锚杆的锚固长度设计计算

锚杆的锚固长度设计计算
锚杆的锚固长度设计计算

锚杆(索)

1.锚杆(索)的作用机理

立柱在荷载的作用下,有绕着基地转动的趋势,此时可以利用灌浆锚杆(索)的抗拔作用力来进行抵抗。灌浆锚杆(索)指用水泥砂浆(或水泥浆、化学浆液等)将一组钢拉杆(粗钢筋或钢丝束、钢轨、小钢筋笼等)锚固在伸向地层内部的钻孔中,并承受拉力的柱状锚固体。它的中心受拉部分是拉杆。其受拉杆件有粗钢筋,高强钢丝束,和钢绞线等三种不同类型。而且施工工艺有简易灌浆、预压灌浆以及化学灌浆。锚固的形式应根据锚固段所处的岩土层类型、工程特征、锚杆(索)承载力大小、锚杆(索)材料和长度、施工工艺等条件,按表1-1进行具体选择。

同时,为了更好地对锚杆(索)进行设计,以下将对锚杆(索)的抗拔作用力机理进行介绍。

锚杆(索)的抗拔作用力又称锚杆(索)的锚固力,是指锚杆(索)的锚固体与岩土体紧密结合后抵抗外力的能力,或称抗拔力,它除了跟锚固体与孔壁的粘结力、摩擦角、挤压力等因素有关外,还与地层岩土的结构、强度、应力状态和含水情况以及锚固体的强度、外形、补偿能力和耐腐蚀能力有关。

许多资料表明,锚杆(索)孔壁周边的抗剪强度由于地层土质不同,埋深不同以及灌桨方法不同而有很大的变化和差异。对于锚杆(索)抗拔的作用机理可从其受力状态进行分析,由图1-1表示一个灌浆锚杆(索)中的砂浆锚固段,如将锚固段的砂浆作为自由体,其作用力受力机理为:

锚杆选型表1-1

当锚固段受力时,拉力T 。首先通过钢拉杆周边的握固力(u)传递到砂浆中,然后再通过锚固段钻孔周边的地层摩阻力(τ)传递到锚固的地层中。因此,钢拉杆如受到拉力作用,除了钢筋本身需要有足够的截面积(A)承受拉力外,锚杆(索)的抗拔作用还必须同时满足以下三个条件:

①锚固段的砂浆对于钢拉杆的握固力需能承受极限拉力; ②锚固段地层对于砂浆的摩擦力需能承受极限拉力; ③锚固土体在最不利的条件下仍能保持整体稳定性。

以上第①、②个条件是影响灌浆锚杆(索)抗拔力的主要因素。

i

i

i+1

i

地层

砂浆

钢筋直径

T i

i+1

T u

u 地层砂浆

i

i+1

孔壁摩阻力τ

i i i+1i+1T =P ·A

T =P·A

握裹应力u

图1-1 灌浆锚杆(索)锚固段的受力状态

2.锚杆(索)的设计计算

锚杆(索)的设计原则:

(1)锚杆(索)设计前应进行充分调查,综合分析其安全性、经济性与可操作性,避免其对路堤周围构筑物和埋设物产生不利影响。

(2)设计锚杆(索)时应考虑竣工后荷载作用对路堤的影响,要保证它们在载荷作用下不产生有害变形。

(3)设计锚杆(索)时,应对各种设计条件和参数进行充分的计算和试验来确定,只有少数有成熟的试验资料及工程经验的可以借用。 锚杆(索)的设计要素:

锚杆(索)的设计要素包括:锚杆(索)长度、锚固长度、相邻结构物的影响、锚杆(索)的倾角和锚固体设置间距、锚杆(索)的抗拔力计算等等。这些都是通过计算和试验得来的。

进行锚杆(索)设计时,选择的材料必须进行材性试验,锚杆(索)施工完毕后必须对锚杆(索)进行抗拔试验,验证锚杆(索)是否达到设计承载力的要

求。锚杆(索)型式选择应根据锚固段所处的地层类型、工程特征、锚杆(索)承载力的大小、锚杆(索)材料、长度、施工工艺等条件综合考虑进行选择。表2-1给出了土层、岩层中的预应力和非预应力常用锚杆(索)类型的有关参数。

表2-1 常用锚杆(索)型式

锚杆(索)类别 锚筋选料 承载力 (kN) 锚 杆

长 度

应 力 状 态

注 浆 方 式

锚 固 体 形 式

适 用 条 件 土 层 锚 杆

钢 筋 (Ⅱ、Ⅲ级)

<450 <16m 非预应力

常压灌浆压力灌浆 圆柱型 扩孔型 锚固性较好的土层

精 轧 螺纹钢筋Ф25~32 400~1100 >10m 预应力

压力灌浆二次高压灌浆 连续球型、扩孔型

土层锚固性较差;边坡

允许变形值较小。 钢 绞 线

600~ 1600 >10m 预应力 同 上

同 上

同 上 岩 层 锚 杆

钢 筋 (Ⅱ、Ⅲ级)

<450

<16m 非预应力 常压灌浆 圆柱型 边坡稳定性较好 精 轧 螺纹钢筋Ф25~32 400~1100 >10m

预应力

常压灌浆压力灌浆

圆柱型 边坡稳定性较差 钢 绞 线

600~2000

>10m 预应力

常压灌浆压力灌浆

圆柱型 同 上

2.1锚杆(索)锚筋的截面设计

假设锚杆(索)轴向设计荷载为N ,则可由下式初步计算出锚杆(索)

要达到设计荷载N 所需的锚筋截面:

ptk

g f kN

A

' 式中,'

g A 为由N 计算出的锚筋截面;k 为安全系数,对于临时锚杆(索)取

1.6~1.8 对于永久性锚杆(索)取

2.2~2.4;

ptk

f为锚筋(钢丝、钢绞线、钢筋)抗拉强度设计值。

(2)锚筋的选用:

根据锚筋截面计算值'

g

A,对锚杆(索)进行锚筋的配置,要求实际的锚筋

配置截面

'

g

g

A

A

。配筋的选材应根据锚固工程的作用、锚杆(索)承载力、锚

杆(索)的长度、数量以及现场提供的施加应力和锁定设备等因数综合考虑。

对于采用棒式锚杆(索),都采用钢筋做锚筋。如果是普通非预应力锚杆(索),由于设计轴向力一般小于450kN,长度最长不超过20米,因此锚筋一般选用普通Ⅱ、Ⅲ级热轧钢筋;如果是预应力锚杆(索)可选用Ⅱ、Ⅲ级冷拉热轧钢筋或其他等级的高强精轧螺纹钢筋。钢筋的直径一般选用Φ22~Φ32。

对于长度较长、锚固力较大的预应力锚杆(索)应优先选用钢绞线、高强钢丝,这样不但可以降低锚杆(索)的用钢量,最大限度地减少钻孔和施加预应力的工作量,而且可以减少预应力的损失。因为钢绞线的屈服应力一般是普通钢筋的近7倍,如果假定钢材的弹性模量相同(1.9×105Mpa),它们达到屈服点的延伸率钢绞线是钢筋的7倍,反过来讲,在同等地层徐变量的条件下,采用钢绞线的锚杆(索)的预应力损失仅为普通钢筋的1/7。在选用钢绞线时应当符合国标(GB/T5223-95、GB/T5224-95)要求,7丝标准型钢绞线参数如表2-3所示。除此之外,也可选用美国标准(ASTM A416-90a)、英国标准(BS5896:80)、日本标准(JIS G3536-88)的钢绞线,表2-4所示为ASTM A416-90a 7丝标准型钢绞线(270级)参数。为了便于选用,表2-5给出了按国标计算的出的不同锚杆(索)设计拉力值所需的钢绞线根数。

表2-3 国标7丝标准型钢绞线参数表

公称直径(mm)公称

面积

(mm2)

每1000m

理论重量

(kg)

强度

级别

(N/mm2)

破坏

荷载

(kN)

屈服

荷载

(kN)

伸长率

(%)

70%破断荷载

1000h低松弛

(%)

9.50 54.8 432 1860 102 86.6 3.5 2.5

11.10 74.2 580 1860 138 117 3.5 25.

12.70 98.7 774 1860 184 156 3.5 2.5 15.20 139.0 1101 1860 259 220 3.5 2.5

表2-4 ASTM A416-90a 7丝标准型钢绞线参数表

公称 直径 (mm ) 公称 面积 (mm 2

) 每1000m 理论重量 (kg ) 强度 级别 (N/mm 2

) 破坏 荷载 (kN ) 屈服 荷载 (kN ) 伸长率 (%) 70%破断荷载 1000h 低松弛

(%) 9.53 54.84 432 1860 102.3 92.1 3.5 2.5 11.11 74.19 582 1860 137.9 124.1 3.5 25. 12.70 98.71 775 1860 183.7 165.3 3.5 2.5 15.24 140.00

1102

1860

260.7

234.6

3.5

2.5

表2-5 锚杆(索)设计轴向力与钢绞线使用根数对照表

锚杆(索)设计

轴 向力(kN) 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

7υ4

钢绞线 (根)

临时性

3 3

4 4

5 5

6 6

7 7

8 8

9 9 10 10 永久性 4 4 5 5 6 7 7 8 9 9 10 10 11 12 13 13 7υ5

钢绞线 (根)

临时性

2 2

3 3

4 4 4

5 5 5

6 6 6

7 7 7 永久性

3 3

4 4 4

5 5

6 6

7 7 7

8 8

9 9

2.2锚杆(索)受力分析的理论解

锚杆(索)深入岩石中,其端部承受拉拔力,假设水泥浆材与岩体为性质相

同的弹性材料,锚杆(索)所作用的岩体可视为半空间,深度z 处作用—集中力,如图2-1所示,在任意点C(x,y,z)处的垂直位移分量W 可由Mindlin 位移解确定:

2223

112235

22348(1)(34)()(1)8(1)(34)()26()u u u z h R R R Q u w E u u z h hz hz z h R R π??

-----++??+??=

??

--+-+++????

(1)

图2-1 Mindlin 解的计算简图

式中:E,μ分别为岩体的弹性模量和泊松比;

22212

2

2

2();().

R x y z h R x y z h =++-=

+++

在孔口处,x=y=z=0,则式(1)可简化为

(1)(32)2Q u u w hE

π+-=

(2)

假设埋入岩体中的锚杆(索)为半无限长,锚杆(索)、水泥浆体与岩体之间处于弹性状态,满足变形协调条件,则孔口处,岩体的位移与锚杆(索)体的总伸长量相等,从而可以建立以下方程:

(32)2()2z dz

c z

u r r

dz dz dz G z

E A τ

πτ∞

+-=

-?

??

(3)

通过简化,式(3)可化为二阶变系数齐次常微分方程:

'''

20az a τττ++= (4) 式(3),(4)中:r 为锚杆(索)体半径

4,,(32)2(1)

c G E

a G u E A u π==-+

Ec 为锚杆(索)体的弹性模量,A 为锚杆(索)体的截面积,G 为岩体的剪切模量,τ为锚杆(索)所受的剪应力。

式(4)通过变换,并利用边界条件z →∞,τ=0最后,可得锚杆(索)所受的剪应力沿杆体分布为

212

2kz Pkz e r

τπ-= (5)

式中:21

(1)(32)c E k u u r E ??=??+-??

,P 为锚杆(索)受的拉

拔力。

对式(5)进行积分,可得锚杆(索)轴力沿锚杆(索)杆体分布为

212

kz c Pe E A

θ

σ-=

(6)

2.3锚杆(索)的锚固长度计算及影响因素

2.3.1 预应力锚杆(索)有效锚固长度的确定

由式(5)、(6)可得锚杆(索)体剪应力及轴向应力分布示意图,如图2-2、2-3所示,从图中可以看出,从锚固段始端零点至曲线拐点(τ″=0,σ″=0)的锚杆(索)体长度范围内承担了绝大部分的剪应力和轴向应力,可将该段长度称为

锚杆(索)体的有效锚固长度。

图2-2 锚杆(索)剪应力分布曲线示意图

图2-3 锚杆(索)轴向应力分布曲线示意图

令τ″=0,代入式(5)得

2

2

3(1)(32)3(32)2c c a E u u r E u r l E G

+--=

=

(7)

式中la 为有效锚固长度

在有效锚固长度以外的锚杆(索)体承受的剪力为

21

2

2a

a

kz l l Pkz dx e r

τπ+∞

+∞

-=??

(8)

将式(7)代入式(8)得

3

22a

l P dx e r τπ+∞

-=? (9) 该段剪力与锚杆(索)体承受的总剪力的比值

3

2

000

22.3a

l dx dx e

ττ+∞

+∞

-

==??

也就是说,假定锚固长度为无穷大时,有效锚固长度的锚杆(索)体承担的剪力占总剪力的77.7%。可见,有效锚固长度的锚杆(索)体承担了绝大部分剪力。由公式(5)可知,有效锚固长度与锚杆(索)的极限拉拔力而只与锚杆(索)体的弹性模量、岩体的弹性模量、泊松比以及锚杆(索)体直径等参数有关。

2.3.2影响锚杆(索)有效锚固长度的因素

(1)锚杆(索)与岩体的弹性模量的比值Ec/E

锚杆(索)与岩体的弹模之比越小,即岩体越硬,锚杆(索)所受的剪应力峰值越大,剪应力、轴向应力分布范围越小,应力集中程度越大,则锚杆(索)的有效锚固长度就越小。Ec/E比值越大,即岩体越软,锚杆(索)所受的剪应力峰值越小,剪应力、轴向应力的分布范围越大、越均匀,则锚杆(索)的有效锚固长度也就越大,因此,从某种意义上说,用预应力锚杆(索)加固软岩的效果比加固硬岩的效果更好。

(2)锚杆(索)体直径

从公式上可以看出,锚杆(索)的有效锚固长度与锚杆(索)体直径成正比,经分析可知,锚杆(索)体随其直径的减小,其剪应力峰值迅速增大,剪应力分布范围越小、越集中,则有效锚杆(索)长度就越小,锚杆(索)体直径越大,其所受的剪应力峰值越小,剪应力分布范围越大、越均匀,则有效锚固长度就越大。因此,在工程应用中,锚杆(索)体直径存在一个最优值。

(3)水泥浆体的水灰比

低水灰比砂浆的单轴抗压强度和弹性模量都较高,抗径向开裂的能力较强,在锚杆(索)拉拔力作用下,其剪应力、轴向应力峰值较高,分布范围较小,则锚杆(索)的有效锚固长度较小。

此外,注浆压力、岩体的松弛深度范围、反复张拉荷载作用[7]等因素都对有效锚固长度有明显的影响。

2.4锚杆(索)的抗拔力计算

锚杆(索)的极限拉拔力取决于锚杆(索)锚固体的破坏形式。锚杆(索)锚固体的破坏形式有三种,在锚杆(索)张拉过程中,锚杆(索)突出的肋挤压肋间水泥浆材,肋的斜向挤压力产生楔的作用,其径向分力使外围浆材环向受拉。当围岩径向刚度较小,水泥浆材强度较低时,环向拉应力达到浆材的抗拉强度时,开始产生径向裂缝,从而造成径向压应力降低,摩阻力也随之降低,锚杆(索)体被拔出,破坏面为水泥浆体,破坏的主要原因是径向开裂,破裂面平行于锚杆(索)轴线。这是第一种破坏形式,如图2-4.a所示。当围岩径向刚度较大,且水泥浆材强度也较高时,径向开裂被抑制,摩檫阻力进一步提高,当拉拔力增大时,破坏主

要出现在浆材与岩石交界面,甚至于岩体中,破坏的主要原因是水平剪切,破裂面沿最大剪应力作用面。这是第二种破坏形式。如图2-4.b 所示。Macdonald(1963)认为浅埋锚杆(索)破裂面为抛物线型,且破裂面在地表处与水平面成(45°-υ/2)夹角,茜平一等人(1992)也证实,在地表处,无论砂土还是粘质砂土,破裂面在地表处的水平夹角接近(45°-υ/2)。多数情况下,锚杆(索)体的破坏是以上两种形式的叠加,即既有浆材径向劈裂,又有浆材的水平剪切。如图2-4.c 所示

图2-4 三种破坏形式的破裂面示意图

2.4.1 第一种破坏(浆材和接触面强度小于岩石强度情况)的极限抗拔承载力

在这种情况下,由于浆材环向抗拉强度较低,已部分径向开裂,裂缝的存在引起浆材内的应力重分布。在开裂区,环向应力为零。而在浆材的未开裂区由于应力重分布导致应力增加,文献把整个砂浆柱体分为开裂区和未开裂区,分别按完全开裂状态和弹性状态的有关公式处理。在开裂区,得到开裂/未开裂界面的环向应力σθ表示的锚杆(索)/浆材界面在裂缝扩展处的压应力P1C

22

2122

2121

c c cp r r r p r r r r θ

σ-=- (10)

式中 rc ———开裂区半径

在裂缝开始发生不稳定扩展时的裂缝长度和相应的界面压应力由式(10)的最大值确定,可得

2

2520.486c r r r =-= (11)

采用最大拉应力准则,σθ=σTg,τTg 为浆材抗拉强度,将式(11)代入式(10), 可得

121

0.3

Tg P r r σ= (12)

锚杆(索)极限抗拔力发生在裂缝不稳定扩展的峰值点,因此锚杆(索)极限抗拔力可表示为:

1tan ult P P Dl ?π= (13)

式中:υ为浆材的内摩擦角;D 为锚孔直径。

2.4.2 第二种破坏(浆材和接触面强度大于岩石强度情况下)的极限抗拔承载力 这种破坏发生在锚固长度较小的情况。由于径向约束较大,径向开裂被抑制,剪切应力进一步增大,随着荷载的增加,沿最大剪应力作用面方向形成一锥形破裂面,当荷载继续增加时,锥形破裂面随锚杆(索)一起滑移,最终锥形破裂面从岩体中拔出,丧失承载力。此破坏机理为岩石在复合应力状态下的剪切破坏,其极限承载力可由静力平衡条件及Mohr-Coulomb 条件推导出:

2

452cos 454522ult l c tg P tg tg ?π?????-??

??=

??????

---??

??????????

(14)

式中:c 为浆材的粘聚强度

2.4.3 第三种破坏的极限抗拔承载力

这种破坏是以上两种破坏的结合,则极限抗拔承载力亦为前两种极限承载力的叠加:

2

1(1)452tan cos 454522ult x c tg P P Dx tg tg ?π?π?????

--??

??=+

??????

---??

??????????

(15)

将上式对x 求导数,即dPultdx=0,从而可得锚杆(索)对应的最小拉拔力。

3.锚杆(索)的构造设计

3.1锚杆(索)的主要结构

锚杆(索)的主要结构包括:锚头、自由段、锚固段和锚杆(索)配件。具体细件包括台座、锚具、承压扳、支挡结构、钻孔、自由隔离层、钢筋、注浆体、自由段、

锚固段等。

工程上常按如下方法归类:

(1)按应用对象划分,有岩石锚杆(索)、土层锚杆(索);

(2)按是否预先施加应力划分,有预应力锚杆(索)、非预应力锚杆(索);

(3)按锚固机理划分,有粘结式锚杆(索)、摩擦式锚杆(索)、端头锚固式锚杆(索)和混合

式锚杆(索);

(4)按锚固体传力方式划分,有压力式锚杆(索)、拉力式锚杆(索)和剪力式锚杆(索);

(5)按锚固体形态划分,有圆柱型锚杆(索)、端部扩大型锚杆(索)和连续球型锚杆(索)。如下图(图3-1、3-2、3-3)所示。

图3-1 圆柱型锚固体锚杆

1——锚具;2——承压板;3——台座;4——支档结构;5——钻孔;6——二次注浆防腐处理;7——预应力筋;8——圆柱型锚固体;L1——自由长度;L2——锚固段长度

图3-2 端部扩大头型锚杆

1——锚具;2——承压板;3——台座;4——支档结构;5——钻孔;

6——二次注浆防腐处理;7——预应力筋;8——圆柱型锚固体;

9——端部扩头体;L1——自由长度;L2——锚固段长度

图3-3 连续球体型锚杆

1——锚具;2——承压板;3——台座;4——支档结构;5——钻孔;

6——塑料套管;7——止浆密封装置;8——预应力筋;9——注浆套管;

10——连续球体型锚固体;Lf——自由长度;La——锚固段长度

端部扩大头型锚杆(索)在锚固段最底端设置扩大头的锚杆(索),它能大大提高锚杆(索)的承载力,这种锚杆(索)较适用于粘土等软弱土层的情况,它可采用爆破或叶片切削方法进行施工。连续球型锚杆(索)是利用设于自由段与

锚固段交界处的密封袋和带许多环圈的套管(可以进行高压灌浆,其压力足以破

坏具有一定强度5.0MPa的灌浆体),对锚固段进行二次或多次灌浆处理,使锚固段形成一连串球状体,从而提高锚固体与周围土体之间的锚固强度;这种锚杆(索)一般适用于淤泥、淤泥质粘土等极软土层或对锚固力有较高要求的土层锚杆(索)。对于高填方路堤由于填筑料较为复杂,适合采用端部扩大头型和连续球型锚杆(索)

3.2锚杆(索)的防腐等级和要求

腐蚀环境中永久性锚杆(索)应采用I级双层防护保护构造;腐蚀环境中的临时性锚杆(索)和非腐蚀环境中的永久性锚杆(索)可采用II级简单的防腐保护构造。锚杆(索)的I、II级防护构造应符合表3-1的要求(图3-4、图3-5)。

表3-1锚杆I、II级防腐保护要求

图3-4 锚杆I级防腐构造

图3-5 锚杆(索)II级防腐构造

4.锚杆(索)的施工工艺

常见土层锚杆(索)的施工包括以下几个工序:钻孔、安放拉杆、灌注、养护、肋柱及挡板钢筋绑扎、锚头固定、支模、混凝土浇筑、养护、拆模。对于后期需施加预应力的锚杆(索),还要根据具体的设计要求安排张拉的准确时间。

4.1施工前的准备

施工前的准备包括施工前的调查和施工组织设计。施工前调查包括:收集场地岩土报告,锚杆(索)支护设计方案;分析地下水性质、埋深,预测降水效果及对锚杆(索)施工的影响;地下障碍物的核实;了解作业限制、环保规则、地方法规;了解施工空间、各种设备、工程道路情况,了解现场各工种配合要求。

施工组织设计,也就是开工前,详细制定施工组织设计,确定施工方法、施工程序、使用机械设备、工程进度、质量控制和安全管理等事项、内容包括:工程概况:工程名称、地点、工期要求、工程量、目的;岩土勘察报告中地层、地下水位简介;锚杆(索)设计简介;施工机械设备,临时设施,施工材料;作业程序,各工种人员配备;施工管理,质量、进度控制,施工适用的规范、标准;

安全、文明施工措施;应支付的工程验收技术资料。

4.2钻孔

钻孔前的准备工作包括:首先是钻孔机具的选择必须满足土层锚杆(索)的钻孔要求,坚硬粘土和不易塌孔的土层,可以选用地质钻机、螺旋钻机和土锚专用机;饱和粘性土与易塌孔的土层,宜选用带护壁套管的土锚杆(索)专用钻机。其次钻孔前,还要正确定出孔位,其水平向误差100mm,垂直向误差50mm,倾角误差值为2.0°;最后安放杆体前,湿式钻孔应用水冲洗,直至孔口留出清水为止。

钻孔的施工方法有两种,一是清水循环钻进成孔法。

这种方法在实际工程中运用最广,软硬土层都能适用,但需要有配套的排水循环系统。有些施工单位为了方便,在现场只设置排水系统,没有设置重复利用水系统装置。在软黏土成孔时,如果不用跟管钻进,应在钻孔孔口处放入1m-2m的护壁套管,以保证孔口处土层不坍塌。二是螺旋钻孔干作业法。该法适用于无地下水条件的黏土、粉质黏土、密实性和稳定性都较好的砂土等地层。4.3安放拉体

土层锚杆(索)用的拉杆,常用的有粗钢筋、钢丝束和钢绞线,也有采用无缝钢管作为拉杆的。承载能力要求较小时,多用粗钢筋;承载能力要求较大时,多用钢绞线。如果是使用Ⅱ、Ⅲ级钢筋作杆体时,组装要求如下:钢筋应平直,除油、除锈;接头采用焊接,长度为30d,但不小于500mm,并排钢筋也要采用焊接;杆体轴向间隔1.0-2.0m设置一个对中支架,注浆管、排气管与杆体绑扎牢固;杆体自由段用塑料管或塑料布包裹,并在与锚固段连接处用铅

丝绑牢固;杆体应按防腐要求进行防腐处理。防腐保护层取决于使用年限及周围介质对杆体腐蚀的影响程度,一般来说,临时锚杆(索)可简单的采用涂抹黄油作为防腐保护层或不做,永久性锚杆(索)必须有严格的防腐保护。

如果使用钢绞线作杆体时,组装的要求如下:杆体除油、除锈,按设计尺寸下料,每股长度误差不超过500mm;杆体平直排列,轴向间隔1.0-1.5m设置一个隔离架,杆体保护层不应小于20mm。预应力筋、排气管绑扎牢固、并不得用镀锌材料;自由段用塑料管包裹,与描固段相交处的管口

应密封,并用铅丝绑紧;按防腐要求作防腐处理。

4.4灌浆

灌浆是土层锚杆(索)施工过程中重要的工序。灌浆的浆液为水泥砂浆或水泥净浆。首先是材料准备,优先选用425号普通硅酸盐水泥,标号不得低于325号;采用坚硬耐久的中粗砂,细度模数宜大于2.5,含水率控制在5%-7%,含泥量不得大于2%;采用强度较高的碎石或卵石,抗压强度大于50MPa,粒径不宜大于15mm;选用符合要求的外加剂;灰砂比为1:1-1:0.5,砂率宜为45%-55%,水灰比宜为0.4-0.5。灌浆的方法分为一次灌浆和二次灌浆。一次灌浆只用一根注浆管,一般采用Φ30mm的胶皮管,一端与压浆泵相连,另一端与拉杆同时送入钻孔内,距孔底50cm即可。在确定钻孔内的浆液是否灌满时,可根据从孔口流出来的浆液浓度与搅拌的浆液浓度是否相同来判断。对于压力灌浆锚杆(索),待浆液流出孔口时,将孔口用黏土封堵,严密捣实,再用2MPa-4Mpa的压力进行补灌,稳压数分钟后再停止。二次灌浆法适用于压力灌浆锚杆(索),要用两根注浆管,其管端距离锚杆(索)末端50cm左右,管端出口需用胶布塞住,以防止土进入管中。4.5张拉与锁定

灌注完成后,须养护7d-8d,当砂浆的强度能达到70%-80%时,才可以进行张拉。另外只能对有预应力要求的锚杆(索)才能进行张拉。张拉应力一般为设计锚固力的75%-80%。

(1)张拉宜采用“跳张法,即隔二拉一;

(2)锚杆(索)正式张拉前,应取设计拉力的10%-20%,对锚杆(索)预张拉1次-2次,使各部位接触紧密;

(3)正式张拉应分级加载,每级加载后维持3mm,并记录伸长值,直到设计锚固力的80%;最后一级荷载应维持5min,并记录伸长值;

(4)锚杆(索)预应力没有明显损失时,可锁住锚杆(索);如果锁定后发现有明显应力损失,应重新进行张拉。

(5)锚杆(索)应采用符合标准和设计要求的锚具。

表4-1锚杆张拉时注浆体和混凝土台座搞压强度值

(6)锚杆(索)张拉到1.05-1.10Nt时,对岩层、砂性土层保持10min,对粘性土层保持15min,然后卸荷到锁定荷载设计值进行锁定。锚杆(索)张拉荷载的分级和位移观测时间应遵守表8的规定。。

表4-2 锚杆张拉荷载分级和位移观测时间

锚杆挡土墙设计与计算

XXXX工程锚杆挡土墙计算分析报告 XXXX设计院 XXXX年XXX月

目录 第一章概述 (1) 第二章锚杆挡土墙计算理论 (1) 第三章锚杆挡土墙计算 (1)

第一章概述 锚杆挡土墙是由钢筋混凝土墙面和钢锚杆组成的支挡建筑物,它是靠锚杆锚固在稳定地层内,能承受水平拉力来维持墙的平衡,因此地基承载力一般不受控制,从而能克服不良地基的困难。在高边坡的情况下,且可采用自上而下逐级开挖和施工的办法,可以避免边坡坍塌,有利于施工安全。 锚杆使用灌浆锚杆,采用钻机钻孔,毛孔直径一般为100~150mm,锚杆材料为HRB335钢筋和由7根钢丝构成φ12.7mm 的预应力钢绞线。锚杆钢筋以一根或数根钢筋组成;锚杆锚索以一束或数束钢绞线组成。锚杆插入锚孔内后再灌注水泥砂浆。灌浆锚杆亦可用于土层,但由于土层与锚杆间的握固能力较差,尚需要加压灌浆或内部扩孔的方法以提高其抗拔能力。 锚杆挡土墙的墙面,一般用肋柱和挡土板组成,其结构布置应根据工点的地形和地质条件、墙高及施工条件等因素,考虑挡土墙是否分级和每级挡土墙的高度来决定。当布置为两级或两级以上时,级间可留1~2米的平台,如图1。 肋柱的间距应考虑工地的起吊能力及锚杆的抗拔能力等因素,一般可选用2.0~3.5米。每根肋柱根据其高度可布置多根锚杆。锚杆的位置应尽可能使肋柱所受弯矩均匀分布。 肋柱视为支承于锚杆(或支承于锚杆和地基)的简支梁或连续梁。肋柱的底端视地基的强度及埋置深度,一般设计时假定为自由或铰支端,如基础埋置较深且为坚硬的岩石时,也可以作为固定端。当底端

固定时,应考虑地基对肋柱基础的固着作用而产生的负弯矩。 图 1

锚杆的锚固长度设计计算

锚杆(索) 1.锚杆(索)的作用机理 立柱在荷载的作用下,有绕着基地转动的趋势,此时可以利用灌浆锚杆(索)的抗拔作用力来进行抵抗。灌浆锚杆(索)指用水泥砂浆(或水泥浆、化学浆液等)将一组钢拉杆(粗钢筋或钢丝束、钢轨、小钢筋笼等)锚固在伸向地层内部的钻孔中,并承受拉力的柱状锚固体。它的中心受拉部分是拉杆。其受拉杆件有粗钢筋,高强钢丝束,和钢绞线等三种不同类型。而且施工工艺有简易灌浆、预压灌浆以及化学灌浆。锚固的形式应根据锚固段所处的岩土层类型、工程特征、锚杆(索)承载力大小、锚杆(索)材料和长度、施工工艺等条件,按表1-1进行具体选择。 同时,为了更好地对锚杆(索)进行设计,以下将对锚杆(索)的抗拔作用力机理进行介绍。 锚杆(索)的抗拔作用力又称锚杆(索)的锚固力,是指锚杆(索)的锚固体与岩土体紧密结合后抵抗外力的能力,或称抗拔力,它除了跟锚固体与孔壁的粘结力、摩擦角、挤压力等因素有关外,还与地层岩土的结构、强度、应力状态和含水情况以及锚固体的强度、外形、补偿能力和耐腐蚀能力有关。 许多资料表明,锚杆(索)孔壁周边的抗剪强度由于地层土质不同,埋深不同以及灌桨方法不同而有很大的变化和差异。对于锚杆(索)抗拔的作用机理可从其受力状态进行分析,由图1-1表示一个灌浆锚杆(索)中的砂浆锚固段,如将锚固段的砂浆作为自由体,其作用力受力机理为: 锚杆选型表1-1

当锚固段受力时,拉力T 。首先通过钢拉杆周边的握固力(u)传递到砂浆中,然后再通过锚固段钻孔周边的地层摩阻力(τ)传递到锚固的地层中。因此,钢拉杆如受到拉力作用,除了钢筋本身需要有足够的截面积(A)承受拉力外,锚杆(索)的抗拔作用还必须同时满足以下三个条件: ①锚固段的砂浆对于钢拉杆的握固力需能承受极限拉力; ②锚固段地层对于砂浆的摩擦力需能承受极限拉力; ③锚固土体在最不利的条件下仍能保持整体稳定性。 以上第①、②个条件是影响灌浆锚杆(索)抗拔力的主要因素。 i 孔壁摩阻力τ i 图1-1 灌浆锚杆(索)锚固段的受力状态 2.锚杆(索)的设计计算 锚杆(索)的设计原则: (1)锚杆(索)设计前应进行充分调查,综合分析其安全性、经济性与可操作性,避免其对路堤周围构筑物和埋设物产生不利影响。 (2)设计锚杆(索)时应考虑竣工后荷载作用对路堤的影响,要保证它们在载荷作用下不产生有害变形。 (3)设计锚杆(索)时,应对各种设计条件和参数进行充分的计算和试验来确定,只有少数有成熟的试验资料及工程经验的可以借用。 锚杆(索)的设计要素: 锚杆(索)的设计要素包括:锚杆(索)长度、锚固长度、相邻结构物的影

锚杆(锚索)支护计算

锚杆(锚索)支护设计技术参数 一、锚索设计承载力 钢绞线直径为φ时230kN ,钢绞线直径为φ时320kN ,钢绞线直径为φ时454kN 。 二、锚索设计破断力 钢绞线直径为φ时260kN ,钢绞线直径为φ时355kN ,钢绞线直径为φ时504kN 。 } 三、锚杆(锚索)支护参数校核 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的 条件,应满足:L ≥L 1+L 2+L 3 式中L ——锚杆总长度,m ; L 1——锚杆外露长度(包括钢带、托板、螺母厚度),m ; L 2——有效长度(顶锚杆取围岩松动圈冒落高度b ,帮锚杆取帮破碎深度c ),m; · L 3——锚入岩(煤)层内深度,m 。 其中围岩松动圈冒落高度 b= 顶 f H B ??? ? ? -+?245tan 2ω 式中B 、H ——巷道掘进荒宽、荒高; 顶f ——顶板岩石普氏系数; } ω——两帮围岩的似内摩擦角,ω=()顶f arctan 。

? ?? ? ? -?=245tan ωH c 2、校核顶锚杆间、排距:应满足 γ 2kL G a < 式中a ——锚杆间、排距,m ; G ——锚杆设计锚固力,kN/根; # k ——安全系数,一般取2;(松散系数) L 2——有效长度(顶锚杆取b ); γ——岩体容重 3、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; 《 a L ——锚索深入到较稳定岩层的锚固长度,m ; c a a f f d K L 41? ≥ 其中: K ——安全系数; 1d ——锚索直径; ¥ a f ——锚索抗拉强度,N/㎜2; c f ——锚索与锚固剂的粘合强度,N/㎜2;(10) b L ——需要悬吊的不稳定岩层厚度,m ; c L ——托板及锚具的厚度,m ; d L ——外露张拉长度,m ;

锚杆挡墙计算书[12]

港城工业园D区319国道以北地块平场及道路工程 计算书 (锚杆挡墙) 计算: 校对: 审查: 林同棪国际工程咨询(中国)有限公司 设计证书号:AW150001482 市政甲级 2010年11月

目录 1、工程概况 (2) 2、设计依据 (2) 3、设计参数 (2) 4、2#挡墙基础下岩质边坡破坏模式 (3) 5、设计方案 (3) 6、荷载计算 (3) 7、锚杆挡墙计算 (4) 7.1锚杆计算 (4) 7.2竖肋柱计算 (6)

1、工程概况 D区A线道路为重庆市港城工业园区内一条南北向城市次干道II级,道路全长0.96Km,标准路幅宽度22m,双向四车道。 2、设计依据 (1)由重庆南江地质工程勘察院2007年10月所作《重庆市港城工业园D 区A线道路工程地质勘察报告(K0+0.000~K1+021.403)(一阶段详勘)》。 (2)《建筑边坡工程技术规范》(GB50330-2002); (3)《建筑地基基础设计规范》(GB50007-2002); (4)《混凝土结构设计规范》(GB50010-2002); (5)《地质灾害防治工程设计规范》(DB50/5029--2004); (6)《公路路基设计规范》(JTG D30-2004); 3、设计参数 岩土参数建议值: 结构面抗剪强度指标:C=50KPa、ψ=18°; 填土压实度按有关规范取值; 边坡岩体破裂角:东侧53°,西侧; 墙基底摩擦系数: 人工填筑土 0.25; 亚粘土 0.20; 强风化泥岩 0.3; 弱风化泥岩 0.45; 强风化砂岩 0.35; 弱风化砂岩 0.50。 边坡开挖允许放坡率 人工填筑土: 1:1.5;

锚杆、锚索锚固力计算方法

锚杆、锚索锚固力计算 1、帮锚杆 锚固力不小于50KN(或5吨或12.5MPa) 公式计算 拉力器上仪表读数MPa4=锚固力KN 锚固力KN10=承载力 例 13MPa4= 52KN 52KN10=5.2吨 2、顶锚杆 锚固力不小于70KN(或7吨或17.5MPa) 公式计算 拉力器上仪表读数MPa4=锚固力KN 锚固力KN10=承载力 例 18MPa4= 72KN 72KN锚固力÷10=7.2吨 3、Ф15.24锚索 锚固力不小于120KN(或12吨或40MPa) 公式计算 拉力器上仪表读数MPa 3.044= 锚固力KN 锚固力KN÷10= 承载力例

40MPa 3.044= 121.76KN 121.76KN10=12.176吨 4、Ф17.8锚索 锚固力不小于169.6KN(或16.96吨或45MPa) 公式计算 拉力器上仪表读数MPa 3.768=锚固力KN 锚固力KN10=承载力 例 45MPa 3.768= 169.56KN 169.56KN10=16.956吨 5、Ф21.6锚索 锚固力不小于250KN(或25吨或55MPa) 公式计算 拉力器上仪表读数MPa 4.55=锚固力KN 锚固力KN10=承载力 例 55MPa 4.55= 250KN 250KN10=25吨 型号为YCD22-290型预应力张拉千斤顶 备注 1、使用扭力矩扳手检测120KN,顶锚杆扭力矩不小于150KN。

2、井下排版填写记录50KN、顶锚杆70 KN、Ф15.24锚索120KN、Ф17.8锚索169.6KN 3、检测设备型号 锚杆拉力计型号LSZ200型锚杆拉力计 Ф15.24锚索拉力计型号YCD-180-1型预应力张拉千斤顶Ф17.8锚索拉力计型号YCD18-200型张拉千斤顶 21.6锚索承载力为504KN

某边坡锚杆挡墙计算书

设 计计算 书

地质资料主要参数: 岩体等效内摩擦角:29.35 C=50KPa 考虑硬性结构面并且采用暴雨工况 饱和重度:24.5KN/m3 墙背直立:α=90 岩石内摩擦角:ψ=29.35 岩石等效内摩擦角: ψ=51 外倾角: θ=51 岩石破裂角取外倾角: θ=51 锚固体与岩体粘接强度:300KPa 墙背荷载标准值:q=20KN/m 2 钢筋与砂浆的粘结强度:2.4MPa (按规范7.2.4并考虑0.7折减系数) 主动土压力系数 1.按规范6.3.4条,直接按等效内摩擦角为51°进行主动土压力计算,Kai 按6. 2.4条:Kai=tg 2(45-ψ/2)==0.13 2.按规范6. 3.2条,对于有硬性外倾结构面滑动的边坡,按下式进行计算: ψηψθθβθψθδcos sin )sin()sin([) sin()sin(sin sin ) sin(a a Kq a a a b a Ka --+?--+++= a=90 β=0 δ=18 ψ=18 cs=50KPa 按地勘,破裂角及外倾角均取θ=51 Ka=0.18 3.考虑挡墙开挖后,墙后可能存在有限填土;且施工期间放坡未定; 因此,取按土质回填时,主动土压力系数Ka=0.3 边坡安全等级: 一级;取r0=1.1

一.侧向土压力计算 根据规范8.2.3条,本工程土压力分布采用半梯形 墙背直立,取E hk =E ak KN K H r E a hk 7203.014145.245.02 1 2=????=???= 根据规范8.2.5 KN H Ehk e hk 5714/9.0/7209.0/=== 间距s=2.5m qk=57×2.5=142KN/m 二.立柱(排桩)计算 取分项系数为1.35;视为支撑于锚杆的弹性连续梁计算,得 Mmax=107KN.m Qmax=286KN 配筋: 当采用柱肋式时,按300X600;正筋,负筋均配4Φ22;箍筋φ8@100 当采用排桩式时,排桩按施工期间抗滑配筋 三.立柱嵌入深度计算 本工程锚杆水平力与挡墙侧压力平衡,不计算嵌入深度,按构造设置 四.锚杆计算 分项系数取1.30 qk=142;Nak=142x2.5/cos15=368KN Na=1.3×142×2.5/cos(15)=478KN 锚杆面积计算,采用HRB400级钢,根据规范7.2.2: y a f N r As ζ0= As=1.1*478*1000/0.69/360=2116mm2 取3Φ32 五.锚固长度计算 锚固体:rb ak a Df N l ζπ= 锚筋:rb a df n Na r l πζ30= 粘结强度按2.4MPa 并考虑0.7系数 锚固体:La=368/1/3.14/0.13/300=3m 锚筋:la=1.1*478/0.6/3.14/(3*0.032)/(2400*0.7)=1.73m

锚杆(锚索)支护计算

锚杆(锚索)支护设计技术参数 一、锚索设计承载力 钢绞线直径为φ15.24mm 时230kN ,钢绞线直径为φ17.8mm 时320kN ,钢绞线直径为φ21.6mm 时454kN 。 二、锚索设计破断力 钢绞线直径为φ15.24mm 时260kN ,钢绞线直径为φ17.8mm 时355kN ,钢绞线直径为φ21.6mm 时504kN 。 三、锚杆(锚索)支护参数校核 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的条件,应满足:L ≥L 1+L 2+L 3 式中L ——锚杆总长度,m ; L 1——锚杆外露长度(包括钢带、托板、螺母厚度),m ; L 2——有效长度(顶锚杆取围岩松动圈冒落高度b ,帮锚杆取帮破碎深度c ),m; L 3——锚入岩(煤)层内深度,m 。 其中围岩松动圈冒落高度 b=顶f H B ??? ? ?-+?245tan 2ω 式中B 、H ——巷道掘进荒宽、荒高; 顶f ——顶板岩石普氏系数; ω——两帮围岩的似内摩擦角,ω=()顶f arctan 。 ??? ? ?-?=245tan ωH c 2、校核顶锚杆间、排距:应满足 γ2kL G a < 式中a ——锚杆间、排距,m ;

G ——锚杆设计锚固力,kN/根; k ——安全系数,一般取2;(松散系数) L 2——有效长度(顶锚杆取b ); γ——岩体容重 3、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; a L ——锚索深入到较稳定岩层的锚固长度,m ; c a a f f d K L 41?≥ 其中: K ——安全系数; 1d ——锚索直径; a f ——锚索抗拉强度,N/㎜2; c f ——锚索与锚固剂的粘合强度,N/㎜2;(10)? b L ——需要悬吊的不稳定岩层厚度,m ; c L ——托板及锚具的厚度,m ; d L ——外露张拉长度,m ; 4、悬吊理论校核锚索排距: L ≤nF 2/[BH γ-(2F 1sin θ)/L 1] 式中 L---锚索排距,m ; B---巷道最大冒落宽度, m ; H---巷道最大帽落高度, m ;(最大取锚杆长度) γ---岩体容重,kN/m 3(包括顶煤+直接顶) L 1---锚杆排距, m, F 1---锚杆锚固力, kN;70

抗浮锚杆设计计算书

二、计算书 1、设计要求 本工程水池底板抗浮力的要求为: 表1 2、抗浮锚杆抗拔力设计值 根据技术要求,本工程单根锚杆的抗拔力标准值为87.5kN ,设计锚杆间距2.7x2.7m. 3、杆体截面及锚固体截面积计算 锚杆钢筋的截面面积按下式确定: yk t t s f N K A ?= (7.4.1) 上面式中:K t — 锚杆的杆体抗拉安全系数,取2; N t —— 锚杆的轴向拉力设计值,取113.8KN. f yk —— 钢筋抗拉强度标准值,采用HRB400钢筋,抗拉强度标准值为0.4kN/mm 2 。 根据计算得:As=569mm 2 所以孔内应设置二根Φ20的HRB400钢筋. 4、锚固段长度计算. 根据《岩土锚杆(索)技术规程》(CECS22-2005),锚杆锚固段长度由下两式中较大值确定: ψ πmg t a Df N K L ?> (7.5.1-1) ψ ξπms t a f d n N K L ?> (7.5.1-2) 上面式中:L a —— 锚杆锚固段的长度(m ); K —— 锚杆锚固体的抗拔安全系数,取2.2; N t —— 锚杆的轴向拉力设计值(kN); D —— 锚固体的钻孔直径,按0.12m d —— 钢筋的直径(m ); f m g ——锚固体与地层间的粘结强度标准值,2#地块按勘察报告中第59号钻孔取 锚杆周围地层加权平均值130kPa 。3#地块按勘察报告中第51号钻孔取锚杆周围地层加权平均值100kPa ,4#地块按勘察报告中第172号钻孔取锚杆周围地层加权平均值104kPa 。 f ms ——锚固体与钢筋间的粘结强度标准值,取2000kPa ; ξ ——界面粘结强度降低系数,取0.6; ψ —— 锚固长度对粘结强度的影响系数,2#地块取1.4;3#、4#地块取1.15 n —— 钢筋根数 由计算公式算得2#地块:L a 〉3.72m ,设计按照锚固段长度为5.10m 。 由计算公式算得3#地块:L a 〉7.18m ,设计按照锚固段长度为8.00m 。 由计算公式算得4#地块:L a 〉6.92m ,施工设计按照锚固段长度为8.00m 设计。 5、锚杆锚入基础的长度 根据规范要求,钢筋须插入基础内不少于35d ,本工程2#地块,采用Φ22螺纹钢筋,长度为35*22=770mm ,设计时取800mm 。本工程3#、4#地块采用Φ25螺纹钢筋,长度为35*25=875mm ,设计时取900mm 。 6、锚杆间距 本工程基础为筏板基础,考虑结构受力特点,本着减小底板弯曲应力的原则,本工程采用小吨位的锚杆。杭浮锚杆在整个底板上小间距均匀布置,局部地方(独立柱基位置)适当调整。该布置可降低底板的加筋费用,又可以减小因个别锚杆失效而造成的局部破坏。锚杆 大体成正方形布置,根据地下室抗浮区域、抗浮力要求的不同,锚杆间距为: 锚杆间距一览表 表6 7、设计实物工程量 根据计算,本工程抗浮锚杆设计实物工程量为:2号地块设置锚杆1107根,单根锚杆长度5.1m ,3#地块设置锚杆1927根,单根锚杆长度8m ,4#地块设置锚杆2707根,单根锚杆长度8m ,总计锚杆进尺43181.1m(含防水0.1m/根)。 8、锚固体强度及水泥浆配比 为增大锚固体的强度,锚固体采用豆石与砂浆结合体,填筑的豆石强度应无风化现象,

格构式锚杆挡墙验算

格构式锚杆挡墙验算 计算项目:格构式锚杆挡墙 1 计算时间:2012-09-14 18:06:47 星期五 执行规范: [1] 《建筑边坡工程技术规范》(GB50330-2002),本文简称《边坡规范》 [2] 《建筑结构荷载规范》(GB50009-2001),本文简称《荷载规范》 [3] 《建筑抗震设计规范》(GB50011-2010),本文简称《抗震规范》 [4] 《混凝土结构设计规范》(GB50010-2010),本文简称《混凝土规范》 ---------------------------------------------------------------------- [ 简图 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 已知条件 ] ---------------------------------------------------------------------- 1. 基本信息 边坡类型土质边坡边坡等级一级 墙高(m)11.000梁容重(kN/m3)25.00 坡度(1:m)0.300梁砼等级C30

竖梁道数4梁纵筋级别HRB400 ├间距(m) 2.000梁箍筋级别HRB335 ├截面宽(m)0.300梁钢筋直径(mm)20 └截面高(m)0.300梁as(mm)50 平梁道数5梁抗扭计算ζ值 1.200 ├截面宽(m)0.300支座约束弹性 ├截面高(m)0.300 ├左悬长度(m) 1.300 └右悬长度(m) 1.300 2. 锚杆(索) 锚杆锚杆竖向间入射角自由段锚固段锚固体锚杆预加锚杆刚度号类型距(m)(度)长度(m)长度(m)直径(mm)力(kN)(MN/m) 1 锚杆 1.50010.00 5.007.0013080.00025.09 2 锚杆 2.00010.00 4.507.5013080.00025.09 3 锚杆 2.00010.00 4.507.5013080.00025.09 4 锚杆 2.00010.00 4.5010.5013080.00025.09 5 锚杆 2.00010.00 4.5010.5013080.00044.39 3. 岩土信息 背侧坡线数2面侧坡线数--- 背侧坡线水平投影长竖向投影长坡线长坡线仰角荷载数 序号(m)(m)(m)(度) 1 5.0000.000 5.0000.0001 27.0000.0007.0000.0001 坡线荷载荷载类型距离宽度荷载值 序号(m)(m)(kPa,kN/m) 1-1满布均载------10.000 2-1满布均载------70.000 面侧坡线水平投影长竖向投影长坡线长坡线仰角 序号(m)(m)(m)(度) 1------------ 2------------ 地面上地层数2地面下地层数1 墙后稳定地面角(度)60.000填土与稳定面摩擦角(度)15.000 填土与结构摩擦角(度)10.000 地面上地层厚重度粘聚力内摩擦角摩阻力frb浮重度

最新基坑支护设计计算书

基坑支护设计计算书

桩 锚 设 计 计 算 书 一、计算原理 1.1 土压力计算 土压力采用库仑理论计算 1.1.1 主动土压力系数 ()2 sin sin cos cos ??? ?????++=φδφδφa K 1.1.2 被动土压力系数 ()2 sin sin cos cos ??? ?????+-=φδφδφp K 1.1.3 主动土压力强度 a a ajk K C hK e 2-=γ 1.1.4 被动土压力强度 p p pjk K C hK e 2+=γ 1.2 桩锚设计计算 1.2.1单排锚杆嵌固深度按照下式设计计算: 02.1)(011≥-++∑∑ai a d T c pj p E h h h T E h γ 式中,h p 为合力∑E pj 作用点至桩底的距离,∑E pj 为桩底以上基坑内侧各土层水平抗力标准值的合力之和,T c1为锚杆拉力,h T1为锚杆至基坑底面距离,h d 为桩身嵌固深度, γ0为基坑侧壁重要性系数,h a 为合力∑E ai 作用点至桩底的距离,∑E ai 为桩底以上基坑外侧各土层水平荷载标准值的合力之和。 1.2.2 多排锚杆采用分段等值梁法设计计算,对每一段开挖,将该段状上的上部支点和插入段弯矩零点之间的桩作为简支梁进行计算,上一段梁中计算

出的支点反力假定不变,作为外力来计算下一段梁中的支点反力,该设计方法考虑了实际施工情况。 1.3 配筋计算公式为:钢筋笼配筋采用圆形截面常规配筋,并根据桩体实际受力情况,适当减少受压面的配筋数。 s y cm cm s y A f A f A f A f 32/2sin 25.1++= π παα () t s y cm s r f Ar f KSM A παπαπ ππα sin sin sin 323+-= αα225.1-=t 式中,K 为配筋安全系数,S 为桩距,M 为最大弯矩,r 为桩半径,f cm 和fy 分别为混凝土和钢筋的抗弯强度,As 为配筋面积,A 为桩截面面积,α对应于受压区混凝土截面面积的圆心角与2π的比值,用叠代法计算As 。 1.4 锚杆计算 1.4.1 锚杆截面积为: α δcos P D b b SR K A = 式中:K b 为锚杆面积安全系数,R D 为所需锚杆拉力,δP 为锚杆抗拉强度,α为锚杆与水平线之间的夹角,S 为桩距。 1.4.2 锚杆自由段长度为: () ? ?? ? ? --? ?? ?? +-+=2135sin 245cos φαφ G A H L f 式中: H 为开挖深度,A 为土压力零点距坑底距离,D 为桩如土深度,G 为锚杆深度。

锚杆计算书

从几种规范来探讨全长粘结岩石锚杆承载力的计算 关键词:全长粘结岩石锚杆;承载力;计算 摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。 1、引言 锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。 2、各种规范对全长粘结岩石锚杆承载力计算的规定: 对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条: 对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算: lf d R t 18.0π≤……………(8.6.3) 式中: f —砂浆与岩石间的粘结强度特征值; 1d —锚杆孔直径; l —锚杆的有效锚固长度; (2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求: y a s f N A 20ξγ≥ ……………(7.2.2)

锚杆锚索参数计算

(一)按加固拱原理确定锚杆参数 综合分析国内外关于锚杆参数的经验数据和规定,对于跨度小于10米的巷道、硐室,可按下面经验公式确定锚杆参数 1.锚杆长度L=N(1.1+W/10) =1.1×(1.1+3.6/10) =1.606m (2200mm) 2.锚杆间(排)距D≤0.5L=0.5×1.606 =0.803m (800×900mm) 3.锚杆直径d=1/110×L=1/110×1.606 =0.0146米=14.6mm (18mm)式中W-巷道或硐室跨度,米;取3.6; N-围岩稳定量影响系数,取1.1,规定如下: Ⅱ类(稳定性较好)围岩,N=0.9; Ⅲ类(中等稳定)围岩,N=1.0; Ⅳ类(稳定性较差)围岩,N=1.1; Ⅴ类(不稳定)围岩,N=1.2; 通过计算,φ18×L2200(mm)锚杆满足设计要求,间排距800×900(mm)满足设计要求。 (二)悬吊理论校核锚索间(排)距 为防止巷道顶板岩层发生大面积整体跨落,用φ17.8mm,L=6300mm的钢绞线,将锚杆加固的“组合梁”整体悬吊于坚硬岩层中,校核锚索间(排)距,冒落方式按最严重的冒落高度大于锚杆长度的整体冒落考虑,此时,靠巷

道两帮锚杆和锚索一起发挥悬吊作用,在忽略岩体粘结力和内摩擦力的条件下,取垂直方向力的平衡,可用下式计算锚索间(排)距。 L=nF2/[BHγ-(2F1sinθ) /L1] 式中L-锚索间(排)距,m; B-巷道最大冒落宽度,取3.6+1.2=4.8m; H-巷道冒落高度,按最严重冒落高度取2.0m; γ-岩体容重,25kN/m3; L1-锚杆排距,0.9m; F1-锚杆锚固力(以最小锚固力计算),85kN; F2-锚索极限承载力(以最小锚固力计算),取200kN; θ-角锚杆与巷道顶板夹角,90°; n -锚索每排根数,取2; 通过上式计算, L=2×200÷[4.8×2.0×25-(2×85×sin90°÷0.9)] =400÷﹙240-188.9﹚=7.8m 得出锚索间排距小于7.8m,所选间排距2150×900(mm)满足设计要求。

边坡锚杆设计计算书

------------------------------------------------------------------------ 计算项目:2#工况整体稳定 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数4 坡面线号水平投影(m) 竖直投影(m) 超载数 1 1.200 8.300 0 2 1.500 0.000 0 3 7.300 9.200 0 4 20.000 0.000 1 超载1 距离8.000(m) 宽12.000(m) 荷载(20.00--20.00kPa) 270.00(度) [土层信息] 上部土层数2 层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层底线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 7.543 18.000 --- 47.400 23.300 --- --- --- --- --- --- -7.000 --- 2 17.500 18.000 --- 10.000 17.500 --- --- --- --- --- --- 0.000 --- 下部土层数2 层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层顶线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 1.069 18.000 --- 47.400 23.300 --- --- --- --- --- --- -11.000 --- 2 8.636 18.200 --- 35.200 24.600 --- --- --- --- --- --- 0.000 --- 不考虑水的作用 [计算条件] 圆弧稳定分析方法: 瑞典条分法 土条重切向分力与滑动方向反向时: 当下滑力对待 稳定计算目标: 自动搜索最危险滑裂面 条分法的土条宽度: 1.000(m) 搜索时的圆心步长: 1.000(m) 搜索时的半径步长: 0.500(m) ------------------------------------------------------------------------ 计算结果: ------------------------------------------------------------------------ 最不利滑动面: 滑动圆心= (1.320,20.340)(m) 滑动半径= 12.038(m) 滑动安全系数= 0.807 起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力 (m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) -------------------------------------------------------------------------------------------------------------------- 2.771 3.675 9.104 0.92 10.00 17.50 8.08 0.00 0.00 0.00 0.00 0.00 1.28 11.67 3.675 4.579 13.494 0.93 10.00 17.50 23.66 0.00 0.00 0.00 0.00 0.00 5.52 1 6.55 4.579 5.482 17.967 0.95 10.00 17.50 38.04 0.00 0.00 0.00 0.00 0.00 11.73 20.91 5.482 6.386 22.557 0.98 10.00 1 7.50 51.12 0.00 0.00 0.00 0.00 0.00 19.61 24.67 6.386 7.289 27.307 1.02 10.00 17.50 62.80 0.00 0.00 0.00 0.00 0.00 2 8.81 27.77 7.289 8.193 32.272 1.07 10.00 17.50 72.89 0.00 0.00 0.00 0.00 0.00 38.92 30.12 8.193 9.096 37.528 1.14 10.00 17.50 81.12 0.00 0.00 0.00 0.00 0.00 49.42 31.68 9.096 10.000 43.192 1.24 10.00 17.50 87.10 0.00 0.00 0.00 0.00 0.00 59.62 32.42 10.000 10.754 48.873 1.15 10.00 17.50 68.84 0.00 0.00 0.00 0.00 0.00 51.85 25.75

锚固力的计算

锚杆的锚固剂不是通长都要使用,一般锚固端长度不小于1米,具体根据现场情况确定。 你的成孔面积减去锚杆断面积再乘以锚固长度就是锚固剂 的使用量了。 0锚固力主要取决于锚杆与岩土层之间的摩阻力,不同的岩土层所能提供的摩阻力是不同的。所以,同样的锚固段长度,锚固力多少要看锚固在什么岩土层。 查GB50330-2002《建筑边坡工程技术规范》,弱风化的普通玄武岩按较硬岩取值,当钻孔直径为150mm时,锚固3m 的M30锚杆与岩土层之间的摩阻力可达到770kN,而Φ25二级螺纹钢筋作为永久性锚杆只能提供105kN的锚固力(0.69x310x490.9=105000,该值与锚固长度无关),故锚固力为105kN。 锚杆拉拔力一般按锚杆横截面积与该锚杆材料的许拉应力来计算的,至于锚固的长度必须按规程规定执行,否则锚固眼直径打大了,深度不够,锚杆被拉出,起不到锚固的作用是决对不允许的! 锚杆,英文“Bolt”;"bolting(准确称谓)"; "anchor(早期称谓)" 是当代煤矿当中巷道支护的最基本的组成部分,他将巷道的围岩束缚在一起,使围岩自身支护自身.

现在锚杆不仅用于矿山,也用于工程技术中,对边坡,隧道,坝体进行主动加固。 锚杆作为深入地层的受拉构件,它一端与工程构筑物连接,另一端深入地层中,整根锚杆分为自由段和锚固段,自由段时指将锚杆头处的拉力传至锚固体区域,其功能是对锚杆施加预应力;锚固段时指水泥浆体将预应力筋与土层粘结的区域,其功能是将锚固体与土层的粘结摩擦作用增大,增加锚固体的承压作用,将自由段的拉力传至土体深处。 锚杆根据其使用的材料可以分为:木锚杆,钢锚杆,玻璃钢锚杆等等。 按锚固方式分为:端锚固,加长锚固和全长锚固 以下列举几个称谓的锚杆 (1)木锚杆。我国使用的木锚杆有两种,即普通木锚杆和压缩木锚杆。 (2)钢筋或钢丝绳砂浆锚杆。以水泥砂桨作为锚杆与围岩的粘结剂。 (3)倒楔式金属锚杆。这种锚杆曾经是使用最为广泛的锚杆形式之一。由于它加工简单,安装方便,具有一定的锚固力,因此这种锚杆在一定范围内至今还在使用。 (4)管缝式锚杆。是一种全长摩擦锚固式锚杆。这种锚杆具有安装简单、锚固可靠、初锚力大、长时锚固力随围岩移动而增长等特点。

锚杆计算书

锚杆设计计算书 1.抗浮锚杆设计依据 本工程抗浮锚杆设计依据为: (1)《高层建筑岩土工程勘察规程》(JGJ72-2004); (2)《建筑边坡工程技术规范》(GB50330-2002); (3)《建筑地基基础设计规范》(GB50007-2002); (4)《岩土锚杆(索)技术规程》(CECS22-2005); (5)《建筑地基基础设计规范》(DBJ 15-31-2003)。 2.抗浮锚杆设计 2.1抗浮设计要求 锚杆的抗拔力根据设计给定的地下室抗浮力标准进行计算。结合建筑的性质以及场地条件,浮力设计值中取荷载分项系数为1.25。 2.2锚杆抗拔力计算 抗浮锚杆主要依靠锚杆锚固体与土体的粘结力(抗剪强度)来抵抗(水体对基础或底板的浮力)上拔力。 根据《岩土锚杆(索)设计与施工规范》(CECS22-2005)规定,非粘性土中圆柱型锚杆锚固段长度按下列公式进行估算,并取其中较大值: L a>K·N t/πDf mgψ(7.5.1-1) L a> K·N t/nπDf msψ(7.5.1-2) 锚杆杆体的截面公式:A s≥K t N t/f yk 锚杆杆体的截面面积公式:As 上述公式中: La——锚杆锚固段长度(m); Kt——锚杆锚固体的抗拔安全系数,永久锚杆,取2.2(K值已考虑群锚效应); Nt——锚杆的轴向拉力设计值(KN); D ——锚固体的直径150mm; f mg——锚固段注浆体与地层间的粘结强度标准值,取f mg=200kPa(CECS22-2005 保守取底值); f ms——锚固段注浆体与钢筋间的粘结强度标准值,取f ms=2000kPa; ——采用钢筋数量≥2根时,界面的粘结强度降低系数,取0.85~0.6; ——锚固长度对粘结强度的影响系数,取1.0~1.3,计算取值1.1; f yt——钢筋抗拉强度标准值,当采用Ⅲ级热轧钢筋时,其抗拉强度标准值为 f yt=400N/mm2; As——锚杆钢筋的截面积(mm2); A ——单根Ⅲ级热轧钢筋的截面积; Kt——锚杆杆体的抗拉安全系数,永久锚杆取1.6; N ——钢筋根数; 由于单根锚杆的轴向拉力值Nt和锚固段长度La都是未知数,类比其它工程实践数据,通常先行确定锚固段长度La,再来计算校核单根锚杆的轴向拉力值Nt。从材料经济性和施工可靠性等因素综合考虑,结合佛山市顺协工程勘察有限公司2007年12月6日提供的《团

边坡锚杆挡墙设计说明书

目录 1.工程概况 (2) 2. 边坡工程自然条件及工程地质条件 (2) 2.1地理位置、交通、环境、气候条件 (2) 2.2地形地貌 (2) 2.3地层岩性 (2) 2.4地质构造 (3) 2.5水文地质条件 (3) 2.6不良地质现象 (4) 3.边坡地质特征 (4) 3.1边坡形态特征 (4) 3.2边坡地质结构 (4) 3.3边坡岩、土物理力学性质 (4) 4.边坡稳定性评价 (5) 5.边坡支护设计 (5) 5.1边坡设计要求 (5) 5.2边坡设计方案 (5) 5.3边坡工程具体设计(具体计算详见计算书) (6) 6.主要材料 (7) 6.1钢筋 (7) 6.2混凝土 (7) 6.3注浆材料 (7) 6.4石料 (7) 7.施工要求 ..................................................................................................... 错误!未定义书签。 7.1混凝土保护层厚度........................................................................... 错误!未定义书签。 7.2锚杆防腐........................................................................................... 错误!未定义书签。 7.3伸缩缝............................................................................................... 错误!未定义书签。 7.4注浆压力........................................................................................... 错误!未定义书签。 7.5泄水孔............................................................................................... 错误!未定义书签。 7.6锚孔质量........................................................................................... 错误!未定义书签。 7.7钻孔机械........................................................................................... 错误!未定义书签。 8.施工组织设计 ............................................................................................. 错误!未定义书签。 8.1施工条件........................................................................................... 错误!未定义书签。 8.2天然建筑材料................................................................................... 错误!未定义书签。 8.3施工方法及施工工序....................................................................... 错误!未定义书签。 8.4施工总体布置................................................................................... 错误!未定义书签。 8.5施工总进度....................................................................................... 错误!未定义书签。 9.试验 ............................................................................................................. 错误!未定义书签。 10.其他 ........................................................................................................... 错误!未定义书签。

相关文档
最新文档