图论习题答案1

图论习题课作业1,3,6,8,10

By jgy

?作业1:第一章:1,2,4,12,20,29,35

?作业3:第二章:14,28,30第三章:1,5,7,8?作业6:第五章:18,33

?作业8:第六章:6,12,17

?作业10:第七章10 第八章5,6,8

作业1

|E(G)|,2|E(G)|2G υυ??

≤ ???

??

???

1.1 举出两个可以化成图论模型的实际问题略

1.2 证明其中是单图

证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.20证明每顶皆二次的连通图是圈

?证明:(思路)易证每顶皆二次的连通图中有圈。设图中最大圈为H,假设除H外还有其他顶点集U,任取u k,因为连通,u k 与H中任意顶均有一条道路,存在H中一顶h j与u k相邻,则h j为三次。

?1.29 证明二分图的子图是二分图

?方法一:

?定理1.2 图G是二分图当且仅当G中无奇圈

?反证:设二分图为G,子图为S,假设S非二分图,由定理1.2知S中有

奇圈,则G中有奇圈,这与G是二分图矛盾。

?方法二:

?(思路)定义:V(G) = X U Y, X n Y=空, 且X中任二顶不相邻,且Y中任二

顶不相邻。

?证明:

?(a)第一个序列考虑度数7,第二个序列考虑6,6,2

?(b)将顶点v分成两部分v’和v’’

?v’ = {v|v= vi , 1≤ i≤ k},

?v’’ = {v|v= vi , k< I ≤ n}

?以v’点为顶的原图的导出子图度数之和小于

?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

?2.14 画出带权0.2 0.17 0.13 0.1 0.1 0.08 0.06 0.06 0.07 0.03的huffman 树

?排序:①0.03 0.06 0.06 0.07 0.08 0.1 0.1 0.13 0.17 0.2?②0.06 0.07 0.08 0.090.1 0.1 0.13 0.17 0.2?③0.08 0.090.1 0.1 0.130.13 0.17 0.2?④0.1 0.10.130.13 0.170.17 0.2?⑤0.130.13 0.170.17 0.20.2?⑥0.170.17 0.20.2 0.26?⑦0.20.20.26 0.34?⑧0.26 0.34 0.4?

0.4 0.6

0.030.06

0.09

0.030.060.09

0.06

0.07

0.13

0.030.06

0.090.060.07

0.13

0.17

0.08

①③

0.030.06

0.09

0.060.07

0.130.17

0.08

0.10.1

0.2

0.130.26

Huffman 树为

0.170.340.2

0.40.6

1

?2.28证明T是顶数至少为2的树,则T是二分图

?证明1:

?定理1.2 图G是二分图当且仅当G中无奇圈

?T是树,所以T中无奇圈,由‘图G是二分图当且仅当G中无奇圈’知T是二分图。

?证明2:

?二分图定义。

?考虑这样一种构造方法,从树根出发,树根结点放入顶集合X,树的第一层结点放入顶集合Y,树的第2K层结点放入X,树的第2K+1层结点放入Y。

?2.30若G 是加权连通图,且有一个长为m 的圈C ,

C 上的边的权相等,且是E(G)中边权最小的值,则G 中至少有m 棵不同的最优树,试加证明。

?证明:思路:kruskal 算法。圈C 上必有m-1条边被

选入,方法为C m m?1

= m.

情况讨论。

是等价的,没有必要分另,注意,这些边完全:画出即可

hints 。删去一条边皆是平面图与证明 3.13,3K 5K

是一个自对偶平面图。

条幅的轮时,)(从而又由欧拉定理,面数对偶图,则顶点数为自由于证明:

顶自对偶图。构作一个自1-n W 1422

)(2)(2G )1(n ,4,)2(2)(2)(对偶图,则为G 若(1)-≥-==+-=≥∈?-=n n G v G n N n G v G εφενφνε?5.对偶图的概念。自对偶图:平面图G 与其对偶图同构。证明:

不是平面图

G 从而,6)(3)(时,11当2

7313v 得63)127(21解)127(2

1)(则6

)(3)(又,2)1()()(证明:不是平面图G 个,则11的顶点数不少于G 若7.3c

2

2c

->≥±=

-=+-+-≥-≤-=+c c c

c

G v G v v v v v v G G v G v v G G εεεεε

假设有其它交点,如图AB 与CD 交于O ,则有AO+CO>AC

BO+DO>BD

所以AC+BD

对。

6n 3中至多S 的顶对在1,则距离恰为1中任两点距离至少为S ,

3n ,是平面上点组成的集合},...,,{8.321-≥=n x x x S 面图)。

点外没有其他交点(平下证G中任两边除了端.

1距离为间,中相连以边当且仅当G 在与G,

为顶点集构造一个单图S 证:以j i j i x x x

x

?5.18 χ(G) +χ(G c) ≤ v + 1,其中G c为G的补图

?证明:数学归纳法。

?假设v= k时成立,即χ(G) +χ(G c) ≤ v+ 1

?下证v= k + 1时成立,即χ(G) +χ(G c) ≤ v+ 2,在v= k的图中添加

一点u,设u与图G顶相连个数为d(u),与G c相连为d’(u),下讨论

d(u) ,d’(u).

?①d(u)<χ(G) ,

?χ(G) = χ(G+u),同时χ(G c+u) ≤ χ(G c)+1,所以χ(G c+u)+ χ(G+u)

≤ χ(G) +χ(G c)+1

?②d’(u) <χ(G c) ,同①

?③d(u)≥χ(G) ,d’(u) ≥ χ(G c)

?d(u)+d’(u) ≥ χ(G c) +χ(G) , 又d(u)+d’(u) ≤ v

?所以χ(G c+u) +χ(G+u) ≤ v+2

?5.33求证:对G的任子图,α(H)≥1/2|V(H)| G是二分图α(H):最大独立集顶的个数,独立数。

?证明:①对G的任子图H,α(H)≥1/2|V(H)| => G是二分图

?反证,设G不是二分图,则图中有奇圈H,则不满足α(H)≥1/2|V(H)| ,矛盾。故G是二分图。

?②G是二分图=>对G的任子图H,α(H)≥1/2|V(H)|

?G的任何子图H是二分图,V(H) = X’∪Y’,且X’∩ Y’ =空集。则X’或Y’为H的一个最大独立集,α(H)≥max{|X|,|Y|} ≥ 1/2|V(H)|

?6.6 图6.24是不是hamilton图?为什么?

?不是。

?证明:定理6.4,G是hamilton的必要条件是任取S?V(G),S≠Φ,则w(G-S) ≤|S|.

?如图,删去途中圈出的三个点后,所得联通片的个数为4,

?4 ≥|S|=3。

?6.12 6.24是不是hamiltion图?为什么?

?6.17 证明:若u,v ?V(G),u 与v 不相邻,且d(u)+d(v) ≥ |V(G)|,则G 为Hamilton 图的充分必要条件是G+uv 是Hamilton 图。?证明:①G 为Hamilton 图=> G+uv 是Hamilton 图,显然。?②G+uv 是Hamilton 图=> G 为Hamilton 图?反证()()矛盾。

)v (d )u (这与1)V (d )V (即),u (1)v (d 因而圈Hamilton 的G 是u v ...v vv v ...uv 否则E v v 则,E uv 若:1i 2(i 若对于某个v

v ,u v 其中,v v ...uv 轨Hamilton 中有G 这时1211-i 21i i 2

11-2v d v d d v G G v v i v v v ≥+-≤+--≤?∈-≤≤==---u V1Vi-1Vv -1v

Vi

?7.10 证明:顶数不小于3的竞赛图中有得分相同的顶的充要条件是此图中有长为3的有向圈。

?证明:顶数不小于3的竞赛图中,有得分相同的顶 此图中有长3的有向圈。

?①=> 反证,证得分相同但没有向圈。设得分相同的顶为u,v,考虑其它顶与u,v的关系,考虑四种关系,(省略),只有有向圈可以使uv比分持平。

?②<=假设没有得分相同的顶,则每顶得分必为1,2,… … ,n-1 ,可以看出得分为n-1的顶不会是长3的有向圈中的顶点,删除得分为n-1的顶,同理,继续删除剩下得分最多的顶,,直到最后三个顶也无圈。矛盾,所以一定有得分相同的顶。

?8.5对于网络N{G,s,t,c(e)},其中每个顶v (G)-{s,t},有一个顶容量c(v),即通过v的流量不得超过c(v),

c(v){0,1,2,…},试为这种具有顶容量的网络设计一种从s到t的最大流量流函数的有效算法。

?算法设计:

?思路对于网络N{G,s,t,c(e)},其中每个顶v i属于(G)-{s,t}可用含有两个顶的边v i’v i’’替代,且v i’v i’’的容量c(v i’v i’’) = c(v i).再用2F算法。

?8.6写出一个算法确定其容量c(e)增大时,N(G,t,t,c(e))中的对大流量亦增大的边,这种边一定有吗?

?解题思路:

?1)用2F算法标记所有顶点,找出其中所有f(e)=c(e)的边集合E ?2)增大E中任一边的c(e),再用2F算法,如果最大流增大了,则找到了要找的边

?3)如果E中所有边均不满足2),则找不到。

?不一定有,举个反例。

?8.8 图8.16哪个网络没有可行流?

2004图论复习题答案

图论复习题答案 一、判断题,对打,错打 1.无向完全图是正则图。 () 2.零图是平凡图。() 3.连通图的补图是连通图.() 4.非连通图的补图是非连通图。() 5.若连通无向简单图G中无圈,则每条边都是割边。() 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。() 7.任何树都至少有2片树叶。() 8.任何无向图G都至少有一个生成树。() 9.非平凡树是二分图。() 10.所有树叶的级均相同的二元树是完全二元树。() 11.任何一个位置二元树的树叶都对应唯一一个前缀码。() 12. K是欧拉图也是哈密顿图。() 3,3 13.二分图的对偶图是欧拉图。() 14.平面图的对偶图是连通图。() 页脚内容1

15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。() 二、填空题 1.无向完全图K6有15条边。 2.有三个顶点的所有互不同构的简单无向图有4个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有10片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集有n-1个,基本圈有m-n+1个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要加k/2条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。 (2)求D的可达性矩阵。 (3)求D的强分图。 解:(1) a b c d e 图1 页脚内容2

页脚内容3 M=????????????????000101000000001 010*******M 2=?? ? ? ??????? ?????010******* 000101000001000 M 3=????????????????10000 01000010000001010000M 4=??? ???? ? ??? ?????00010 01000 100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4=????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??????????? ?? ???010000001000010 1000001000 +??? ???? ? ??? ?? ???100000100001000 0001010000 + ????????????????00010 01000100000100000010 =??? ???? ???? ?? ???21020 1301011111 020******* D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4)=??? ???? ? ????? ???110101********* 1101011011 b c d e 图1

课后习题答案

第一章 液压传动概述 液压传动系统由哪几部分组成各组成部分的作用是什么 解答:液压传动由以下四部分组成: (1)动力元件(液压泵):它是把原动机输出的机械能转换成油液压力能的元件。作用:给液压系统提供压力油,是液压系统的心脏。 (2)执行元件:包括液压缸和液压马达等。 作用:把油液的压力能转换成机械能以驱动工作机构的元件。 (3)控制元件:包括压力、方向、流量控制阀。作用:是对液压系统中油液的压力、流量和流动方向进行控制和调节的元件。 (4)辅助元件:除上述三项以外的、液压系统中所需的其它装置。如油箱、滤油器、油管、管接头等。作用:保证液压系统有效工作,寿命长。 第二章 液压泵和液压马达 要提高齿轮泵的压力需解决哪些关键问题通常都采用哪些措施 解答:(1)困油现象: 采取措施:在两端盖板上开卸荷槽。(2)径向不平衡力:采取措施:缩小压油口直径;增大扫膛处的径向间隙; 过渡区连通;支撑上采用滚针轴承或滑动轴承。(3)齿轮泵的泄漏: 采取措施:采用断面间隙自动补偿装置。 齿轮泵的模数 mm m 4=,齿数9=z ,齿宽mm B 18=,在额定压力下,转速min 2000r n =时,泵的 实际输出流量min 30L Q =,求泵的容积效率。 解答:()() 2 2630 0.876.6~7 6.69418200010v t q q q zm bn η-= ===????? YB63型叶片泵的最高压力MPa P 3.6max =,叶片宽度mm B 24=,叶片厚度mm 25.2=δ,叶片数 12=Z ,叶片倾角?=13θ,定子曲线长径mm R 49=,短径mm r 43=,泵的容积效率9.0=v η,机械效率 90.0=m η,泵轴转速min 960r n =,试求:(1) 叶片泵的实际流量是多少(2)叶片泵的输出功率是多少 解答: (1) ()()()()() 22 223 322cos 20.0490.04320.0490.0430.024120.0249600.9cos131.0210v R r q R r bz Bn m s πηφπ-??=--???? ?-?? =--?????????? =? (2) 633 6.310 1.0210 6.4210N pq -==???=?出 斜盘式轴向柱塞泵的斜盘倾角?=20β,柱塞直径mm d 22=,柱塞分布圆直径mm D 68=,柱塞数7=z ,机械效率90.0=m η,容积效率97.0=v η,泵转速min 1450r n =,泵输出压力MPa p 28=,试计算:(1)平

图论张先迪李正良课后习题答案

习题一 作者---寒江独钓 1.证明:在n 阶连通图中 (1) 至少有n-1条边; (2) 如果边数大于n-1,则至少有一条闭迹; (3) 如果恰有n-1条边,则至少有一个奇度点。 证明: (1) 若G 中没有1度顶点,由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 若G 中有1度顶点u ,对G 的顶点数作数学归纳。 当n=2时,结论显然;设结论对n=k 时成立。 当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k. (2) 考虑G 中途径: 121:n n W v v v v -→→→→L 若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。于是: 1i i j i v v v v +→→→→L 为G 中一闭途径,于是 也就存在闭迹。 (3) 若不然,G 中顶点度数至少为2,于是由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 这与G 中恰有n-1条边矛盾! 2.(1)2n ?12n 2?12n ?1 (2)2n?2?1 (3) 2n?2 。 证明 :u 1的两个邻接点与v 1的两个邻接点状况不同。所以, 两图不同构。 4.证明下面两图同构。 u 1 v 1

证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。 (a) v 2 v 3 u 4 u (b)

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

课后习题及答案

1 文件系统阶段的数据管理有些什么缺陷试举例说明。 文件系统有三个缺陷: (1)数据冗余性(redundancy)。由于文件之间缺乏联系,造成每个应用程序都有对应的文件,有可能同样的数据在多个文件中重复存储。 (2)数据不一致性(inconsistency)。这往往是由数据冗余造成的,在进行更新操作时,稍不谨慎,就可能使同样的数据在不同的文件中不一样。 (3)数据联系弱(poor data relationship)。这是由文件之间相互独立,缺乏联系造成的。 2 计算机系统安全性 (1)为计算机系统建立和采取的各种安全保护措施,以保护计算机系统中的硬件、软件及数据; (2)防止其因偶然或恶意的原因使系统遭到破坏,数据遭到更改或泄露等。 3. 自主存取控制缺点 (1)可能存在数据的“无意泄露” (2)原因:这种机制仅仅通过对数据的存取权限来进行安全控制,而数据本身并无安全性标记 (3)解决:对系统控制下的所有主客体实施强制存取控制策略 4. 数据字典的内容和作用是什么 数据项、数据结构 数据流数据存储和加工过程。 5. 一条完整性规则可以用一个五元组(D,O,A,C,P)来形式化地表示。 对于“学号不能为空”的这条完整性约束用五元组描述 D:代表约束作用的数据对象为SNO属性; O(operation):当用户插入或修改数据时需要检查该完整性规则; A(assertion):SNO不能为空; C(condition):A可作用于所有记录的SNO属性; P(procdure):拒绝执行用户请求。 6.数据库管理系统(DBMS)

:①即数据库管理系统(Database Management System),是位于用户与操作系统之间的 一层数据管理软件,②为用户或应用程序提供访问DB的方法,包括DB的建立、查询、更 新及各种数据控制。 DBMS总是基于某种数据模型,可以分为层次型、网状型、关系型、面 向对象型DBMS。 7.关系模型:①用二维表格结构表示实体集,②外键表示实体间联系的数据模型称为关系模 型。 8.联接查询:①查询时先对表进行笛卡尔积操作,②然后再做等值联接、选择、投影等操作。 联接查询的效率比嵌套查询低。 9. 数据库设计:①数据库设计是指对于一个给定的应用环境,②提供一个确定最优数据模 型与处理模式的逻辑设计,以及一个确定数据库存储结构与存取方法的物理设计,建立起 既能反映现实世界信息和信息联系,满足用户数据要求和加工要求,又能被某个数据库管 理系统所接受,同时能实现系统目标,并有效存取数据的数据库。 10.事务的特征有哪些 事务概念 原子性一致性隔离性持续性 11.已知3个域: D1=商品集合=电脑,打印机 D3=生产厂=联想,惠普 求D1,D2,D3的卡尔积为: 12.数据库的恢复技术有哪些 数据转储和和登录日志文件是数据库恢复的

图论1-3藏习题解答

学号:0441 姓名:张倩 习题1 4.证明图1-28中的两图是同构的 证明:将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )?u i (1? i ? 10) 容易证明,对?v i v j ?E((a)),有f(v i v j )?u i u j ?E((b)) (1? i ? 10, 1?j? 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: (a) v 1 v 2 v 3 v v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

m=4: m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 ()1 1 123121,1,,1,,,=d d n d d d d d π++---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v1,v2,…,vn},对于G 中的路v1v2…vk,若vk 与v1邻接,则构成一个圈。若vi1vi2…vin 是一条路,由于?? 2,因此,对vin ,存在点vik 与之邻接,则vik?vinvik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。

图论习题参考答案

二、应用题 题0:(1996年全国数学联赛) 有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。证明这n 个人中必有3个人互相认识。 注:[n /2]表示不超过n /2的最大整数。 证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。由条件可知,G 是具有n 个顶点的简单图,并且有 (1)对每个顶点x , )(x N G ≥[n /2]; (2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有 两个顶点相邻。 需要证明G 中有三个顶点两两相邻。 反证,若G 中不存在三个两两相邻的顶点。在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。 情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。 情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。故k ≠r+1,同理t ≠r+1。所以t=r,k=r 。记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。若x i0y j0?E ,则与x i0相邻的顶点只能是(N G (x 1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G (y 1)-{x j0})∪{w}。但与w 相邻的点至少是3,故N G (x 1)∪N G (y 1)中存在一个不同于x i0和y j0顶点z 与w 相邻,不妨设z ∈N G (x 1),则z ,w ,x i0两两相邻,矛盾。 题1:已知图的结点集V ={a ,b ,c ,d }以及图G 和图D 的边集合分别为: E (G )={(a ,a ), (a ,b ), (b ,c ), (a ,c )} E (D)={, , , , } 试作图G 和图D ,写出各结点的度数,回答图G 、图D 是简单图还是多重图? 解: a d a d b c b c 图G 图D 例2图

习题参考解答图论部分

习题十 1. 设G是一个(n,m)简单图。证明:,等号成立当且仅当G是完全图。 证明:(1)先证结论: 因为G是简单图,所以G的结点度上限 max(d(v)) ≤ n-1, G图的总点度上限为 max(Σ(d(v)) ≤ n﹒max(d(v)) ≤ n(n-1) 。根据握手定理,G图边的上限为 max(m) ≤ n(n-1)/2,所以。 (2) =〉G是完全图 因为G具有上限边数,假设有结点的点度小于n-1,那么G的总度数就小于上限值,边数就小于上限值,与条件矛盾。所以,G的每个结点的点度都为n-1,G为完全图。 G是完全图 =〉 因为G是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G的边数。■ 2. 设G是一个(n,n+1)的无向图,证明G中存在顶点u,d(u)≥3。证明:反证法,假设,则G的总点度上限为max(Σ(d(u)) ≤2 n,根据握手定理,图边的上限为max(m) ≤2n/2=n。与题设m = n+1,矛盾。因此,G中存在顶点u,d(u)≥3。■ 3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来:

(1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5) 解:除序列(1)不是图序列外,其余的都是图序列。因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。 可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。最后,将奇数序列对应的点两两一组,添加连线即可。下面以(2)为例说明: (6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5} 每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)

张清华图论课后题答案.

第1章 图论预备知识 1.1 解:(1) p={φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} (2) p={,{a},{{b,c}},{a,{b,c}}} (3) p={,{}} (4) p={,{},{{}},{,{}}} (5)p={,{{a,b}},{{a,a,b}},{{a,b,a,b}},{{a,b},{a,a,b}},{{a,b},{a,b,a,b}},{{a,b},{a,a,b},{a,b,a,b}}} 1.2 解:(1) 真 (2) 假 (3)假 (4)假 1.3 解:(1) 不成立,A={1} B={1,2} C={2} (2) 不成立,A={1} B={1,2} C={1,3} 1.4 证明:设(x,y)∈(A ∩B)X(C ∩D) 说明x ∈A ∩B,y ∈C ∩D 由于 x ∈A,y ∈C 所以 (x,y) ∈A X C 由于x ∈B,y ∈D 所以 (x,y) ∈B X D 所以 (x,y) ∈(A X C )∩(B X D ) 反过来,如果(x,y )∈(A X C) ∩(B X D ) 由于 (x,y) ∈(A X C )所以 x ∈A,y ∈C 由于 (x,y) ∈(B X D )所以x ∈B,y ∈D 所以x ∈(A ∩B) y ∈(C ∩D) 所以 (x,y) ∈(A ∩B)X(C ∩D) 所以(A ∩B)X(C ∩D)= (A X C) ∩(B X D ) 1.5 解:Hasse 图 φφφφφφφφφ

极大元{9,24,10,7} 极小元{3,2,5,7} 最大元{24} 最小元{2} 1.6 解 (2)关系图为: (3)不存在最大元,最小元为{2} 1.7 解:(1)R={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>} (2)略 (3)I A ?R 故R 是自反的。 <1,2>∈R <2,3>R 但是<1,3> ?R 故不满足传递性 1.8 解:(1) 不成立 A={1} B={2} C={3} D={4} 则左式={<1,3>,<1,4>,<2,3>,<2,4>} 右式={<1,3>,<2,4>} (2) 不成立 A={1,3} B={1} C={2,4} D={2} 则左式={<3,4>} 右式={<1,4>,<3,2>,<3,4>} (3) 不成立 A={1} B={2} C={3} D={4} 则左式={<1,3>,<1,4>,<2,3>,<2,4>} 右式={<1,3>,<2,4>} (4) 成立 证明:设 ∈(A-B)X C ?x (A-B)∧ y C ?x A ∧x B ∧ y C A X C ∧ B X C (A X C)-(B XC) 故得 (A-B )X C=(A X C )-(B X C ) ∈∈∈∈∈∈?∈∈?∈

组合数学与图论复习题与参考答案

组合数学与图论复习题及答案 1.Show that if n+1 integers are chosen form the set {1,2, …,2n},then there are always two which differ by at most 2. 从{1,2, …,2n}中选出n+1个数,在这n+1个数中,一定存在两个数,其中一个整数能整除另外一个整数。 任何一个数都可以写成2k*L,其中k是非负数,L是正奇数。现在从1到2n 之间只有n个奇数。由于有n+1个数都能表示成2k*L,而L的取值只有n中,所以有鸽子洞原理知道,至少有两个数的L是一样的,于是对应k小的那个就可以整除k大的另一个数。 2.Show that for any given 52 integers there are exist two of them whose sum, or else difference, is divisible 100. 设52个整数a 1,a 2 ,…,a 52 被100除的余数分别是r 1 ,r 2 ,…,r 52 ,而任意一 个数被100除余数为0,1,2,…,99,一共100个。他们可以分为51个类{0},{1,99},{2,98},…,{49,51},{50}。将这51个集合视为鸽笼,则将 r 1,r 2 ,…,r 52 放入51个笼子中,至少有两个属于同一个笼子,所以要么有ri=rj, 要么有ri+rj=100,也就是说ai-aj|100或者ai+aj|100。 3.从1,2,3,…,2n中任选n+1个数,证明在这n+1个数中至少有一对数互质。 鸽子洞原理,必有两个数相邻,相邻的两个数互质 4.Prove that Ramsey number R(p,q)≤R(p,q-1)+R(p-1,q). 令N=R(p,q-1)+R(p-1,q),从N个人中中随意选取一个a,F表示与a相识的人,S表示与a不相识的人。 在剩下的R(p,q-1)+R(p-1,q)-2+1个人中,由鸽子洞原理有,或者F中有R(p,q-1)人,或者S中有R(p-1,q)人。如果F中有R(p,q-1)人,则与a相识的人为p个;如果S中有R(p-1,q)人,则与a不相识的人有p个。所以有R(p,q)≤R(p,q-1)+R(p-1,q) 5.There are 10 people, either there are 3 each pair of whom are acquainted, or there are 4 each pair of whom are unacquainted。 从10人中随意选一个人p,F表示与p相识的人,S表示与p不相识的人若F中至少有4人,如果至少有4人不相识,则满足题设;如果有2人相识,则加上p有3人相识,也满足题设。 若F中至多有3人,则S中至少有6人,6人中至少有3人相识,或者不相识。如果相识则满足题设,如果不相识加上p不相识的人就有4个,也满足题设。6.In how many ways can six men and six ladies be seated at round table if the men and ladies to sit in alternate seats? 6个男的先进行圆排列,然后6个女的插入空位。 7.In how many ways can 15 people be seated at round table if B refuses to sit next to A? What if B only refuses to sit on A right?

图论 王树禾 答案

图论第一次作业 By byh

|E(G)|,2|E(G)|2G υυ??≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题 略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.4 画出不同构的一切四顶单图 ?0条边:1条边: ?2条边:3条边: ?4条边:5条边:?6条边:

1.10G?H当且仅当存在可逆映射θ:V G→V H,使得uv∈E G?θuθv∈E H,其中G和H是单图。(证明充分性和必要性) ?必要性 ?若G?H,由定义可得,存在可逆映射θ:V G→V Hφ:E G→E(H)当且仅当ψ G e=uv时,ψHφe=θuθ(v),所以uv∈E G? θuθv∈E H ?充分性 ?定义?:E G→E(H),使得uv∈E G和θuθv∈E(H)一一对应,于是?可逆,且ψ e=uv的充要条件是ψHφe=θuθv,得G?H G

1.12求证(a)?K m ,n =mn,(b)G是完全二分图,则?G≤1 4 v G2 ?(a)对于K m ,n ,将顶集分为X和Y,使得X∪Y=V K m,n, X∩Y= ?,X=m,Y=n,对于X中的每一顶点,都和Y中所有顶点相连,所以?K m,n =mn ?(b)设G的顶划分为X,Y,X=m,Y=v?m,则?G≤ ??K m ,v-m =v?m m≤v2 4

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,1 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= v i, 1≤ i≤ k}, ?v’’ = {v|v= v i, k< i≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

1 《邓稼先》课后习题参考答案

1 《邓稼先》课后习题参考答案 思考探究 一、通读全文,把握文意,回答下列问题。 1.初读课文时,哪些句段最让你感动?反复细读后,再想想这些内容是否最 能体现全文所要表达的思想情感。 2.找出文中表现奥本海默与邓稼先两人不同个性、品质的词语及细节,思考 作者为什么要进行对比,通过对比得出了怎样的结论。 参考答案:1.作者饱含真情,于字里行间高度赞扬了邓稼先深沉的爱国主义精神和将个人生命奉献给祖国国防事业的崇高情怀。这样的句段很多,如:“对这一转变做出了巨大贡献的,有一位长期以来鲜为人知的科学家——邓稼先。”“一次井下突然有一个信号测不到了,大家十分焦虑,人们劝他回去,他只说了一句话:‘我不能走。’”…… 2.文中的奥本海默与邓稼先两人的个性、品质截然不同。奥本海默是 锋芒毕露,读研究生时就常打断别人的报告,即便到了中年,成了名人,有时还会这样。而邓稼先“是一个最不要引人注目的人物”“忠厚平实”“真诚坦白,从不骄人”“没有小心眼儿,一生喜欢‘纯’字所代表的品格”“最有中国农民的朴实气质”;“他没有私心,人们绝对相信他”,“文革”中能说服两派群众组织,能说服工宣队、军宣队。作者把奥本海默与邓稼先进行对比,鲜明地突出邓稼先的精神品质,自然而然地得出结论:“邓稼先是中国几千年传统文化孕育出来的有最高奉献精神的儿子”“邓稼先是中国共产党的理想党员”。 二、有感情地朗读课文第五部分,想一想:这部分开头引用《吊古战场文》, 有什么作用?结尾处又引用儿时学到的“‘五四’时代的一首歌”,表达了怎样的情感? 参考答案:课文第五部分开头引用《吊古战场文》,把读者引入中国历史的深处,让人从中国传统文化的角度去思考。结尾处引用自己儿时学到的“‘五四’时代的一首歌”,说明了邓稼先就是一个典型的中国男儿,他有着为祖国而献身的崇高的精神品质。

图论与组合数学期末复习题含答案

组合数学部分 第1章 排列与组合 例1: 1)、求小于10000的含1的正整数的个数; 2、)求小于10000的含0的正整数的个数; 解:1)、小于10000的不含1的正整数可看做4位数,但0000除外.故有9×9×9×9-1=6560个.含1的有:9999-6560=3439个 2)、“含0”和“含1”不可直接套用。0019含1但不含0。在组合的习题中有许多类似的隐含的规定,要特别留神。不含0的1位数有19个,2位数有29个,3位数有39个,4位数有49个 不含0小于10000的正整数有() ()73801919999954321=--=+++个含0小于10000的正整数9999-7380=2619个。 例2: 从[1,300]中取3个不同的数,使这3个数的和能被3整除,有多少种方案? 解:将[1,300]分成3类: A={i|i ≡1(mod 3)}={1,4,7,…,298}, B={i|i ≡2(mod 3)}={2,5,8,…,299}, C={i|i ≡0(mod 3)}={3,6,9,…,300}. 要满足条件,有四种解法: 1)、3个数同属于A; 2)、3个数同属于B ; 3)、3个数同属于C; 4)、A,B,C 各取一数;故共有3C(100,3)+1003=485100+1000000=1485100。 例3:(Cayley 定理:过n 个有标志顶点的数的数目等于2-n n ) 1)、写出右图所对应的序列; 2)、写出序列22314所对应的序列; 解: 1)、按照叶子节点从小到大的顺序依次去掉节点(包含与此叶子 节点相连接的线),而与这个去掉的叶子节点相邻的另外一个点值则记入序列。如上图所示,先去掉最小的叶子节点②,与其相邻的点为⑤,然后去掉叶子节点③,与其相邻的点为①,直到只剩下两个节点相邻为止,则最终序列为51155.。 2)、首先依据给定序列写出(序列长度+2)个递增序列,即1234567,再将给出序列按从小到大顺序依次排列并插入递增序列得到:7。我们再将给出序列22314写在第一行,插入后的递增序列写在第二行。如下图第一行所示: ??→????? ??--②⑤67112223344522314??→???? ? ??--②⑥11223344672314 ??→????? ??--③②11233447314??→???? ? ??--①③11344714

习题参考解答(图论部分)

习题十 1. 设G 是一个(n ,m)简单图。证明:,等号成立当且仅当G 是完全图。 证明:(1)先证结论: 因为G 是简单图,所以G 的结点度上限 max(d(v)) ≤ n-1, G 图的总点度上限为 max(Σ(d(v)) ≤ n ﹒max(d(v)) ≤ n(n-1) 。根据握手定理,G 图边的上限为 max(m) ≤ n(n-1)/2,所以。 (2) =〉G 是完全图 因为G 具有上限边数,假设有结点的点度小于n-1,那么G 的总度数就小于上限值,边数就小于上限值,与条件矛盾。所以,G 的每个结点的点度都为n-1,G 为完全图。 G 是完全图 =〉 因为G 是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G 的边数 。■ 2. 设G 是一个(n ,n +1)的无向图,证明G 中存在顶点u ,d (u )≥3。 证明:反证法,假设,则G 的总点度上限为max(Σ(d(u)) ≤2 n ,根据握手定理,图边的上限为max(m) ≤ 2n/2=n 。与题设m = n+1,矛盾。因此,G 中存在顶点u ,d (u )≥3。■ 3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5) 解:除序列(1)不是图序列外,其余的都是图序列。因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。 可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。最后,将奇数序列对应的点两两一组,添加连线即可。下面以(2)为例说明: (6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5} 每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

课后题答案

第七章 一、填空 1.柯尔伯格经长期研究,发现儿童和成人道德判断的发展经历三个水平:A〃前习俗-水平,B、习俗水平,c。后习俗水平,大多数少年的道德评价处于习俗--水平。 2.克拉斯沃尔等人提出的价值内化经历了五个阶段。它们是A〃----注意-,B〃—反应-,C〃----评价--,D〃---组织--,E〃--价值性格化--。 3.心理学认为态度和品德都包括:A。----认知-- ,B.----情感-,C。--行为三个成分。 4.态度与品德的区别在于;A.--态度的范围大于品德—,B〃价值内化程度不同--。 5.社会心理学家凯尔曼提出的态度改变需要经历的三个阶段为:A。--顺从--,B.------认同----,C。---内化---- 。 6.态度的功能有:A。----价值表现--,B。-------调节--和C。---过滤----。7.社会学习理论是由----班杜拉---提出来的,适合解释------社会--行为。8.费斯廷格提出的四种认知失调情境是:A.----逻辑不一致---,B。-----与社会风气不一致--,C。------与一贯行为不一致---,D。--与过去经验不一致---。 二、概念与原理的解释和运用 1.某些教科书把态度和品德分别安排在两章教授。这两个概念可能的关系 是:A c.态度是 一种比品德更稳定的心理品质;D.品德是态度形成与改变的条件。 2.让寝室里的同学共同讨论制订出寝室守则,这种方法是:A.说服 用群体规定;C.价值观辨析;D.角色扮演。 3.在一个好的集体里,差生的不良言行很少有市场;在一个不好的集体里, 好学生也会附和不良言行。这一现象的适当解释是A. 众;c老师的威信;D.认知失调。 4.甲孩子因偷吃东西,打破一只碗;乙孩子因帮妈妈洗碗,打破15只碗。 童;B.小学儿童;C.中学生;D.无法确定。 5.假如家长想用看电视作为强化物奖励儿童认真按时完成家庭作业的行为,最适合的安排是:A.让儿童看完电视后立即督促他们完成作业;B.规定每周看 电视的适当时间;c. 看电视。 6.国外有座收费的桥。当局规定,凡乘一人的车收税,乘两人以上的车可免收税,于是人们纷纷多人乘一辆车过桥。根据强化原理,这种行为最适当的解

2004图论复习题答案

图论复习题答案 一、 判断题,对打√,错打 1.无向完全图是正则图。( √ ) 2.零图是平凡图。( ) 3.连通图的补图是连通图. ( ) 4.非连通图的补图是非连通图。( ) 5.若连通无向简单图G中无圈,则每条边都是割边。( √ ) 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。( ) 7.任何树都至少有2片树叶。( ) 8.任何无向图G都至少有一个生成树。( ) 9.非平凡树是二分图。( √ ) 10.所有树叶的级均相同的二元树是完全二元树。( ) 11.任何一个位置二元树的树叶都对应唯一一个前缀码。( √ ) 12.3,3 K是欧拉图也是哈密顿图。( ) 13.二分图的对偶图是欧拉图。( ) 14.平面图的对偶图是连通图。( √ ) 15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。( )二、填空题 1.无向完全图K6有 15 条边。 2.有三个顶点的所有互不同构的简单无向图有 4 个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有 10 片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集 有 n-1 个,基本圈有 m-n+1 个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要 加k / 2 条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2 个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。(2)求D的可达性矩阵。 (3)求D的强分图。 a b e 图1

解: (1) M=????????????????00010 1000000001 010******* M 2 =?? ?? ??? ? ??? ?????010******* 00010 1000001000 M 3=????????????????1000001000010000001010000 M 4=??????? ?????????0001001000100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4 =????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??? ???? ? ??? ?? ???010000001000010 1000001000 + ????????????????1000001000010000001010000 +??? ?? ???????????0001001000100000100000010 = ??? ???? ? ????????21020 13010111110202011021 D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4 )=??? ???? ? ????? ???110101********* 1101011011 (3)R T =????????????????11111 1111100100 1111100101 R×R T =??? ???? ? ??? ?????11010 11010 001001101000001 由矩阵R×R T 可知,该有向图的强分图有:{a},{ b ,d ,e}, { c} a b e 图1

相关文档
最新文档