浅谈二重极限的若干计算方法

浅谈二重极限的若干计算方法
浅谈二重极限的若干计算方法

浅谈二重极限的若干计算方法

二重极限是多元函数理论基础,在高等数学和数学分析中都做了介绍,对于二重极限重点是它的计算方法,虽然许多学者对此做了归纳,但由于二重极限的复杂性,他们的归纳都不是很全面,因此,本论文在已有的基础上对二重极限的计算方法做了较为全面阐述,使得二重极限的计算更为简便、快捷.

1 二重极限定义

设函数(,)f x y 在区域D 内有定义,000(,)p x y 是D 的内点,如果对于任意的正数ε,总存在

正数σ,使得对于D 内适合不等式00p p σ<=<的一切点(,)p x y 都有

(,)f x y A ε-<成立,则称常数A 为函数(,)f x y 当00,x x y y →→时的二 重极限,记作

00(,)(,)

lim (,)x y x y f x y A →=.

2 二重极限的求法

2.1 定义验证法

先求出一个累次极限,再用定义验证该累次极限是否为二重极限,或先猜出二重极限的值,再用定义验证.

例1 设2

2

331(,)()sin

f x y x y x y

=++,33

(0)x y +≠,求(,)(0,0)lim (,)x y f x y →. 解 00

limlim (,)0x y f x y →→=,事实上对任意(,)(0,0)x y ≠

22222233

1

(,)0()sin

f x y x y x y x y x y

-=+≤+≤++

0,ε?>取σ=

,x y σσ<<时,有2

2

33

1

()sin

0x y x y ε+-<+

(,)(0,0)

lim (,)x y f x y →=0.

例[1](278280)

2P - 求

(,)(0,)sin lim

x y c xy

x → (0)c ≠.

sin sin sin sin 11xy xy cx cx xy xy cx cx

-=-+-

其中

sin sin sin sin sin sin xy cx c xy c cx c cx y cx

xy cx cxy

-+--= sin sin sin sin c xy c cx c cx y cx

cxy cxy --=

+(第一个分式用微分中值定理)

cos sin ()c cx c y xy cx cxy cx y

ζ-=

-+?(ζ介于,x y 间) 进而有

sin sin sin (cos )xy cx c y cx xy cx y cx

ζ--≤+ 由于0sin lim

1x xy

xy

→=,所以只要x 足够小就可使得

sin 2cx cx ≤. 又因为lim

1y c

c

y

→=,故对任意0,0εσ>?>,当0,0x y σσ<<<<时,恒有sin 1,126

cx c cx y εε

-<-<, 从而

sin sin sin sin sin sin sin 111(12)62

xy xy cx cx xy cx cx xy xy cx cx xy cx cx εε

ε-=-+-≤-+-<++= 即

(,)(0,)sin lim

x y c xy

c x →=.

由上两例可知定义验证法求二重极限要求所给函数的某个累次极限等于二重极限或者能够观察出已知函数的二重极限,因此该方法局限性较强,只适用于一些简单的二重极限的计算.

2.2 利用连续函数的定义 二元函数

(,)f x y 的定义域为,D 000(,)P x y D ∈且为D 的聚点,若

00)

00(,)(,lim

(,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 处连续.所以,可用定义计算连续函数

的二重极限.

例3 求 2

2

3

4

lim(7)x y x xy y →→-++.

解由

22(,)(7)

f x y x xy y =-++为连续函数且

(3,4)20

f =得

2234

lim(7)20x y x xy y →→-++=.

只要所给函数为连续函数就可以用连续函数的定义求二重极限,但一般情况下所给函数都比较复杂,因此在解题时很少用到该方法.

2.3 利用四则运算法则

如果当00(,)(,)x y x y →时有(,)f x y A →,(,)g x y B →,则

(,)(,)f x y g x y A B ±→±;(,)(,)f x y g x y A B ?→?;

(,)(0)(,)f x y A

B g x y B

→≠.

例4 求22

123lim ()x y xy x y x y →→++.

解 22

12

3lim ()x y xy x y x y →→++221

2

12

lim(3)

10lim()

3

x y x y xy x y x y →→→→+=

=

+. 如果已知函数可以化成两个或多个易求极限的函数的加、减、乘、除的形式,那么就可以用四则运算法则求出已知函数的极限.

2.4 利用两个重要极限 (1) 0sin lim 1x x x →=;

(2)1lim(1)x

x e x

→∞+=. 例[2](133)

5

P 求2

sin 0

lim(1)

xy

x x y a xy →→+.

解 2

sin 0

lim(1)

xy

x

x y a

xy →→+=2

22

sin 1

1sin 00lim[(1)

]lim[(1)

]xy t y y a xy xy t t

x t y a

y a

xy t e ?

?

→→→→+=+=.

这种方法主要是根据已知函数的特点将它转化成一元函数(或部分转化为一元函数),然后利用两个重要极限再求值,计算过程比较简单,这里不再过多解释.

2.5 利用等价无穷小代换

当0,x y a →→时,有~sin ~ln(1),xy xy xy +tan ~,xy xy 21

1cos ~

()2

xy xy - arcsin ~,xy xy 1~xy e xy -.

例6 求33

(,)(0,)lim (1cos )ln(1)

x y a x y xy xy →-+.

解 33(,)(0,)lim (1cos )ln(1)x y a x y xy xy →-+=22(,)(0,)lim 1cos ln(1)

x y a x y xy

xy xy →?-+

=22(,)(0,)2lim

21

()2

x y a x y xy

xy xy →?=. 例7 求20sin(3)

lim 1xy x y a

x y e →→-. 解 当0,x y a →→时, 2

2

sin(3)~3,1~xy

x y x y e xy -

故 20sin(3)lim 1xy x y a x y e →→-2003lim lim30x x y a y a

x y x xy →→→→===. 该方法主要是把已知函数的某部分用它的等价无穷小代替,使原函数化成容易计算的较简单的函数,但由于相互等价的函数很多,因此在选择用哪种形式的无穷小代替时,要具体问题具体分析.

2.6 利用夹逼定理

(,)f x y 与(,)g x y 在00(,)x y 连续且有相同的极限A ,若(,)h x y 在00(,)x y 的某邻域有(,)(,)(,)f x y h x y g x y ≤≤成立,则

00(,)(,)

lim (,)x y x y h x y A →=.

例[3](27)

8

P 求22lim

x y x y

x xy y →+∞→+∞

+-+.

解 由不等式2

2

2x y xy +≥得2222

110x y x y x y

x xy y x y xy xy x y

+++≤

≤≤≤+-++- 而11

lim (

)0x y x y →+∞

→+∞

+=,故有22lim x y x y x xy y →+∞→+∞

+-+0=.

利用夹逼定理求二重极限是计算二重极限常用的方法,解题时常常需要通过分子放大、分母缩小或分子缩小、分母放大即放缩原函数得到易求极限的函数.但由于该方法要求放缩后的函数与原函数的极限相同,这就使得放缩时有一定的约束性,因此用这种方法时要重点注意放缩过程.

2.7 利用恒等变形

如果二元函数(,)f x y 含有分式,可以让分子、分母同乘以不为零的函数,如果(,)f x y 是指数形式,可以先求它对数的极限,然后再求原函数的极限.

例9

22(,)lim

x y →

22(,)lim

x y →

(,)lim

x y →=

(,)(0,0)lim x y →=

(,)(0,0)

lim 2)x y →=

4=.

例[4](1)

10

P 求

22

22(,)(0,0)

lim ()x

y

x y x y →+.

解 令22

2

2()

x y u x y =+,则222

2

2

2

2222

2

2

ln ln()()ln()x y u x y x y x y x y x y

=+=+++ 而2222(,)(0,0)(,)(0,0)22

1

lim lim 011

x y x y x y x y x y →→==++ ,令22x y t +=则 2222(,)(0,0)

lim ()ln()lim ln 0x y t x y x y t t →→++==

所以

2222(,)(0,0)

lim

ln()0x y x y x y →+=

22

22(,)(0,0)

lim ()x

y

x y x y →+01e ==.

这种方法要求已知函数是含有根式的二元函数或者极限是0

1,0∞

等的未定型函数,所以很容易判断是否用该方法计算二重极限.

2.8 利用变量代换

利用变量代换是把二重极限转化为一元函数的极限或化为易于计算的二重极限,如利用极坐标变换令cos ,sin x r y r θθ==,利用倒数11

,x y u v

=

=,利用两个变量,x y 的和x y t +=、平方和22x y t +=及乘积xy t =等变换.

例11 求2222

()

22(,)(0,0)lim 2sin()

x y x y x y e e x y +-+→-+.

解 22

u x y =+ 则

(,)(0,0)

lim 0x y u →=

2

2

2

2

()

22(,)(0,0)lim

2sin()

x y x y x y e e x y +-+→-+00lim lim 12sin 2cos u u u u u u e e e e u u --→→-+===. 例[4](1)

12

P 求

22222(,)(0,0)

lim

ln()x y x y x y →+.

解 cos ,sin x r y r θθ==,由(,)(0,0)x y →得0r →

22222424(,)(0,0)01

0lim

ln()lim sin 2ln 4

x y r x y x y r r θ→→≤

+=??

而211sin 244θ≤,34444430

000484ln lim ln lim lim lim()014r r r r r r r r r r r r r →→→→?===-=-

所以

4401

lim ln sin 204

r r r θ→??= 从而

22222(,)(0,0)

lim

ln()x y x y x y →+0=.

例13 求21lim(1)x x y

x y a

xy

-→∞→+

其中0a ≠.

解 2()1

1(1)

(1)

x x

xy x y

x y y

xy

xy

?--+=+,当,x y a →∞→时,令,xy t =相应有t →∞, 则11

lim(1)lim(1)xy t x t y a

e xy t

→∞→∞→+

=+=

2

1

lim(1)x x y

x y a xy -→∞→+ 1

[ln(1)]

()()1lim[(1)]

lim xy

x x

xy x y y

xy x y y

x x y a y a

e xy +--→∞→∞→→=+=

1lim [ln(1)]lim

1

1()1xy x x y a

y a

x xy x y y

a

a

e

e

e →∞→∞→→+

-?

===.

例14 求2

2

2()

lim ()x y x y x y e

-+→+∞→+∞

+.

解 222222()

2()2()22()()2x y x y x y x y x y x y x y x y e

e e e e

-++++++==-? 当,x y →+∞→+∞时,令x y t +=,相应有t →+∞

222()2()lim lim 0x y t x t y x y t e e +→+∞→+∞→+∞+==,2222lim 22lim lim 0x y x y x x x y y y x y x y

e e e e →+∞→+∞→+∞→+∞→+∞→+∞

?=?= 所以

222()lim ()x y x y x y e -+→+∞→+∞

+ 0=.

例[5](3)

15

P 求22lim

x y y

x y →∞→∞

+.

解 11

,x y u v

=

=,当,x y →∞→∞时,有0,0u v →→ 2

2

lim x y y

x y →∞→∞

+12121222(,)(0,0)(,)(0,0)lim lim ()()u v u v v u v u v u v ---→→==++` 令 cos ,sin u r v r θθ==,当0,0u v →→时,0r →+,

2322

222(,)(0,0)00cos sin lim lim lim cos sin 0u v r r u v r r u v r

θθθθ++→→→===+ 即 22lim

0x y y

x y →∞→∞

=+.

变量代换法也是计算二重极限常用的方法,从例题的计算过程可以看出采用恰当的变量代换可以使得二重极限的计算更为简便.

综上所述,二重极限的计算与一元函数极限的求法有很多类似之处,但由于一元函数的极限至多是左、右两种方式的逼近,而二重极限是任意方向的逼近.因此,二重极限的计算比一元函数极限的计算复杂得多,在遇到求二重极限的问题时,要具体问题具体分析,找出解决问题的最恰当的方法.

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

考研数学极限计算方法:利用单侧极限

https://www.360docs.net/doc/ee17314742.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.360docs.net/doc/ee17314742.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

极限计算方法总结

极限计算方法总结 靳一东 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+∞ →3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

爆炸极限的计算方法-1

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0 式中0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算:c×Q=k 式中c——爆炸下限浓度; Q——该物质每靡尔的燃烧热或每克的燃烧热; k——常数。 第 1 页共1 页

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1 设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥,所以可知数列n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A = 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

求极限的方法总结__小论文

求数列极限的方法总结 数学科学学院数学与应用数学08级汉班 ** 指导教师 **** 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0 ! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0 ! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 2 211lim ,其中1,1<

极限的计算方法

第二章 一元函数微分学 三、极限的计算方法(二) 4.利用两个重要极限求极限 e x x x x x x =+ ∞ →=→)11(lim 21 sin 0 lim 1:个重要极限的标准形式第:个重要极限的标准形式第 注意:对于两个重要极限,不仅要记住他们的标准形式,更重要的是理解其本质特 征,明确其一般形式。 1 ) () (sin lim 1sin lim 0)(010)()(1==→→→x x x x x x x x x x x ????? 为: 个重要极限的一般形式则第,的某个变化过程中,若的函数,在为,设其自身之比的极限是正弦与 的特征是:无穷小量的是无穷小量,即此极限中,在 限的特征为:是无穷小量,因此该极时中,在x x e x x x 1 )11(lim ∞→=+∞→ 为 个重要极限的一般形式,则第的某个变化过程中,若在。的极限为大量互为倒数其中,无穷小量与无穷无穷小量)无穷大量20)()(1(→+x x e ? e x x x =+→) (1 )()) (1(lim ??? )(sin sin lim 60均为常数,求极限例b a bx ax x → 两个函数乘积的极限 ,于是可把上极限化为解:因 bx x x ax bx ax sin sin sin sin ?= 求解。又当x →0时,ax→0,bx→0,于是有 b a b a bx bx b ax ax a bx x x ax bx ax x x x x x = ???=?=?=→→→→→1111sin 1lim 1sin lim sin lim sin lim sin sin lim 00000 t x t t sin lim 7∞→求极限例 x x x t x t x t x t t t t x t x t t =?=?=∞→∞→→∞→1)sin ( lim sin lim 0 是无穷小量,于是有 ,即时,是变量,当解:在极限过程中, 2 20sin 1 1lim 8x x x -+→求极限例

求极限的计算方法与技巧

淮北煤炭师范学院论文分类号:O172.2 2008届学士学位论文 求极限的计算方法与技巧 系别、专业信息学院、数学与应用数学 研究方向数学分析 学生姓名郑福梅 学号200418440094 指导教师姓名王信松 指导教师职称教授 2008年5月3日

求极限的计算方法与技巧 郑福梅 淮北煤炭师范学院信息学院 摘要 极限概念是高等数学中很重要的概念之一,其它所有的重要的数学概念如导数﹑定积分都是建立在极限概念的基础上的。因此极限运算是高等数学的基本运算。由于极限概念的高度抽象,致使我们很难用极限定义本身去求极限;又由于极限运算分布于整个高等数学的始终,许多重要的概念是由极限定义的,所以掌握极限的方法非常重要。反过来,我们也可以利用这些概念来求一些极限,所以极限的方法是十分繁多的.针对这种情况,本文通过例题总结﹑归纳了常见的求极限的方法及一些技巧。有关命题与结论在文中有详细地说明。 关键词:极限,计算方法,技巧

Skills and methods of computing limit Zheng Fumei School of information, Huaibei Coal Industry Teacher’s Co llege Abstract The limiting concept is one of the very important concepts in advanced mathematics. The other important mathematical concepts, such as derivative, definite integral are based on this concept. Therefore limit is the basic operation in adva nced mathematics. Because of most abstractness of limit, it is difficult to obtain limit by the concept of limit. Since the concept of limit exists in the whole advanced mathematics, and many important concepts are derived from the definition of limit, it is important to grasp the method of limit. On the other hand, we can also use these concepts to obtain some limits; therefore there are various ways to obtain limits. From above descriptions, Common methods and some skills of obtaining limit are generalized through examples in this thesis. Some relevant propositions and conclusions are also extensively illustrated in this thesis. Keywords: limit,computing method,skill

求极限的方法总结

求数列极限的方法总结 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 22 11lim ,其中1,1<N 时,有Xn ≤Yn ≤Zn,且a Zn Xn n n ==∞ →∞ →lim lim ,则有

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1 (1 (2(3)若B ≠0 (4(5)[] 0lim ()lim ( )n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()222 22 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+= =-- 例2. 求3 x →

( )( ()( ) 3312 1 2 12 lim lim 312 x x x x x x x →→+-+++-=-++ ()( ) 3 lim 312x x x →=-++ 1 4= 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知()11112231n x n n = +++??-?L L ,求lim n n x →∞ 解: 观察 11=1122-? 111 =2323- ? ()()111=n 1n n-1n --? 因此得到 ()11112231n x n n =+++??-?L L 1111111 1223311n n n =-+-+-+---L L 1 1n =- 所以1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 ()() 00y f x x f x ?=+?- 如果 ()()000lim lim x x f x x f x y x x ?→?→+?-?=?? 存在, 则此极限值就称函数f(x)在点0x 的导数记为()0'f x 。

极限求法总结

极限的求法 1、利用极限的定义求极限 2、直接代入法求极限 3、利用函数的连续性求极限 4、利用单调有界原理求极限 5、利用极限的四则运算性质求极限 6. 利用无穷小的性质求极限 7、无穷小量分出法求极限 8、消去零因子法求极限 9、 利用拆项法技巧求极限 10、换元法求极限 11、利用夹逼准则求极限[3] 12、利用中值定理求极限 13、 利用罗必塔法则求极限 14、利用定积分求和式的极限 15、利用泰勒展开式求极限 16、分段函数的极限 1、利用极限的定义求极限 用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。 例:()0 lim x x f x A →=的ε-δ 定义是指:?ε>0, ?δ=δ(0x ,ε)>0,0<|x-0x | <δ?|f(x)-A|<ε 为了求δ 可先对0x 的邻域半径适当限制, 如然后适当放大|f(x)-A |≤φ(x) (必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式: |x+a |=|(x-0x )+(0x +a)|≤|x-0x |+|0x +a|<|0x +a |+δ1 域|x+a|=|(x-0x )+(0x +a)|≥|0x +a|-|x-0x |>|0x +a|-δ1 从φ(x)<δ2,求出δ2后, 取δ=min(δ1,δ2),当0<|x-0x |<δ 时,就有|f(x)-A|<ε.

例:设lim n n x a →∞ =则有12 (i) n n x x x a n →∞++=. 证明:因为lim n n x a →∞ =,对110()N N εε?>?=,,当1n N >时,-2 n x a ε ∣∣<于是当 1n N >时,1212......n n x x x x x x na a n n +++∣+++-∣ ∣-∣= 0ε<<1 其中112N A x a x a x =∣-∣+∣-∣+∣-α∣是一个定数,再由 2 A n ε <,解得2A n ε> ,故取12max ,A N N ε?? ??=???????? 12...+=22n x x x n N n εεε+++>-α<当时,。 2、 直接代入法求极限 适用于分子、分母的极限不同时为零或不同时为

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2=-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 . 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→ 解:原式11)32 (1)31 (lim 3 =++-= ∞→n n n n 上下同除以 。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m