少的运动部件,起着极为重要的作用,活塞环按作用分为气环和油环,它有四大功能。 一、保持气密性
活塞环是所有发动机零件中唯一作三个方向运动的零件。(即轴向运动、径向运动和圆周方向的旋转运动),同时也是使用条件中最为苛刻的零件。发动机燃烧室在爆炸的瞬间,燃气温度可达到2000℃-2500℃,其爆发压力平均达到50kg/cm平方,活塞头部的温度一般不低于200℃。活塞是作往复运动的,其速度和负荷都很大。因此活塞环是工作在高温、高压条件下的。尤其是第一道气环,承受的温度最高,润滑条件也最差,为了保证它具有和其它几道环相同或更高的耐用性,常常将第一道气环,的工作表面进行多孔镀铬处理。多孔镀铬层硬度高,并能贮存少量的润滑,以改善润滑条件,使环的寿命提高2-3倍。近年来,摩托车发动机大多采用长度短于缸径的活塞,这种活塞的头部在上行程转到下行程时会产生摆动现象,使活塞环外圆的上下边缘紧紧地与缸壁接触,导致活塞环的棱缘加载而形成刮伤。为避免这种异常现象,一般将第一道气环外圆制成圆弧状,以其上、下端面的边缘角不触及缸壁,并且易于发动机的初期磨合,这种气环称为桶面环,为目前高功率高转速的内燃机所采用。尽管当今制造技术非常精细,零部件差亦控制在最小范围,但因其材料、热处理及装配后的机械变形,汽缸内的气密总有极个别泄漏点存在,这就需要发动机在使用初期进行良好的磨合及启动后适

当的预热来逐渐消除摩擦副的凹凸不平点。倘若由于多种原因引起汽缸的密封不良时,会引起压缩压力下降和燃烧气体的窜漏,高压高温气体将穿过缸壁与活塞环之间的微小空隙,由此而引起的故障是破坏了活塞环与缸壁之间的所必需的油膜,以致形成了金属之间直接接触的干磨擦状态,从而导致了因干磨擦而烧伤的拉伤活塞、活塞环和汽缸,使发动机产生异常磨损。泄漏的高温气体窜入曲轴箱使机油变质和产生硬质油泥,使活塞环发生粘着等故障。由此看来,确保活塞环在汽缸内的气密性关重要,来不得任何的泄漏。
二、控制机油
活塞环是在高负荷下和高温气氛中沿缸壁来回滑动的。为了更好地发挥其功能,既要有少量的机油润滑汽缸和活塞,又必然适当地刮掉附着在缸壁上多余的机油,防止其上窜以保持机油消耗量适中。
大家知道,四冲程发动机在进气行程中,燃烧室内的压力低于曲轴箱内的压力,由于这种压差起着一种泵油作用,所以机油通过活塞环、活塞和汽缸之间微小间隙而被吸入燃烧室,导致因窜机油而使机油消耗量大增。尤其在发动机怠速情况下,节气门基本处于关闭状态,汽缸内负压较大时,这种现象更趋严重。为了控制机油上窜,一般都将活塞上第二道气环外圆制成锥面。锥面环既能在活塞上行时的滑动面上布下油膜,又能在活塞环下行时有效的刮去缸壁下端多余机油,真可谓一举两得。为了更加有效地将飞溅至汽缸壁下部的机油刮净,又在活塞第二道气环的下部增加一道钢片组合式刮油环。这种环的特点仅在于其接触压力高,而且由于上下刮片能够分别动作,即使对于正圆爌较差的汽缸来说,也具有良好的适应性。更重要的是每个

机械设计毕业论文

机械设计毕业论文标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

毕业论文 题目:柴油机“连杆”零件的机械加工工艺规程的编制及工装设计 班级:机制1103班 姓名:高红岩 专业:机械制造与自动化 指导教师:孙卓 摘要 机械制造工业是国民经济最重要的部门之一,是一个国家或地区经济发展的支柱产业,其发展水平标志着该国家或地区的经济实力、科技水平、生活水平和国防实力。机械制造业的生产能力和发展水平标志着一个国家或地区国民经济现代化的程度,而机械制造业的生产能力主要取决于机械制造装备的先进程度,产品性能和质量的好坏则取决于制造过程中工艺水平的高低。 连杆作为传递力的主要部件广泛应用于各类动力机车上,是各类柴油机或汽油机的重要部件。连杆在传递力的过程中,承受着很高的周期性冲击力、惯性力和弯曲力。这就要求连杆应具有高的强度、韧性和疲劳性能。同时,因其是发动机重要的运动部件,故要求很高的重量精度。随着汽车行业的发展,连杆的需求量在不断增加,也出现了许多不同的加工制造工艺。 关键词:机械制造、机械制造装备、连杆、加工工艺 目录 绪论..................................... (4) 一. 零件的结构工艺分析 (4) . 零件的作用及保护措施 (4) . 毛坯材料的选用、制造并绘制毛坯图 (6)

. 连杆工艺规程的设计 (9) . 零件的工艺过程分析 (13) . 工艺方案的确定 (15) . 机械加工余量、切削用量、工序尺寸的确定 (16) . 工序工时定额的计算 (19) 二. 连杆机械加工技术近期发展 (22) 三. 连杆的修复 (24) 四. 工装设计 (25) 五. 总结 (33) 六. 致谢 (34) 七. 参考文献 (35) 八. 毕业设计任务 (36) 绪论 机械制造工业是国民经济最重要的部门之一,是一个国家或地区经济发展的支柱产业,其发展水平标志着该国家或地区的经济实力、科技水平、生活水平和国防实力。机械制造业的生产能力和发展水平标志着一个国家或地区国民经济现代化的程度,而机械制造业的生产能力主要取决于机械制造装备的先进程度,产品性能和质量的好坏则取决于制造过程中工艺水平的高低。 将设计图样转化成产品,离不开机械制造工艺与夹具,因而它是机械制造业的基础,是生产高科技产品的保障。离开了它,就不能开发制造出先进的产品和保证产品质量,不能提高生产率、降低成本和缩短生产周期。机械制造工艺技术是在人类生产实践中产生并不断发展的。机械制造工艺的内容极其广泛,它包括零件的毛坯制造、机械加工及热处理和产品的装配等。

活塞环的材料

第二章活塞环得材料 活塞环材料品种繁多、性能各异。选择活塞环得材料要考虑其使用条件、性能要求与环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高得机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定得强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性与工艺性等。目前,活塞环材料主要就是铸铁,随着发动机得强化,出现了从灰铸铁过渡到可锻铸铁与球墨铸铁以及钢材得趋向。常用得材料与性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2 许用应力(㎏) 推荐使用范围工作应力安装应力 灰铸铁 合金铸铁亚共晶铸铁 球墨铸铁 碳钢 马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油环 压缩环油环 压缩环油环 IST IST OIL刮片环 IST 钢带衬环 活塞环得材料主要就是灰铸铁、合金铸铁与球墨铸铁,其材料得成份与性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3、5-3、75% Si:2、2-2、75% Mn:0、6-0、8% P:0、3-0、8% S:小于0、10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁得基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:就是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点就是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要就是因铸铁中含有石墨就是优良得固体润滑剂,当活塞环处于临界摩擦或干摩擦得状态下,铸铁材料就显示出其优越得自身润滑性能。 如摩擦或润滑问题,能充分解决得话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2、1 活塞环得一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号得铸铁。材质就是活塞环机械性能与使用寿命得基础,因此在规定范围内合理调整材料成分比例、严格控制造型与浇铸工艺来确保活塞环具有符合设计要求得最佳金相组织。 2 热处理 采用适当得热处理方法,以调整活塞环得金相组织及消除加工应力。 3 刚度 活塞环就是一个刚度差得弹性零件,加工时必须合理安排工艺流程、注意装夹方法,以保证加工时工件具有足够得刚度,达到尺寸、形状与粗糙度要求。 许用剪应力200㎏/mm2

相关文档
最新文档