电度表的误差

电度表的误差
电度表的误差

电能计量装置的误差分析与应用设计(转)

2010-06-02 09:04:13| 分类: 默认分类 | 标签: |字号大中小 订阅

张燕萍 马连柏

(天津市电力公司培训中心 天津市电力公司电能计量中心 )

[关键词] 电能计量装置;计量误差;计量方式;计量配置

1 概述

电能计量工作是电力企业营销管理的基本工作,电能计量装置在电力营销整个工作环节

中起着决定性的作用,能否准确计量影响着电费能否准确回收,国民经济的发展。计量装置配备的是否合理,安装地点是否合适,计量方式是否准确,计量装置接线是否正确,容量选择是否合适,这些不仅影响着电能计量装置的准确性,同时还可能造成一些安全隐患,本文通过对计量装置的误差分析、现场计量装置应用情况分析,从规范计量装置的应用,减少误差进行分析,并对典型用户的计量装置进行设计使用加以详细说明。

2 造成计量装置失真的因素分析:

影响电能计量装置计量准确度的因素有五点,计量装置质量、计量装置检定质量、计量

装置安装、验收、计量装置配置设计、计量装置管理体制,在这五方面因素中,生产现场比较突出的是计量装置质量、计量装置安装、计量装置配置设计这三方面的影响,下面就主要从这三个方面进行分析。

2.1 计量装置引起的误差分析:

2.1.1 电能表引起的误差:

1)电能表相对误差计算公式为:γ=ho hx-ho

×100%

式中hx-----被校电能表所记录的电能;

ho----电路实际消耗的电能。

根据计算所得到的相对误差,与电能表铭牌上标注的准确度进行比较,若相对误差大

于电能表的准确度,则说明电能表不能准确计量。

2)引起电能表误差的原因: φI

a .电能表轻载运行:电能表转盘转动时,上、下轴承,

计度器字轮,传动齿轮及蜗杆之间产生摩擦力矩,当轻载运

行时,摩擦力矩相对影响较大,产生负误差。如图2-2所示

的负载电流与电流工作磁通的关系图可以容易的分析出,轻 图2-1 I

载时,电流工作磁通φI 与I 之间并非完全的线性关系,负载电流I 增加时,φI 缓慢增加,

导致表计在轻载运行时,转盘的转速与实际消耗的电能不成正比,从而形成负误差。

b. 二次压降过大:电能表电压有波动,电压工作磁通与电压之间的非线性关系会引起

附加误差。当电压降低时,在电压总磁通不变的情况下,非工作磁通相对增加,工作磁通相对减少,导致转动力矩减小,引起负误差。

c. 电能表倾斜对误差的影响:当电能表的安装位置倾斜一定角度时,将会引起附加误

差,原因是驱动元件对上下轴承的侧压力,随着表计的倾斜度增大,摩擦力矩增大,引起负

误差。国家标准规定,确定电能表基本误差时,0.5级电能表相对工作位置,垂直方向倾斜度不应大于0.5°,其他等级的电能表不应大于1°。

2.1.2 电流互感器的误差:

引起电流互感器误差的原因:

1)电流互感器倍率选择不当引起误差:

当电流互感器工作在小电流时,因磁通密度较低,引起的误差增大,所以在选择互感器容量时,不能选择过大,以避免在小电流下运行。

2)电流互感器二次容量选择不当引起的误差:

接入电流互感器的二次负荷包括电能表电流线圈阻抗、外接导线电阻、接触电阻。如电流互感器二次回路导线阻抗是二次负荷阻抗的一部分,尤其在用电负荷较大的用户,它直接影响电流互感器的准确性。

根据上述的分析,将互感器误差与一次电流、二次负载之间的变化关系列表为2-3所示。

表2—3 电流互感器误差特性表

2.1.3 电压互感器引起的误差:

在组成电能计量综合误差的各项误差中,电压互感器二次回路压降所引起的计量误差

往往是最大的,由于压降过大,造成少计电量及发供电量不均衡等事例均有出现,故在此详细分析电压互感器二次回路压降引起的计量误差。

1)电压互感器二次导线压降引起的误差计算:

电压互感器的负载电流通过二次连接导线及串接点的接触电阻时会产生电压降,这样加在负载上的电压就不等于电压互感器二次线圈电压,因此产生计量误差。

电压互感器二次回路压降引起计量误差与二次导线的长度、线径的大小、负载的性质以及接线方式有关。就10kV中应用较多的V形接法为例,假设ab相与bc相的负载均衡,三相的二次导线电阻相等(即R1=R2=R3=R)。

其比差和角差的计算公式为:

1)为了能有效地减少二次压降带来的计量误差,可以用下述方法进行测量后,根据误差大小对计量二次回路加以改造。用伏安法测量电压互感器二次回路压降的误差:测量工作是在电压互感器二次引下线的端子箱上进行。用相位伏安表测量电能表的电压:U ab、U cb ,测量电流互感器的一、二次电流:I a、I c ,测量角度:将相位表的电流卡钳按极性先卡住电能表第一元件的电流进线,再将红笔和黑笔分别接触到表尾盒内A、B相的电压端子,测得φab,再将相位表的电流卡钳按极性卡住电能表的第二元件电流进线,以与上述相同的方法测得φcb,然后用上面的公式进行计算。

3)降低电压互感器二次回路压降的方法:

由上面的公式可见,电压互感器二次回路压降所引起的计量误差取决于下述参数:

a.PT二次回路电流I越小,则计量误差的绝对值越小,而减少电流I的办法是直接由PT二次端子单引专用电缆线至各电能表;

b.二次导线R越小,则计量误差的绝对值越小,减少二次导线电阻的办法是加粗二次导线的截面;

c.改变二次回路转换环节。

2.2 生产现场计量装置不合理误差分析:

在生产现场计量装置的不合理状况主要是由于互感器变比选择过大、电能表电流量程小、接线方式不符合技术要求、二次回路线径过细、互感器二次容量选择不合理以及安装上存在的问题,导致计量装置轻则计量不准确,重则有安全隐患。下面通过几个实际生产中实际存在的几户计量装置不合理现象进行说明。

2.2.1 电流互感器变比选择过大误差分析

某制衣厂,380V电压供电,其用电负荷为260kW配置的电流互感器型号为LQZ-0.5,变比为500/5A,准确度等级为0.5,电能表为三相四线有功表,标定电流为1.5(6)A,其用户负荷的功率因数为0.85。

该用户计算负荷为I=P/Ucosφ=462A,按规定应配置450/5的TA,且该用户全年生产任务并不饱满,负荷电流多数情况下只有100A左右,相当于额定电流的20%,互感器运行长期处于轻负荷运行状态。根据前面分析的电流特性曲线,运行中的负荷电流相当于额定电流的60%时,互感器的误差最小,几乎为0,当负荷电流等于额定电流的20%时,互感器的比差为±0.75,角差为±45。属于典型的大马拉小车的现象。既造成了资源浪费,有使得计量不准确。

2.2.2 接线方式不符合技术要求计量分析:

关于接线方式不符合要求的实际例子比较多,现举一户10kV用户为代表来说明接线不合理的现象,因为在实际运行中,这种计量方式的用户较多,该用户采用的是2台电流互感器共用负极端与电能表的电流线圈的两个负极端共用方式。

这种接线的缺点是:a.导线电阻增加而造成的负误差;b. 如果发现错接线,更改接线时,不容易操作;c.不利于电能计量装置现场校验;d三相负荷不平衡时,电阻增大而引起的负误差,增大线损。

2.2.3 二次回路线径过细误差分析:

例如:某彩板厂,35kV供电,在变压器的高压侧安装计量装置,其三只电压互感器接成Y,yn12接法,负载为不完全三角形接线,二次导线采用1.5mm2的BV塑铜线,长度为150米。现场用相位伏安表进行测试,其数据为:表2-4

其二次导线电阻为:R=ρS=0.175×150/1.5=1.75Ω

比差为

该用户负荷功率因数为0 .8,其二次导线压降的综合误差为:

0.3 fab-0.02δab+0.7 fcb-0.0025δcb=-5.72%

电能计量装置综合误差规定为I类用户为±0.7%,Ⅱ类用户为±1.2%,Ⅲ类用户为±1.2%。可见其误差远远大于规定值,不能准确计量。

3 保证计量装置安全准确运行的措施:

(1)计量装置选型合理:

计量装置能否选型合理,主要从计量装置的准确度、额定容量的选择、互感器的变比

等几个方面进行规范。

1、电能计量装置的分类和准确度等级:

现行的《电能计量技术管理规程》规定,运行中的计量装置按其所计量电能多少和计量对象的重要性分为5类,并对五类用户的计量装置的准确度等级进行了明确规定。

2、确定正确的电能计量方式:

1)计量方式的三种类型:

1)高压供电,高压侧计量(简称高供高计)

供电电压为高压,并且在变压器的高压侧安装计量装置。所用计量装置为

高压电压互感器(TV):10/0.1kV、35/0.1 kV、110/0.1 kV等;

高压电流互感器(TA):一次电流/5A,而一次电流的选取,与计算电流的大小有关,同时还要参照用户用电设备容量确定;

电能表:额定电压:3×100V(三相三线三元件)或3×100/57.7V(三相四线三元件),额定电流:1.5(6)A。

2)高压供电,低压侧计量(简称高供低计)

对于高压供电的用户,原则上应在变压器的高压侧安装电能计量装置,对于用电容量较小的用户,如10kV供电,容量在315kVA及以下者,或如35kV供电,容量在500kVA及以下者,也可在变压器的低压侧计量即高供低计。所用计量装置为:

低压电流互感器:50/5A,75/5A,100/5A,150/5A,200/5A,250/5A,300/5A等,负荷电流为50A以上时,必须经互感器接入电能表,所以低压电流互感器的倍率最低为50/5A。

电能表:额定电压3×380/220V(三相四线三元件)。额定电流1.5(6) A。

3)低压供电,低压计量(简称低供低计)

指城乡普遍使用,经10kV公用配电变压器供电用户。所用计量装置为:

电表额定电压:单相220V(居民用电),3×380V/220V(居民小区及中小动力和较大照明用电),额定电流:5(20)、5(30)、10(40)、15(60)、20(80)和30(100)A用电量直接从电表内读出。10kV受电变压器100kVA及以下为低供低计。

(2)电能计量装置的配置计算公式:

单相计量用户:P=UIcosφ

式中P---用户负荷的大小(kW )

U---供电电压(kV)

I----负荷电流(A)

COSφ---负荷的平均功率因数

则负荷电流为I=P/Ucosφ

三相计量用户:若已知用户负荷则用公式P=UIcosφ

则负荷电流为I=P/Ucosφ

若已知变压器容量则用公式S=UI

则负荷电流为I=S/U

根据计算的负荷电流选择TA的变比,根据供电电压和计量方式确定TV的变比,此外电能表以及TA、TV的准确度选择、二次容量选择还和用户的用电等级和要求有关。

3、连接导线截面的选择正确。

(1)二次导线截面的计算:电流互感器二次回路的负荷阻抗应在额定二次负荷阻抗的25%~100%范围内。二次回路负荷阻抗主要包括所有仪表串联线圈的总阻抗、二次连接导线电阻及接头接触电阻。

一般电流二次回路的导线截面积应不小于4mm2。对于直接接入式电能表,则可根据负荷电流按表3-1选择导线的截面积。

对于电压互感器,我们可以根据如下二次压降的计算公式计算,以便在一定负载下求得已知长度的二次导线截面。

ΔU=K jx PL/U x rS

式中K jx-电压互感器和二次负载的接线系数

P-所有计量仪表并联线路的功率损耗

U x-电压互感器的二次线电压

L-连接电缆的长度

S-连接电缆的截面积

r-电缆导线的电导系数

DL448-98电能计量装置管理规程规定,I类装置的电压互感器二次压降应不大于额定二次电压的0.25%;其它计量装置的电压互感器二次压降则应不大于额定二次电压的0.5%。电压互感器和二次负载通常采用Yy和Vv型接线。假定各相负载对称,当接线为Yy时,K jx=3;接线为Vv时,K jx=7。

(2)二次导线截面的规定:

互感器二次回路的连接导线应采用铜质单芯绝缘线。对电流二次回路,连接导线截面积

应按电流互感器的额定二次负荷计算确定,至少应不小于4mm2, 对电压二次回路,连接导线截面积应按允许的电压降计算确定,至少应不小于2.5mm2。

4、电能计量装置的接线设计:

(1)单相电能表的接线方式:

单相电能表的正确接线应为入表线的相线(火线)必须接入电能表第一个接线端子孔(从左到右),只有这样接线,才能保证用户所用负荷电流全部经过电能表的电流线圈,用户所用电量能被准确计量下来。

(2)三相四线有功电能表经互感器式的接线方式:

三相四线电能表的正确接线应为互感器每相电流二次回路与电能表的每相电流线圈独

立形成回路,即3台电流互感器二次绕组与电能表电流线圈之间采用六线连接,每相电压线直接搭接在相线上,即俗称的电压与电流线分开方式接线,零线采用叉接方式(3)三相三线有功、无功电能表经互感器联合的接线方式:

电能表的每相电流元件与互感器每相二次回路单独连接,不采用公共线连接。

电能表一、三电流导线接入接线盒中向上端子孔,电流互感器二次一、三相电流接入接线盒中向下端子孔。互感器每相负极线应分别单独接地。

4 典型用户计量装置应用设计:

以实例来说明电能计量装置的应用

1、高供高计的用户:例如天津市某制造有限公司,该用户属于大工业用户,主要设备有:为定条机1×150KW,定皮机1×5KW,粉拌机2×200KW,吹风机4×7.5KW等共计840KW,根据用户将来发展需要,需要装设1000KVA配电变压器1台,其计量配置的计算为:计算电流为I=S/U=1000/(×10)=57.7A,

所配电流互感器为75/5A,

所配电能表为DSSD536型三相三线多功能电子表,精确度为0.5S级,脉冲1600imp/KWH,电压3×100V,电流为3×1.5(6)A;

接线方式为电压互感器采用V型接线,电流互感器二次回路与表之间采用四线制接线,并装设电子负荷管理终端。

结束语

虽然现在规程上对电能计量装置的应用进行了规定,但在实际应用中还可能存在各种情况的不规范的计量方式,仍需要我们所有的用电工作人员共同努力,规范用电计量装置,合理配置,达到准确计量。

JJG596-1999电子式电能表检定规程

电子式电能表检定规程 本规程适用于新和产、使用中和修理后,额定频率为50Hz或60Hz,利用电子元(器)件的特性测量交流有功电能量的电子式电能表(以下简称电能表)的检定。这些电能表包括标准电能表和安装式电能表。 本规程不适用于感应式电能表的检定。 1技术要求 1.1外观 受检电能表上的标志应符合国家标准或有关技术标准的规定,至少应包括以下内容:厂名;计量器具许可证纺编号;出厂编号;准确度等级;脉冲常数;额定电压;基本电流及额定最大值。 1.2基本误差 1基本误差以相对误差的百分数表示。在本规程2.1规定的条件下,电能表的基本误差极限值(简称基本误差限)不得超过表1至表4的规定。 表1 单相和三相(平衡负载)标准电能表的基本误差限

表3 单相和三相(平衡负载)安装式电能表的基本误差限 表4 不平衡负载时三相安装式电能表的基本误差限 1.2.2在检定周期内,电能表的基本误差值不得超过表1至表4的规定。标准电能表在检定周期内基本误差改变量的绝对值不得超过基本误差限的绝对值。 1.2.3标准电能表在24h内的基本误差改变量的绝对值不得超过基本误差限绝对值的1/5。 1.2.4从预热时间结束算起,标准电能表连续工作8h,基本误差不得超过基本误差限,且基本误差改变量的绝对值不得超过表5的规定。

表5 标准电能表连续工作8h的允许基本误差改变量 1标准电能表应具有(配有)电能值或高频脉冲数的显示,也可有高频和低频脉冲输出。高、低频脉冲均应为一定幅值的矩形波,要给出高频和低频脉冲输出的脉冲常数C H (P H/kW·h)和C L(P L/kW·h),并要使显示与脉冲输出所代表的电能值一致。 1各级标准电能表,在输入为额定功率时,高频脉冲频率F H(Hz)不得低于表6的规定。 表6 标准电能表在额定输入功率下的高频脉冲频率F H值 1.3.1.2各级标准电能表显示位数和显示其被检表误差的分辨率不得少于表7的规定。 表7 标准电能表显示器的显示位数和显示其被检表误差的分辨率 1.3.2安装式电能表应具有电能值(kW·h)显示,并应有供测量误差的脉冲输出。要给出脉冲常数C(P/ kW·h)。要使显示与输出脉冲的关系与铭牌上的标志一致。 1.3.3电能表显示器要能够复零。当为自动复零(或自动转换显示内容)时,每个量值的显示时间不得少于3s。 注:P H——标准电能表的高频脉冲; P L——标准电能表的低频脉冲; P——安装式电能表的脉冲。 1.4控制 在标准电能表中(或显示器中)应有接收控制脉冲(时间脉冲和电能脉冲)的功能,以控制累计电能的启动和停止。 1.5启动、潜动和停止 1在参比电压、参比频率及功率因数为1的条件下,在负载电流不超过表8的规定时,单相标准电能表应启动并累计计数,安装式电能表应有脉冲输出或代表电能输出的指示灯闪烁。

浅议低压有功电能表计量误差及改正措施

浅议低压有功电能表计量误差及改正措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅议低压有功电能表计量误差及改正措施在电能计量管理中,由于电能表接线错误,断线(失压、断流)所引起的计量误差较大,易被人们所发觉和重视。而由于电能表非常规接线或使用不当引起的计量误差较小,一般误差只在百分之几~十几,不易被人们所发觉与重视。但是,如果它乘以倍率所引起的误差却很大,且作为交易结算的电能计量装置要求公平、准确、合理的原则。因此,电能表常见非正规接线引起的计量误差同样不可忽视。 一、引起误差的现象 (1) 单相电能表: ①1表乘2:即用一个单相(220V)电能表计量二相(380V)用电负载时,将该电能表的累计电量乘以2,作为二相实际用电总电量。这种情况:若电能表接在A相线上,计量A、B二相负载时,将造成多计电量(正误差)。若电能表接在B相线上,计量A、B二相负载时,造成少计量(负误差)。 ②1表乘3:即用一个单相电能表计量三相三线或三相四线负载时,将该电能表的累计用电量乘以3,作为三相负载总电量。这种计量方式:

若在三相不平衡负载电流时造成计量不准确(计量误差),其误差大小视三相负载电流平衡度与负载功率因数情况而定。 (2) 三相三线电能表: ①计量单相电炉:即用一个三相三线电能表计量单相(220V)电炉。因电炉功率因数为1.0,其计量功率P=UabIccos30°=3/2UφIφ,造成多计电量50%。 ②计量单相220V电焊机:用一个三相三线电能表,计量三相四线不平衡配电系统,即当In≠0,此时在A、N线间连接单相(220V)电焊机,表盘出现反转并少计电量。若在B、N线间连接单相(220V)电焊机,表盘不转而不计电量。若在C、N线间连接单相(220V)电焊机,表盘转速加快而多计电量。 ③计量三相四线配电系统:三相三线电能表计量三相四线不平衡负载电流时,N线(中性点)产生零序电流,而三相三线电能表不能计量零序电流所消耗的功率,造成少计电量。 (3) 三相四线电能表:

浅谈电能计量装置综合误差分析及改进措施

浅谈电能计量装置综合误差分析及改进措施 发表时间:2018-01-26T16:59:24.090Z 来源:《电力设备》2017年第28期作者:任旭 [导读] 摘要:电能计量装置是电力系统电能计量的重要设备,它的准确可靠直接关系到电力系统的经济效益,它主要由电流、电压互感器、电能表、电压互感器二次回路导线组成。 (内蒙古东部电力有限公司电力科学研究院 028000) 摘要:电能计量装置是电力系统电能计量的重要设备,它的准确可靠直接关系到电力系统的经济效益,它主要由电流、电压互感器、电能表、电压互感器二次回路导线组成。本文结合电能计量的现状,对电能计量装置的综合误差及其降低误差的措施进行了探讨分析。 关键词:计量装置;互感器;电能表;误差 电能是一种商品,电能计量装置则是一把秤,它的准确与否,直接关系到供用电双方的经济利益。所以,我们应该最大限度降低电能计量装置综合误差,做到公正合理计费。长期以来,电力系统电网中各计量点电量都以安装在该计量点的电能表的读数计量来结算,而对互感器的合成误差、电压互感器二次回路压降误差常常忽略。近年来,随着市场经济的发展,商业化运营的管理,国家电力公司的成立,内部模拟市场的推广,对电能计量准确性越来越重视,各计量点的电能计量装置的综合误差就显得尤为重要,特别关键的是电能计量装置的综合误差是追补电量的重要依据。下面略谈如何降低电能计量装置综合误差。 1影响电能计量的因素 随着社会经济的飞速发展,人们对电能的使用量越来越大,这使得人们对于电能的需求越来越高。目前包括电力企业在内的各大企业都需要电能的供应,而这些企业在使用电能的同时,就需要对用电量进行准确统计,即电能计量。 电能计量装置是由电能表、计量用互感器及其二次回路组成,要减小电能计量误差,就必须要对计量器具和二次回路带来的误差进行计算分析,以达到合理选择和配置计量器具的目的。电能计量装置同其他计量器具一样,不可能绝对准确地记录电能值,总会存在一定的偏差,这种偏差叫电能计量装置的综合误差。电能计量装置的综合误差包括电能表的误差、互感器的合成误差、电压互感器二次回路压降引起的误差 1.1电能表选型及使用不当引起的误差 1)为了保证电能计量装置准确地测量电能,必须按照《电能计量装置技术管理规程》的要求,合理选择电能表的型式、电压等级、基本电流、最大额定电流以及准确度等级。对于月平均用电量在100万kW.h以上的Ⅱ类高压计费用户,应采用0.2级的电压、0.2S级电流互感器,0.5级的有功电能表及2.0级无功电能表。在实际运行中,若用户的负荷电流变化幅度较大或实际使用电流经常小于电流互感器额定一次电流的30%,长期运行于较低载负荷点,会造成计量误差,应采用宽负载电能表。2)用三相三线电能表测量三相四线电能将引起附加误差。由于三相负载不平衡,中性点普遍有电流存在,而Ib=In-Ia-Ic所以,缺少电流Ib所消耗的功率,引起附加误差。 1.2电能表产品误差 按国家统一的电能表设计要求,生产电能表应采用五类磁钢,该类磁钢性能稳定不易失磁,是保证电能表误差稳定的重要部件。但有的电能表制造商为了在价格战中取胜,擅自修改设计,选用稀土磁钢或三类磁钢,生产成本可下降10%左右,但存在着严重的质量隐患。即使安装前误差调试合格,投入运行后由于磁钢的不断失磁,致使电能表的阻尼力矩不断减小,电能表愈走愈快。这是造成运行中电能表出现正误差超差的主要原因。现在大力推广使用的电子式电能表产品误差普遍很好,主要依靠采样元件,计量芯片及相关电子元器件性能的可靠和稳定,如出现问题,误差往往比机械表大,甚至会无法计量显示,产品质量是保证误差的关键。 1.3由于电流互感器选用不当导致的误差 1.3.1选择电流互感器二次容量。接入电流互感器的二次负荷包含外接导线电阻、电能表电流线圈阻抗、接触电阻。因此,在进行电流互感器选择时,要从三方面对二次容量大小进行分析,借助选择电流回路负荷阻抗较小的表计(比如电子式电能表)来达到二次容量的要求,在必要情况下还能够通过降低外接导线电阻的方法。 1.3.2因为一次电流流经电流互感器一次绕组时,必须要消耗一部分电流i0来励磁,使得铁芯产生磁通,保证二次绕组产生感应电动势。电流互感器的误差是因为铁芯所消耗的励磁安匝导致的。电流互感器误差由互感器的比差、角差决定,而比差、角差又与铁芯阻抗角、外接负载阻抗zb、铁芯损耗电量角、铁芯导磁率有关。根据互感器电流特性曲线、负荷特性曲线和误差特性表,实际二次负荷必须控制在25%~100%额定二次负荷范围内,其实际负荷电流达到额定值60%左右,至少应不低于30%,才可以使电流互感器在最优状态运行,从而控制电流互感器误差。 2解减少电能计量装置综合误差的措施 2.1选择正确的计量方式,减少计量误差 就接入中性点绝缘系统的电能计量装置而言,选择三相三线制电能表,其两台电流互感器二次绕组宜采用四线连接;就三相四线制的电能计量装置而言,其三台电流互感器二次绕组与电能表之间宜采用六线连接,若选择四线连接的话,如果公共线断开或一相电流互感器极性相反,会对计量准确性产生影响,而且在现场进行检验时,采取单相法每相电流互感器二次负载电流和实际负载电流不一致,会使测试工作变得困难,产生测量误差。 要在计费用高压电能计量装置中装设失压计失仪,及时掌握读取失压记录,为计量人员追补电量提供依据。 2.2完善计量装置 选择专业大厂生产的高精度、稳定性好的多功能电能表。由于电子技术的发展,现在多功能电子表已日趋完善,其误差较为稳定,且基本呈线性。一只多功能电子表可同时兼有正、反向有功,正、反向无功四种电能计量和脉冲输出、失压记录、追补电量等辅助功能,且过载能力强、功耗小。对Ⅰ、Ⅱ类用户应采用全电子式电能表。专业大厂生产的多功能电能表在元器件材料、设计技术水平、质量检验均有较高要求,是实际使用的首选。 2.3对接入中性点绝缘系统的电能计量装置 应采用三相三线制电能表,其2台电流互感器二次绕组宜采用四线连线;对三相四线制的电能计量装置。其3台电流互感器二次绕组与电能表之间宜采用六边线。如采用四线连接。若公共线断开或一相电流互感器极性相反,会影响计量。且进行现场检验时,采用单相法每相电流互感器二次负载电流与实际负载电流不一致,给测试工作带来困难。且造成测量误差。

数值计算中误差的传播规律

数值计算方法 实 验 报 告 实验序号:实验一 实验名称:数值计算中误差的传播规律 实验人: 专业年级: 教学班: 学号: 实验时间:

实验一 数值计算中误差的传播规律 一、实验目的 1.观察并初步分析数值计算中误差的传播; 2.观察有效数字与误差传播的关系. 二、实验内容 1.使用MATLAB 的help 命令学习MATLAB 命令digits 和vpa 的用途和使用格式; 2.在4位浮点数下解二次方程01622=++x x ; 3.计算下列5个函数在点2=x 处的近似值 (1)60)1(-=x y , (2)61) 1(1+=x y , (3)32)23(x y -=, (4)3 3)23(1x y +=, (5)x y 70994-=. 三、实验步骤 本次实验包含三个相对独立的内容. 1.在内容1中,请解释两个命令的格式和作用; 在matlab 中采用help 语句得到:

1、digits用于规定运算精度,比如: digits(20); 这个语句就规定了运算精度是20位有效数字。但并不是规定了就可以使用,因为实际编程中,我们可能有些运算需要控制精度,而有些不需要控制。vpa就用于解决这个问题,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。 例如: digits(5); a=vpa(sqrt(2)); 这样a的值就是1.4142,而不是准确的1.4142135623730950488016887242097 又如: digits(11); a=vpa(2/3+4/7+5/9); b=2/3+4/7+5/9; a的结果为1.7936507936,b的结果为1.793650793650794......也就是说,计算a的值的时候,先对2/3,4 /7,5/9这三个运算都控制了精度,又对三个数相加的运算控制了精度。而b的值是真实值,对它取11位有效数字的话,结果为1.7936507937,与a不同,就是说vpa 并不是先把表达式的值用matlab本身的精度求出来,再取有效数字,而是每运算一次都控制精度。 2.求解方程时,分别使用求根公式和韦达定理两种方法,并比较其有效数字和相对误差; 用求根公式解得:x1=-0.015,x2=-62.00 用韦达定理解得:x11=-0.016,x22=-62.00 x22=x2,x11=1/x22

三相电能表测量误差不确定分析报共21页文档

.三相四线电能表测量误差不确定分析报告 1 概述 1.1 测量依据:JJG307-2006《机电式交流电能表检定规程》 1.2 环境条件:温度(20±2)℃,相对湿度(35~85)%。 1.3 测量标准:三相电能表检定装置,型号CJ-3000D,规格 60V~380V,(0~100)A,准确度级别为0.1级。 1.4 被测对象:三相四线有功电能表,准确度等级 1.0级,型号 DTSD847-F4,规格3×220/380V;3×1.5(6)A,编号为00033733 1.5 测量过程:三相电能表检定装置输出一定功率给被检表,并对被检表进行采样积分,得到的电能值与装置输出的标准电能值比较,得到被检表在该功率时的相对误差。 1.6 评定结果的使用:符合上述条件的测量结果,一般可直接使用本不确定度的评定方法。 2 数学模型 r=r 式中: r——被检电能表的相对误差; r ——三相电能表检定装置上测得的相对误差。 3输入量的标准不确定度评定 输入量r 0的标准不确定度u(r )的来源主要有两个方面: 在重复性条件下由被测电能表测量重复性引起的不确定度分量 u(r 01 ),采用A类评定方法;由三相电能表检定装置的误差引起的不确定 度分量u(r 02 ),采用B类评定方法。

3.1 标准不确定度分量u(r 01 )的评定 该不确定度分量主要是由于被检电能表的测量不重复引起的,可以通过连续测量得到测量列,采用A类方法进行评定。 (1)对1.0级被测三相四线电能表在3×220/380V;3×1.5(6)A;cosφ=1.0的Imax量程上每天测量2次,每点重复测量10次,得到测量列如表1.1所示: 表1.1 被检电能表的相对误差 % 平均值 单次试验标准差 s 1= () = - - ∑ = 1 1 2 n X X n i i 0.012% 同理得到s 2= 0.013%,s 3 =0.013%, s 4 =0.014%。 则,合并样本标准差

电能表误差退补电量计算

电能表快慢误差、退补起止时间有据可查则按实际日期计算。如查不清时按《供用电规则》规定计算。 (1)电力客户有上次校验回换表之日起按二分之一时间计算,最多按六个月退补。 (2)照明客户按一个月计算。 应退补电量=(错误电量×实际误差±%)/(1+实际误差±%) 电能表计量错误(接线错误或倍率错误)追补电量计算 1、一客户电能表,经计量检定部门现场校验发现慢10%(非人为)已知该电能表自换装之日起至发现之日止,表计电量为90000KWh,应补收多少? 解:△W=W*(-10%)÷(1-10%)= -10000(KWh) 按《规则》规定补电量从上次检验到更正之日止的0.5计算为5000KWh。 2、XX工业用户受电容量1630KVA(1000KVA和630各一台),2009年3月14日暂停1000KVA变压器一台,启用日期为5月月3日,问该户 3、 4、5月份如何计收基本电费?(按容量计收基本电费) 解:3月份:1000KVA,使用时间3月1日至3月13日,计13天 计算公式: 1000*(13/30)=433(KVA) 630KVA用全月,计费容量为630KVA 3月份基本电费=433+630=1063*28=29764(元) 4月份:计费容量为630KVA,1000KVA停用 4月份基本电费=630*28=17640(元) 5月份:1000KVA,使用时间5月3日至5月31日,计9天 计算公式: 1000*(9/30)=300(KVA) 5月份基本电费=300+630=930*28=26040(元) 3、一客户高供低计变压器400KVA,有功铁损300KWh/月有,无功铁损400KVar/月有,K值=2.3,本月有功抄见电量15000KWh,无功抄见电量6000KVar,求本月有功、无功损耗是多少?本月有功、无功总电量分别是多少? 解:有功铁损=(300KW ) 315KVA以上0.01;315KVA及以下0.015 有功铜损=15000*1%(300KWh) 无功铁损=400(KVarh) 无功铜损=150*2.3=345(KVarh) 有功损耗=345+150=450(KWh) 无功损耗=400+345=745(Kvarh) 有功总电量=15000+450=15450(KWh)

探析电能表计量误差及计量损耗

探析电能表计量误差及计量损耗 发表时间:2018-11-27T15:16:47.383Z 来源:《防护工程》2018年第22期作者:杨跃先 [导读] 电气企业在对用户在一定时期内使用的电能量进行计量时,往往需要使用电能表 国网黑龙江省电力有限公司佳木斯供电公司 摘要:电气企业在对用户在一定时期内使用的电能量进行计量时,往往需要使用电能表。为了确保计量精准度,工作人员需要应用全新的电能表,如果电能表出现计量失准的情况,电力企业将需要承担主要损失,而在对城市电能使用情况进行调查时,工作人员同样也需要应用电能表来对具体的用电信息加以收集,尽管现代的电能表已呈现出应用优势,但是计量误差仍旧会出现,过多的计量损耗也影响了电力计量工作质量,现探讨电能表使用问题。 关键词:电能表;计量误差;计量损耗 电能表是电能计量环节中的必用工具,电能表可以清晰地呈现出用户的用电情况以及具体数值,电力企业可以根据电能表呈现出的实际数值来确定需要收取电费。尽管电能表发挥着关键作用,同时也会影响到电力企业的具体生产效益,但是很多电力企业与用户并没有重视电能表的管理工作,导致电能表在外部影响下出现使用问题,一旦电能表的内部部件出现受损或者老化的情况,电能表就会出现严重的计量损耗与计量误差问题,影响电力企业发展。 1 电能表常见误差情况分析 1.1 单相电能表 单相电能表就是利用一个电能表测量多个电器设备,主要有以下几种情况: 1表乘2:也就是说,使用一个电能表实现两个用电器的用电计量工作,通常在这种情况下,将电能表的指针系数乘上二,作为最终的计量总数。但是我们发现,这种电能表的使用情况必然伴随着一定的计量误差,一方面,当该电能表与其中的A线连接,测量的实际结果数据要高于实际用电量,而当该电能表与B线连接时,测量的最终数据将会较之实际数据略小,因此两者都存在必然误差。1表乘3:即用一个电能表,测量三个用电设备,以电能表的最终数值乘以三,作为三相设备的用电量总和。由于实际安装情况不一样,具体的三相设备也存在差异,所以在实际的运行中误差的现象也不统一,但无论何种情况,最终都会出现误差数值。 1.2 三项四线电能表 两个互感器v形接线:即用两个电流互感器v形接线,计量三相四线配电系统。三个互感器Y形接法;即三个电流互感器Y形与三相四线电能表连接,其电流以互感器二次一端公用连接。未接N线:三相四线电能表其N线未接或N线接触不良。反相序接线:三相四线电能表反相序接线存在一定的计量误差。 1.3 三相三线电能表 计量单相220V电焊机:用一个三相三线电能表,计量三相四线不平衡配电系统,即当In≠O,此时在A、N线问连接单相(220V)电焊机,表盘出现反转并少计电量。计量三相四线配电系统:三相三线电能表计量三相四线不平衡负载电流时,N线(中性点)产生零序电流,而三相三线电能表不能计量零序电流所消耗的功率,造成少计电量。计量单相电炉:即用一个三相三线电能表计量单相(220V)电炉。 2 电能表计量系统应用 了解电能计量表的内部系统构造与应用情况后,可以对电能表的使用情况有更加深入认知,从城市用电统计数据中可以清晰地发现,电能消耗量始终呈现上涨趋势,电力系统必须有效承担更多的运作负荷,电能消耗得过快,城市电网与供配电系统均需被有效改造。在对公用电压进行切换时,计量损耗量将会大幅上涨,计量工作过程中还会出现一些安全问题,电能计量表在使用过程中形成的误差问题带来的经济损耗将由电力企业独立承担,电力系统并不会提供相应的经济补偿。电厂在开展建设工作时需要注重控制经济损失,很多电厂会对原来使用的电力装置加以改造,将出口部位的补偿装置拆除后,计量工作将会受到影响,继电保护装置的作用也无法有效发挥。 3 电能表使用问题分析 现综合电能表的具体应用情况,着重探索电能表的存在的计量应用问题,标表计误差问题是现代电能表的常见使用问题之一,出现这种问题的电能表的实际计量功能将会变差,其给出的指示数据的可信度将会被降低。一般被长时间使用的电能表比较容易出现这种情况,其内部构建由于相互磨损的情况比较严重,会出现老化问题,现代电力企业已经重视电能计量表等核心装置的养护工作,但是养护处理工作并不能消除老化问题,必须购置全新的电能计量表,用以替换老化的计量表。 另外现代电力企业大量使用电子型的计量表,该种类型的计量表自身需要消耗的电能量就比较大,其运行消耗的电能并未被精准计量,计量误差影响了实际应用效果。 二次降压问题也给电能表使用带去了影响,在输电环节中,工作人员为了确保输电工作的合理性会选择对输电系统进行二次降压处理,在调整电压时,电能损耗问题也会因此而形成,计量误差数值过大,计量电能的可靠性被削减,因此可知电能表管理工作的价值。 4 控制的电能表的可靠方法 4.1 改造回路系统 电力系统在运作过程中,为了更好的适应外部环境,提高整体服务质量,需要进行相应的回路改造。回路改造工作中,电力工作者需要严格按照操作程序安装回路线路,尤其是电压回路线路和电流回路线路,需要严格按照计划安装,切忌过多安装或者安装不足。工作中应认真仔细区分清楚计量用电压回路和保护用电压回路,严防两个电压回路因二次接地方式不同混淆而发生短路异常,拆除费旧电缆时,应摸清电缆走向,确认电缆无用且无电时,从电缆两端拆除,拆除电缆后应用对线灯核对无误。 4.2 合理选用电能表 不同的计量要求安装不同数量和规格的电能表,通常来说有以下几种具体分类:供电计量方式:两相或者三相的供电现实,需要采用与其数据相互匹配的电能表;而四相以上可以选用一个三相表或者三个单项表。计量电炉、电焊机:单相220V电炉或电焊机宜采用单相电能表或三相四线电能表。单相380V电炉或电焊机宜采用两个单相电能表或三相三线电能表。单相380/220V电焊机应采用两个单相电能表或

全电子式电能表的特点及选用

华电新疆发电有限公司红雁池电厂设备维护部江浩慧 摘要:本文在分析感应式电能表存在问题地基础上,重点论述了全电子式电能表地特点、类型、功能及其合理选用.着重指出,以全电子式电能表取代感应式电能表已势在必行,而集中式多用户全电子式电能表符合我国国情,具有很好地发展前景. 文档收集自网络,仅用于个人学习 关键词:感应式电能表全电子式电能表集中式多用户电表 一、感应式电能表已完成其历史使命:当前,电能表、水表、燃气表乃至暖气表已深入到千家万户,而电能表应用地最广、最早. 目前我国生产电能表地厂家约有多家,年产量约亿万台,其中%以上为感应式电能表.感应式电能表已有多年地历史,当前突出地问题是:第一、合格率低,超差严重:年、年和年国家曾三次对感应式电能表进行抽查,其合格率分别为、、和%.有地产品最大实测基本误差竞高达%,远远超出了国家规定地%地技术指标要求. 机械磨损是感应式电能表无法克服地缺陷,磨损地后果是表计越走越慢.国家电力公司曾对在用地电能表进行了抽查,抽查地结果是:运行一年、二年、三年、四年和五年地电能表中,超差分别为%、%、%、%和%.这就是说,用了五年地表,将有%以上不合格,为此,有关部门不得不做出规定,要求感应式电能表"五年"更换一次,鼓励企业科技创新,研究开发推广使用性能可靠地长寿命地电能表. 第二、偷窃电现象严重:感应式电能表由于电流、电压接线端子外露,很容易采用改接线或倒表手段进行偷窃电,这是包括我国在内地发展中国家普遍存在地严重问题.在我国一些地区或单位,偷漏电量竞超过了总用电量地%,其经济损失非常严重,据有关部门统计,我国每年因窃电而造成地电费损失超过亿. 第三、抄表方式单一落后:感应式电能表采用地是人工登门手工抄表,随着电能表地数量增加,抄表、核算地工作量越来越大.抄表人员要走家串户上楼、下楼,极不方便,这与现代化用电管理极不适应.目前市场上,有将感应式电能表配以光电脉冲转换装置,称之为机电式电能表,可以实现远程自动抄表,但其测量原理还是感应式,其准确度仍难以提高. 当今,电能已成为最重要地能源,在市场经济下,人们对电能地计量要求准确度要高,使用寿命要求长,而对用电地管理要求实现智能化、自动化.这些都是感应式电能表所无能为力地.近一二十年来,由于微电子技术,计算机技术和通信技术地高速发展,出现地高准确度、长寿命且能实现远程自动抄表等多种功能地全电子式电能表,取代传统地感应式电能表已势在必行.文档收集自网络,仅用于个人学习 二、全电子式电能表全电子式电能表是通过对用户供电电压和电流实时采样,采用专用地电能表集成电路,对采样电压和电流信号进行处理并相乘转换成与电能成正比地脉冲输出显示.根据需要,也可以依据规定地协议(通信协议),将存贮地数据(电量等)上传给上位机(主站),上位机也可以对电表进行用、售电管理.由于它具有感应式电能表无可比拟地优点,近几年来发展非常迅速.用全电子式电能表取代感应式电能表,在发达国家,平均每年以%多地速度在更换.在我国由于起步晚,宣传地力度、广度不够,人们对全电子式电能表地认识不足等原因,发展较慢. 以下就全电子式电能表地特点、类型及其合理选用给予介绍. 、电子式电能表地主要特点为了便于说明问题,现就户用全电子式电能表和感应式电能表地主要特点列表比较如下:(表中带"*"号者,是根据样本实测地结果). 项目表型感应式电能表电子式电能表备注技术性能*百分百误差在%%范围内*启动电流() () 采用()电能表*功耗寿命年年以上过载倍数频率范围()() 电子式电能表受谐波影响小功能体积大小抄表人工红外、远程抄表等反窃电无有限量用电无有远控功能无有复费功能无有性能价格比低高、两种采样方式地全电子式电能表比较. 当前电子式电能表对用户用电采样方式主要有两种形式.一种是用互感器采样,另一种为直接采样.采用互感器采样即利用电压互感器和电流互感器分别来采集用户地电压信号和电流信号;直接采样则是用热稳定性高地电阻分压网络来取得电压信号,而用电

电能表计量误差产生的原因分析及调整方法

电能表计量误差产生的原因分析及调整方法 【摘要】现在国家城市化进程加快的同时,也大力扶植农村的发展,给予了农村相对宽松的政策,所以国家经济高速发展的同时,越来越多的家庭和个体生活质量和水平都有很大程度的提高。这也就伴随着我国各个领域和人们生产生活中的用电量增大,虽然发电手段和发电量都在不断的进步,但是在用电高峰的时期也是很难充分满足用电需求,为了严格控制和计算用电量电能表就成为必不可少的工具。电能表计量用户的电量使用情况,是电力企业与用户之间利益关系的媒介和主要凭证,所以电能表计量过程需要被严格的控制和调整。现在我国电能表并不能够非常精确的计量用户电量的使用情况,我国人口十四亿之多,很小的用电误差会给电力企业带来很大的利益损失。所以文章对电能表计量误差产生的原因进行分析,并且阐述电能表误差调整的具体措施。 【关键词】电能表;计量;误差;用电量;控制;调整 前言 一个国家的发展,人民的生产生活,在当今时代都离不开电能,电能是一种清洁、高效、使用便捷、便于调控和管理的可再生能源,目前世界范围内发电方式有很多种如,火力发电、水力发电、风力发电、太阳能发电、核能发电和地热能发电等。电能的应用已经有几百年的历史,电能的应用和发展使许多的电器出现,方便着人们的生产和生活,提高了生活的节奏和生产效率。电能由电力企业通过电力系统通过城市电网,按照用户的不同需求将不同电压、电流的电能配送到每一个用户,电力企业为电力用户提供电能,并且把电压和电流都会进行相应的调节以符合人们的使用标准。电力企业要为人们提供稳定安全、经济合理、优质的电能,电力系统在经济和科技发展的基础之上也在不断的改革和完善,向着自动化和智能化发展。为了维护用户和电力企业双方的利益,就要对用户用电量进行严格测量和计算,这就需要电能表进行计量。无论是农村还是城市都会用电能表对用户用电量进行实时计量,通过电能表能够显示出用户的用电量,然后通过数据进行缴费或者是充值。 电能表的应用能够节省很多的人力和物力,并且相对精确和稳定的计量和控制用户用电情况,在某种程度上能够使电能充分利用,并且使用户本能够相对的节约电能。现在受到用户和电力企业关注的就是电能表计量过程中的精确度问题,许多电能表会在计量的时候产生一定的误差,这就会或多或少的给电力企业或者用户带来损失。 1 电能表及电能表计量误差产生原因 电能表是计量某一时电能用量累计值的设备,电能表的种类很多,按照使用性质分类可分为有功电能表、无功电能表、最大需量表、标准电能表、复费率分时电能表、预付费电能表(分投币式、磁卡式、电卡式)、损耗电能表、多功能电能表和智能电能表。

电能表计量误差及计量损耗问题分析

电能表计量误差及计量损耗问题分析 在电力企业中,电能表不仅可以确保供电量统计的准确性,而且还可以提高电力企业的市场竞争力。但是由于受到多方面因素的影响,导致电能表出现计量误差及计量损耗问题,本文将会对其进行分析,并提出有效的解决措施。标签:电能表;计量误差;计量损耗问题;原因;措施 1电能表计量误差及计量损耗类型 目前,在电能表工作阶段,经常会由于各种因素的影响而诱发计量误差及计量损耗,但是不同的因素所诱发的计量误差及计量损耗存在一定的差异,因此为了实现对计量误差及计量损耗原因的分析,将会对常见的计量误差及计量损耗类型进行介绍。 1.1单相电能表 通常情况下,单相电能表计量误差及计量损耗主要表现为下述几个方面:(1)表乘2。如果选择单相(即220V电能表)直接对二相(即380V用电负载)进行计量时,所测得的实际用电总量通常是以电能表上累计电量乘以2所得。在这种条件下,如果在A相线路上配置电能表,用电能表计量A、B两相的用电负载时,将会产生计量正误差,即使电量偏多。反之如果在B相的线路上配置电能表,用电能表计量A、B两相的用电负载时,将会产生计量负误差,即使电量偏少。(2)表乘3。如果直接用单相(即220V电能表)对三相四线或三相三线用电负载进行计量时,所测得的实际用电总量通常是以电能表上累计电量乘以3所得。在这种条件下,如果三相线路负载存在不平衡现象时,将会引发电量计量不准确问题,从而诱发计量误差及计量损耗。 1.2三相三线电能表 在电能表运行过程中,三相三线计量误差及计量损耗表现为下述几个方面:(1)在用电能表计量三相四线不平衡配电系统中所使用电量时,只选择一个三相三线电能表来进行计量工作时,当In不等于0时,此时将单相电焊机直接与A,N线连接,将会引发电能表的反转,即少计电量;(2)用三相三线电能表直接计量三相四线电力系统中所出现的不平衡用电负载电流时,此时的N线会产生零序电流,但是三相三线电能表无法对零序电流的功率消耗进行准确的计量,从而诱发少计电量现象;(3)借助三相三线电能表来对单相电炉电量进行计量过程中,将会受到电炉自身功率因素的影响,诱发多计电量的现象。 1.3三相四线电能表 在电能表运行过程中,三相四线电能表计量误差及计量损耗表现为下述几个方面:(1)两个互感器V形接线:对三相四线配电系统选择两个电流互感器V 形接线进行计量;(2)三个互感器Y形接法。其一般是在三相四线电能表上把

电子式电能表工作原理与基本结构

电子式电能表工作原理与基本结构 1、电子式电能表按其工作原理的不同,可分为模拟乘法器型电子式电能表和数字乘法器型电子式电能表。 2、一般来说,电子式电能表由六个部分组成:电源单元、电能测量单元、中央处理单元(单片机) 、显示单元、输出单元、通信单元。 3、正常供电时,电子式电能表的工作电源通常有三种实现方式:工频电源(即变压器降压) 、阻容电源(电阻和电容降压) 、开关电源。 4、电子式电能表的显示单元主要分为LED数码管和LCD液晶显示器两种,后者功耗低,并支持汉字显示。 5、电子式电能表的关键部分是(C)。 A)工作电源B)显示器C)电能测量单元D)单片机 ※乘法器是电能测量单元的核心组成部分,分为模拟乘法器(热电转换型、霍尔效应型、时分割型)、数字乘法器(A/D型)。 6、时分割乘法器是许多电子式电能表的关键部分,它通常由三角波发生器、比较器、调制器、滤波器四个部分组成。 7、若某电子式电能表的启动电流是0.01Ib,过载电流是6Ib,则A/D型的电能表要求A/D 转换器的位数可以是(A)。 A)10 B)9 C)11 D)8 ※A/D的位数取决于Imax和Imin的比值,6÷0.01=600,而29<600<210,即要求A/D的位数至少是10位。 8、U/F(电压/频率)转换器组成的电能测量单元,其作用是产生正比于有功功率的电能脉冲。 9、采用电阻网络作为电能表的电压采样器的最大特点是线性好和成本低,缺点是无法实现电气隔离。采用电压互感器的最大优点是可实现初级和次级的电气隔离,并可提高电能表的抗干扰能力,缺点是成本高。 10、试简单描述检定无源脉冲电能表误差。 答:通常在脉冲正端施加一个VDD=+5~12V的直流电源,有的现场校验仪或电能表检定装置具有这一电源,中间串联R=5~10Ω的电阻,再输入给检定脉冲回路。 11、单片机就是将微型计算机所具备的几个基本功能,如中央处理单元CPU 、程序存储器ROM 、数据存储器RAM 、定时计数器Timer/Counter 、输入输出接口I/O 等,集成到一块芯片中而构成小型计算机。 12、单片机的总线可以分为三种:地址总线AB 、数据总线DB 、控制总线CB 。 13、单片机按数据总线的宽度可分为四种类型:4 、8 、16 、32 。目前最为流行采用的是8位。 14、在同一时刻可以同时发送和接收数据的串行通信模式称为(B)。 A)半双工B)全双工C)单工 15、I2C总线以1根串行数据线SDA 和1根串行时钟线SCL 实现了全双工的同步数据传输。 16、请举出几种典型的电能表的通信方式。 答:电子式多功能电能表与外界的通信方式大都采用串行异步半双工的通信方式,通信接口主要有RS-232-C、RS-485和直接光学接口三种方式。 电子式电能表误差及其调整 1、电子式电能表的误差主要分布在(A、B、C) A)分流器B)分压器C)乘法器D)CPU ※电子式电能表的误差来源,主要分布在电流采样器(分为分流器和电流互感器两种)、电压

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值),n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。§3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m 1、m 2 、…m n ,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m ,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

电能表现场误差测试使用说明

窃电是一个长期困扰电力部门的难题,每年都会给电力企业造成巨大的经济损失。每年电力企业都投入了很大的人力物力,但是由于窃电者采用比较隐蔽和智能窃电的办法给查处窃电工作造成较大的困难。面对现实,电力企业如果还是按照过去的经验和肉眼观测的办法已经不适应当前的供电发展需要。从来窃电和反窃电的斗争就没有停止过,经验证明凡是线损管理较好的单位,对表计的管理也相对较好。如果供电企业每次查窃电的时候都使用现场校验仪器的话当然精确度较高,但是相对来说它的成本也较高,并且携带不是太方便,无法大规模推广使用。所以现场检查计量装置最快捷简便的方法是利用钳形卡流表和秒表的“两表组合”,在查窃电的实际活动中“两表组合”也显示了它强大的生命力,和立竿见影的效果。但是由于电能表的型号多种多样,各个电表的常数也不一样,单相和三相计算公式也不一样,如果用电户使用互感器的话计算更加复杂,再加上电能的计算公式比较复杂,所以现场检查电能表的时候,检查人员往往较难计算出电能表的准确误差计算结果。从而造成即使实际上用户在窃电,但是检查人员检查不出来的结果。往往是看到电表在转,但是对电能表的误差心中无数。电能表现场误差测试表配合钳形卡流表和秒表使用的话有以下几个特点: 1:操作简便,携带方便,成本低廉,应用范围广泛。 2:计算准确,速度快,对电能表的误差显示一目了然。 3:若推广使用此方法查处窃电和故障电能表的话,将大大的降低电力企业的线损,大大的提高企业的经济效益,同时也降低了工作人员的工作强度,提高了工作效率。 4:若能记录电能表的现场测试数据为今后反窃电和线损管理精细化提供第一手资料,并且为将来使用作业指导卡提供了重要的原始数据。 典型应用举例1:(现场模拟南东坊用电所) 某用户50KV A变压器一台,我公司台帐登记为电流互感器变比为150比5;饶两圈。变比75/5。在不打开电表箱的情况下钳形卡流表现场测试电流为90安,电表的常数为1200 转/ KWH,电能表转一圈的时间为5.40秒/转。将以上数据输入到电能表现场误差测试表结 果显示为-101.96%说明电表慢一半。近一步推断电表箱内有问题。判断是1:电流互感器 为300/5的电流互感器2:电流互感器是直通,饶一圈。后打开电表箱检查是用户私自更 换300/5的电流互感器窃电。在把电流互感器更换为150/5后,第二月该用户电量即增长 了一倍左右。高压线损明显下降。 典型应用举例2:(现场模拟张村用电所) 某用户100KV A变压器一台,我公司台帐登记为电流互感器变比为150比5;饶一圈。 变比150/5。电能表为山东菏泽出产,常数为1440。量程5(20)安培。 钳形卡流表现场测试电流为110安,电能表转一圈的时间为3.65秒/转。将以上数据输入 到电能表现场误差测试表结果显示为-0.11%,经计算电表运转正常。但是线损员把这个村和有同样人口的村子比较发现,此村的用电量长期都比其他的村子少40-50%左右。但是现场测试表计一切正常,铅封和纸封也没有动过的痕迹。后仔细观察该村的电能表,发现它的计数器应该是转14.4圈就翻一个小格,而它的计数器翻25圈才翻一小格。后来经过计量 检定是用户私自从厂家购买2.5安电能表计数器后,更换我电能表计数器从而进行长期隐 蔽窃电。处理后该村用电量翻番,高压线损明显下降。 典型应用举例3:(现场模拟原狄丘用电所) 某用户80KV A变压器一台,我公司台帐登记为电流互感器变比为150比5;饶一圈。变比

电子式电能表测试方法

电子式电能表测试方法 ◆测试目的:检验电子式电能表各项指标、性能是否满足有关国标的要求以及 各电能表设计输出的正确性 ◆测试依据: 0.2S级和0.5S级静止式交流有功: GB/T 17883-1999 1级和2级静止式交流有功电能表 GB/T 17215-2002 电子式电能表检定规程 JJG 596-1999 多功能电能表 DL/T 614-1997 开发部开发设计输出文件 (注:上述所列国标、行标为当前有效版本;如有更新,当以最新版本 为参考依椐) ◆适用范围:单、三相电子式电能表 ◆测试内容: 1.准确度试验: 1.1基本误差测试: 1.1.1.试验设备:CL3000D型电能表检定装置 1.1.2技术条件:各等级电能表的电流范围和误差要求 表1 0.2S、0.5S级表百分数误差限(电压=Un)

1.1.3. 试验方法:电能表比较法 a. 双击“尼米兹航母”软件 b. 检验员登录界面:设置最大允许电压、电流值; c. 主菜单界面:设置表型、接入法、额定电压、电流规格、表常数、计量 等级、出厂编号; d. 误差检定界面:制定误差检定方案→开始检定。 1.1.4.判定准则:所测得各电流点误差必须在上表误差值的60%范围内(内控) 注:如果电表按两个方向测量电量,则表1、表2适用于每个方向。 1.2.起动试验: 1.2.1.试验设备:CL3000D 型电能表检定装置 1.2.2.试验方法: a. 在误差检定界面,按表3所列各等级电表起动电流值设置起动电流 b. 由软件自动计算起动时间→开始。 表3 起动电流 1.2.3.判定准则:在起动时间内,仪表应能起动并连续记录。 注:1. 如果电表按两个方向测量电量(正向、反向),则本试验适用于每个 方向(反向试验时,将电流线反接至校表台) 2.对于具有双回路计量功能的仪表(零线及火线),应分别进行上述试验。 1.3潜动试验: 1.3.1 试验设备:CL3000D 型电能表检定装置 1.3.2 试验方法: a. 电压回路加115%的额定电压 b. 电流回路开路 c. 按下列各式计算最短潜动试验时间: ◆ 0.2S 、0.5S 级电子式有功表: Δt = 20 [min]1000 60Q P k ?? (式中,k 为脉冲常数,P Q 为起动功率)

相关文档
最新文档