电力系统无功补偿技术发展现状

电力系统无功补偿技术发展现状
电力系统无功补偿技术发展现状

国家电网公司电力系统无功补偿配置技术原则

国家电网公司电力系统无功补偿配置技术原则 为进一步加强国家电网公司无功补偿装置的技术管理工作,规范电网无功补偿的配置要求,提高电网的安全、稳定、经济运行水平,国家电网公司在广泛征求公司各有关单位意见的基础上,制定完成了《国家电网公司电力系统无功补偿配置技术原则》,并于8月24日以国家电网生[2004]435号印发,其全文如下: 国家电网公司电力系统无功补偿配置技术原则 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV 电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV 及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。

电力系统的现状与发展趋势

我国电力系统的现状与发展趋势 马宁宁 (曲阜师范大学电气信息与自动化学院邮编: 276826) 摘要:我国电力系统情况复杂,为了能够深入了解我国电力系统的发展形势,对我国电力的系统进行了调查。 我国电力系统的整体现状比较好,随着经济的增长,电力需求也越来越大,但是存在地区的差异。电源结构也存在在一些问题,要调整这种电源结构,需从以下三个方面着手:一是每一种电源尤其火电需要进行技术进步调整;二是水电、火电及其他发电形式的比例应合理调整;三是电源布局也应调整。我国煤炭资源储藏量不少,但分布极不合理。负荷高的地方如华东地区基本没有煤,煤大部分集中在西北部或华北北部。而适宜建水电的地方大部分在西部。水能资源不少,但分布不合理。应该通过电网建设调整布局使电力资源得到最大优化我国幅员辽阔各种可再生资源比较丰富,要充分利用可再生资源,能够实现绿色电能的效果。 关键词:电力系统、能源、电源结构 China's electric power system status and development trend Ma Ningning (Qufu Normal university electricity information and automated institute zip code: 276826) Abstract:The more complicated the situation of China's electric power system, in order to understand the depth of China's electric power system development situation of China's electricity system were investigated. China's electric power system's overall status quo is better, with economic growth, electricity demand is also growing, but the existence of regional differences. Power structures also exist on some issues, it is necessary to adjust the power structure, to begin from the following three aspects: First, every kind of fire power, in particular the need for technological progress adjustment; Second, hydropower, thermal power and other forms of power generation should be proportional

电力系统无功补偿论文

电力系统的无功优化、补偿及无功补偿技术对低压电网功率因数的影响 电气与信息工程学院 自动化13-2 马春野 20131802

电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 一前言 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。 无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。 二无功优化和补偿的原则和类型 1、无功优化和补偿的原则 在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定: 1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。 4)网络中无功补偿度不应低于部颁标准0.7的规定。 2、无功优化和补偿的类型 电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV 每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。

我国电力系统现状和发展趋势

. .. . 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,

总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机组21台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上火电机组占全部火电机组的比重提高到69.43%,火电机组平均单机容量已经提高到2009年的10.31万千瓦。在6000千瓦及以上电厂火电装机容量中,供热机组容量比重为 22.42%,比上年提高了3个百分点; 三、电网建设不断加强。随着电源容量的日益增长,我国电网规模不断扩大,电网建设得到了不断加强,电网建设得到了迅速发展,输变电容量逐年增加。2009年,电网建设步伐加快,全年全国基建新增220千伏及以上输电线路回路长度41457千米,变电设备容量27756万千伏安。2009年底,全国220千伏及以上输电线路回路长度39.94万千米,比上年增长11.29%;220千伏及以上变电设备容量17.62亿千伏安,比上年增长19.40%。其中500千伏及以上交、直流电压等级的跨区、跨省、省骨干电网规模增长较快,其回路长度和变电容量分别比上年增长了16.64%和25.97%。目前,我国电网规模已超过美国,跃居世界首位; 四、西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了“西电东送”是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送;

我国电力系统现状及发展趋势

WoRD文档下载可编辑 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 ‘、八— 1. 刖言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年, 到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达 到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开 放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国 的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年 均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009 年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82. 6%。水电装机占总装机容量的24.5%, 核电发电量占全部发电量的2. 3%,可再生能源主要是风电和太阳能发电,总量微乎 其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地, 截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的 2.4%,装机容量约910万千瓦,为全国电力装机总量的 1.14%、世界在役核电装机总量的 2.3%。

2018年中国电网设备制造行业发展现状及发展趋势分析

2018年中国电网设备制造行业发展现状及发展趋 势分析【图】 2018年03月28日 13:37 (一)行业发展背景 电网设备制造业依托于电网的建设与发展状况。当前,智能电网已成为世界范围内的发展趋势,而智能电网必须具备高可靠性及高自动化率,为达到此目标,一方面电网设备需实现智能化,另一方面配电自动化需达到更高的水平。在此背景之下,输变电监测行业、智能巡检机器人行业和和配电及自动化控制行业迎来发展契机。 1、我国电力系统的构成 电力系统由发电厂、输电环节、变电环节、配电环节及电力用户组成,其构成如下图所示:

数据来源:公开资料整理 由上图所示,发电厂生产出电能,经变电、输电及配电等环节配送到用户,从而完成电能从生产到消费的整个过程。发电环节与用户环节之间的网络及设备即为电网。 2、我国电网的发展概况 (1)电网发展历程 就规模而言,我国电网发展经历了局部电网、跨省互联电网及跨区域互联电网 3 个阶段,具体如下所述: ①局部电网的形成 该阶段大致截止于 20 世纪 60 年代末 70 年代初。 1970 年以前,我国电网容量普遍偏小,除东北、华东和京津唐地区外,大部分电网的最高运行电压仅为110kV。由于电网系统规模偏小,事故抵御能力低下,电力系统可靠性及电能质量均处于较低水平。为解决以上问题,以大、中城市为中心的配电网逐步通过220kV 线路相互连接,以 220kV 线路为主网架、以省域为主要覆盖范围的局部电网开始形成。随着国民经济的不断发展,用户对电力的需求越来越大,对供电可靠性的要求也越来越高,这从客观上推动了后续联网规模持续扩大。 ②跨省互联的发展阶段 该阶段为 70 年代初至 80 年代末,在该阶段,很多地区逐步由孤立的110kV、220kV 电网互联形成 220 或 330kV 的省级乃至跨省电网。至 1989 年,我国已形成包含东北电网、华北电网、华东电网、华中电网、西北电网、川渝电

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

中国电力系统公司的现状

中国电力系统公司的现状 2010-04-05 10:46 1、电网公 司 1)国家电网公司 国家电网公司成立于2002年12月29日。 2004年增加装机5100万千瓦,2005年增加6200万千瓦,2006年增加1.02亿千瓦 2006年中国电力生产情况全国发电量达到28344亿千瓦时,城乡居民生活用电量为3240亿千瓦时。预计2007年年底全国发电装机容量将达到7.2亿千瓦。 华北电网(山东,北京,河北,山西,天津) 2003年11月8日在北京成立。截至2005年10月底,公司总资产2393亿元,净资产860亿元。 公司有两个分公司(北京、天津);三个子公司(河北、山西、山东),还有供电单位7个(唐山供电公司、秦皇岛电力公司、张家口供电公司、承德供电公司、廊坊供电公司、北京超高压公司、大同超高压供电公司); 到2007年底华北电网将实现装机容量达1.45亿千瓦最大负荷

突破1.15亿千瓦。 山东2006年新增装机1263.3万千瓦,发电装机容量达到5005万千瓦,全社会用电量达到2272亿千瓦时。其中电网统调公用电厂3477万千瓦,地调公用电厂576.7万千瓦,企业自备电厂945.8万千瓦。8月14日,电网最高统调用电负荷达到2852万千瓦。 华东电网(上海,江苏,浙江,安徽,福建) 华东电网2006年底统调装机容量(万千瓦) 全网 13890.44 江苏 5273.00 浙江3730.86 福建 1919.40 安徽 1491.74 上海1475.43 江苏2006年全社会用电量累计2570亿千瓦时,同比增长17%,最高用电负荷4206万千瓦,增长17.4%。据了解,江苏省电力公司2006年生产经营指标完成情况较好,销售收入突破千亿元大关,实现主营业务净收入1142亿元,全年可上缴国地税各项税金58亿元,比2005年净增8亿多元。 华中电网(河南、湖北、湖南、江西、四川、重庆) 截止2006年底,华中电网统调总装机容量为10087.91万千瓦

关于无功补偿技术文献综述

福州大学 本科生毕业设计(论文)文献综述 题目:电网电容式无功补偿器的系统设计 姓名: 学号: 系别:电气工程系 专业:电气工程及其自动化 年级: 2008级 指导教师: 年月日

文献综述 引言 进入21世纪伴随着国家经济的高速发展,国家电力工业的任务也更加艰巨,伴随着经济的发展我国的电力行业也在与时俱进。由于工业的发展现代电网中的无功损耗也急剧增大,使电网电能质量恶化,同时也加重了线路和变压器的负担和损耗。如今国家正在倡导节能减排,因此电网中的无功补偿问题越来越引起学者们的关注。无论是在工业负载还是生活负载中,阻感负载都占有很大的比例,比如变压器、异步电动机和很多的家用电器都是阻感性负载。这些负荷的自然功率因数都比较小,它们所消耗的无功功率在电力系统传输的的电量中占有很高的比例。如果能够减小线路中的无功功率就能够提高电能的传输效率。 公共电网中的电能品质己经得到人们越来越多的认识和重视。对电网影响严重的工厂配电网及电能质量的治理必将会带来显着的效果和影响。本设计的无功补偿的主要作用是提高功率因数以减少设备容量和功率损耗、稳定电压、提高供电质量,在长距离输电中提高系统输电稳定性和输电能力,平衡三相负载的有功和无功功率等。 无功电流补偿实现手段正趋于与电力电子技术的结合。结合方式有三种:一是为投切电容器的开关;二是作为无功输出的调节开关;三是引入电力电子变流技术,将变流器作为无功电源,以补偿无功。目前在我国广泛使用的以SVC 为代表的传统的无功补偿装置,国内外对SVC 的研究集中在控制策略上,模糊控制、人工神经网络、和专家系统等智能控制手段也被引入SVC 控制系统,使用SVC 系统的性能更加提高。但是由于无功补偿新技术与新装置,即SVG等的突出优点,使得无功补偿技术未来发展的方向主要以电力电子及其逆变技术为核心开发出的性能更为优越的装置。 无功补偿和谐波抑制始终有着密切的关系,两者的技术发展与进步是相互协调的。有源滤波器可以克服无源滤波器在实际运行中补偿特性易受电网阻抗变化和运行状态影响,与系统发生谐波放大甚至并联谐振的缺陷。若将无源滤波器和有源滤波器相结合构成混合滤波器,相互取长补短,兼有两种滤波器优点,这种方案是谐波抑制方案研究的热点。更为积极的方法是单位功率因数变流器,它是不产生谐波且功率因数为 1 的新型变流器,它将有力地推动无功补偿和谐波抑制新技术的进步,前景十分广阔。

我国电力系统现状及发展趋势

我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机

电力系统电压与无功补偿

现代生产和现代生活离不开电力。电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。 1 电压与无功补偿 电压顾名思义就是电(力)的压力。在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。 交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称 为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。

国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积 为无功功率。其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。

我们以电感元件和电容元件的并联回路来说明这个问题,见图1a,在电压的作用下,电感回路中电流滞后电压90°,而在电容回路中电流却是超前电压90°,即在同一电压作用下,任一瞬时,IL和IC在时间轴对称。我们将每一瞬间电感上的电压与电感电流IL相乘得到电感的功率曲线PL(图1b),同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图1c)。 如图2a所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸 电感收的能量转化为磁场能量;而在第一和第三个1/4周期内

电力系统无功补偿

毕业论文(设计) 题目电力系统的无功优化、补偿及无功补 偿技术对低压电网功率因数的影响

2007年8月30日 电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 电气工程及其自动化专业 学生:指导教师: 摘要:电力系统的无功优化和无功补偿是提高系统运行电压,减小网损,提高系统稳定水平的有效手段。本文对当前常用的无功优化和无功补偿进行了总结,对目前无功补偿和优化存在的问题进行了一定的探讨和研究。电压是电能质量的重要指标之一,电压质量对电网稳定及电力设备安全运行、线路损失、工农业安全生产、产品质量、用电单耗和人民生活用电都有直接影响。无功电力是影响电压质量的一个重要因素,电压质量与无功是密不可分的,电压问题本质上就是一个无功问题。解决好无功补偿问题,具有十分重要的意义。 关键词:无功优化无功补偿网损电压质量功率因数 Reactive power system optimization, compensation and Reactive power compensation of low voltage network of power factor Electrical Engineering and Automation Student:Luobifeng Supervisor:Qingyuanjiu Abstract:Reactive optimization and reactive compensation of power system is a valid way to increse the sy stem’s operating voltage and maintenance level .It’s also the way to reduce the internet loss . This essay summarize what Reactive optimization and reactive compensation are in our daily life. It also discusses and studies some problems existing in reactive optimization and reactive compensation. Voltage is one of the important targets of Quality of power supply, whose quality will affect stabilization of power grids and electric equipment functioning well

电力系统配网自动化现状及前景分析

电力系统配网自动化现状及前景分析 摘要:目前,伴随着社会经济的发展,我国的工业生产用电量以及农业生产用 电量急剧增加,此外,对于居民生活用电需求量也逐渐增加,这些现象表明,现 代社会对于电能的需求量远胜于从前。用电需求量的增加致使电力系统配电任务 加大,同时也给相关管理工作增加了难度。自动化控制下的电力系统电网具有较 高安全性和可靠性且经济效益好,所以电力系统相关研究人员应加强对自动化技 术的应用研究,不断进行改善与创新,为电力系统的发展提供优良的条件。 关键词:电力系统;配网自动化;现状;前景 1配电网自动化的应用原则 1.1适应性 首先,需要和城乡经济的实际发展情况相适应。虽然我国现今的经济状况得 到明显好转,但就实际来说,城市与农村之间的差距还是比较大的,农村经济发 展程度不高。设置自动化的配电网,应该和我国实际的国情以及当地的实际情况 进行结合,从而对配电网自动化过程中出现的问题进行有效解决,从提高供电可 靠性以及满足客户需求入手,将有效的资金发挥出最大的经济效益。其次,需要 和配电网的发展情况相适应。最后,需要和定时限保护相适应。将定时限保护装 置与电流、时间阶梯保持重合,促使上下级保护装置更加协调全面。 1.2利用电流控制式的原则 在配电网中,重合断路器执行最多的操作就是合分操作,当出现瞬时性故障 的时候,就会出现自动重合,进而造成配电网的开关操作过于频繁,导致设备可 靠性发生降低,影响设备的使用寿命。在自动开关上有设置合闸,合闸的作用是 延时时间。当故障发生时,配电网中的线路并联组数较多,这时要想合闸完成就 需要花费较长的时间,合闸完成的时间要比故障判断的时间长得多,因而影响供 电连续性。另外,自动开关中一般不会设置计数,只可对一次合闸进行利用,之 后再进行判别动作。相比较来说,电流控制式中涉及的使用设备则不存在这些问题,且在进行电压控制的时候,所使用到的方式更为便捷。 2电力系统配电网自动化实现技术 2.1节点全网漫游技术 一般情况下,全网中的任何节点都存在与其他节点通信的可能性。在配电网 自动化系统中,各个节点都与所在馈线中的一个管理节点相对应,并进行通信工作。在通信过程中,会出现节点丢失的情况,这个时候节点和相应的管理节点之 间的通信是不能正常进行的,这时网络会对节点进行自动检索。相应的,该节点 的搜索该由管理节点来执行,系统变为中继。但是,如若改为中继后管理节点仍 无法检测到这个节点,那么系统会进行漫游申请,将情况汇报并反映给馈线子网,由其联络节点来执行。通信管理节点(侧变电站的)收到系统的漫游申请后,重 新注册漫游的新节点。最后,相关变电站接收配调中心发送的注册信息,实现节 点的全网漫游。 2.2自动设置中继技术 在设计软件时,除了能实现一般结点的功能之外,为了实现网络中节点间信 息的有效接收和转发功能,还要在NDLC中继节点设置相应的功能模块。设计中,为了使网络中的信号传输过程存在真实性,采用数字信号处理技术,这样不仅可 以降低信息的传输频率,还可以使信息变小,从而大大降低通信网络上的压力。 自动设置中继技术的使用,可实现整个网络节点之间的通信,从而解决通信距离

(完整word版)集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

电力系统中的无功补偿

电力系统中的无功补偿 众所周知,电源能量通过电感或电容时并没有能量消耗,只是在负荷与电源之间相互交换和三相之间流动。由于这种交换功率不对外做功,因此称为无功功率。电力系统中的设备大部分是根据电磁感应原理工作的,它们在单位周期内吸收的功率和释放的功率相同,以此建立交变的磁场,这部分功率就是无功功率。可见,无功功率在电力系统中扮演了重要的角色。可是在电力系统中为什么要进行无功补偿呢? 无功补偿的必要性 在电力系统中,如变压器、电动机等许多工作时需要励磁的设备都需要从电力系统中吸收无功功率;并且输电线路具有分布电容,在电压下将产生容性无功功率,也就是说线路也要吸收感性无功。发电机是电力系统中唯一的有功电源,也是基本的无功电源。如果只依靠发电机来提供无功功率的,由于无功功率不断地来回地交换会引起发电、输电及供配电设备上的电压损耗及功率损失。另外,发电机发出的所有功率等于有功功率与无功功率的矢量和,提供的无功功率多时,提供的有功功率也就相对就减少了,显然这种运行方式也是很不经济的。 如果不进行无功功率补偿,通常会造成两个主要问题: (1)在电力传输系统中,如果说出现了无功功率不足的现象,那么就会导致电力系统中的电压以及功率因数不断的降低,最终导致用电设备受到破坏,严重情况下甚至会导致电网系统中的电压崩溃,使得整个电网控制系统瓦解,从而造成片区大面积的停电。 (2)电力电压以及功率因素的降低,会导致电力系统中的电气传输设备无法得到有效的利用,从而造成了电力系统中传输的电能损耗不断增加,降低了电能传输的效率,给用电用户的日常生活带来的极大的困扰。 因此国家相关政策规定,各级电压的电力网和电力用户都要提高自然功率因数,并按无功分层分区和就地平衡以及便于调压的原则,安装无功补偿设备和必要的调压装置,电网用户都要提高调压装置和无功补偿设备的运行水平。 无功补偿的作用 (1)提高电压质量 将线路中的电流分为有功电流I a 和无功电流I r ,则线路中的电压损失为 l a r l 3()3PR QX U I R I X U +?=?+= 其中,P 为有功功率,Q 为无功功率,U 为额定电压,R 为线路总电阻,X l 为线路感抗。

浅谈电力系统电容器无功补偿及其电压调整毕业论文

浅谈电力系统电容器无功补偿及其电压调整 毕业论文 目录 容摘要 0 引言 (1) 1 电力电容器无功补偿及其安全应用 (3) 1.1 电力电容器的补偿原理 (3) 1.2 电力电容器补偿的特点 (3) 1.3 无功补偿方式 (3) 1.4 电容器补偿容量的计算 (4) 1.5 电力电容器的安全运行 (5) 2 电力系统电压与无功补偿问题 (7) 2.1 无功功率就地补偿的概念 (7) 2.2 无功功率的平衡 (7) 2.3 各种无功补偿设备及补偿方式 (8) 3电网的无功补偿与电压调整 (10) 3.1 输配电网的无功补偿 (10) 3.2 电网电压调整 (11) 4 增加无功补偿提高经济效益 (13) 4.1 电力现状 (13) 4.2 电力负荷预测及功率因数分析 (13) 4.3 变电所无功补偿工程 (14) 4.4 10KV线路无功补偿工程设计 (14) 4.5 工程建设的效益 (15) 参考文献 (17)

关于电力系统电容器无功补偿及其电压调整问题探讨 1、电力电容器无功补偿及其安全应用 无功,简单的说就是用于电路电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 目前,在110 kV及以下的电网中,常安装电力电容器组来进行无功功率补偿,这是一种实用、经济的方法。而采用无功补偿,具有减少设计容量;减少投资;增加电网中有功功率的输送比例,降低线损,改善电压质量,稳定设备运行;可提高低压电网和用电设备的功率因素,降低电能损耗和节能;减少用户电费支出;可满足电力系统对无功补偿的检测要求,消除因为功率因素过低而产生的罚款等优点。 1.1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 1.2电力电容器补偿的特点 1.2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 1.2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。

我国电网的主要发展情况

我国电网的主要发展情况 ——王文亮电实践1401 1.综述 在现代社会中,电力已成为社会生活和经济发展不可或缺的能源。电网作为电力传输的基本途径,是重要的能源基础设施,关系到国民经济命脉和国家能源安全中国的电网经过上百年的发展,已取得了举世瞩目的成就。特别是进入新世纪以来,中国的电网迅速发展供电可靠性和效率不断提升,电网技术也逐渐步入世界先进国家行列。目前,中国的电网规模已居世界第一位,且拥有世界最高的交、直流输送电压等级,以及世界上输送容量最大、送电距离最远的特高压输电工程。 2.中国电网成就(至2016年) 1.在直流领域: 在直流方面,国第一个工程是±100 kV 工程,之后建设了±500 kV 上工程,2010—2011年间又相继建成了±400 kV、±660 kV、±800 kV的直流输电工程。预计2018 年还将建成±1 100 kV 的准东-华东直流输电工程。从等级上看,中国的直流输电电压等级不仅是世界上最高的,而且种类也是最齐全的。 2.在电网规模和电力流领域 截止2014 年底,中国220kV 及以上输电线路长度达到57. 2 万km( 相比美国2012 年约有200 kV 以上线路30 万km,中国接近美国2 倍) ,变电容量达到30.27 亿kVA。中国电网规模已稳居世

界第一位;截至2014 年底,中国发电总装机容量13.6 亿kW,西电东送电力流规模约1. 3 亿kW,其中火电电力流6 483 万kW,水电电力流6 264 万kW。 3.中国在电网科技方面 在特高压直流输电技术方面,中国已全面掌握了各电压等级直流输电系统成套设计技 术,攻克了±800 kV 特高压直流输电系统关键技术,创新了特高压直流设备材料制造技术。从工程上看,目前已建成云广、向上、锦、哈、溪浙、糯扎渡-等6 项特高压直流工程,输送容量500 万~800 万kW,线路长度从1 373 ~2 192km; 在建的工程还有灵绍、酒湖、锡泰、晋北-等,输送容量最高提升至1 000 万kW。 在特高压交流输电技术方面,中国已形成了特高压系统电压控制技术,全面掌握了各种不同环境条件下的特高压交流外绝缘特性,攻克了特高压电磁环境控制技术难题,并且创新研制出全套特高压交流输电设备,自主形成了特高压交流工程设计、施工、试验和运行维护的全套技术。目前建成的特高压交流工程有3 项,分别是晋南荆、皖电东送和浙北—工程。在建的还有——、锡盟—、蒙西—天津南、榆横—潍坊等工程。目前共计已建成投运“三交六直”9 项特高压工程( 国网“三交四直”、南网“两直”) 。 柔性输电技术包括灵活交流输电技术和柔性直流输电技术。在灵活交流输电技术方面,中国已经掌握了SVC、SVG、可控串补、可控高抗等灵活交流输电关键技术及设备制造能力; 在柔性直流输电方

电力系统的无功补偿方法和意义

电力系统的无功补偿方法和意义 摘要随着现代电力电子技术与国民经济的进一步发展,电力用户对供电电能质量水平和用电可靠性提出了更高更多的要求。由此产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。但动态补偿的技术目前还不成熟。 关键词配电系统;无功补偿 中图分类号TM715 文献标识码 A 文章编号1673-9671-(2012)112-0231-01 1 无功功率的作用 无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。安装并联电容器进行无功补偿,可限制无功功率在电网中的传输,相应减少了线路的电压损耗,提高了配电网的电压质量。 2 影响功率因数的主要因素 异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响。 以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。 3 低压配电网无功补偿的方法 3.1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10 kV母线上,以补偿负荷的无功功率。补偿电容分为固定补偿与自动补偿两部分。因为有功负荷是变化的,其无功负荷也随之变化,但不论无功负荷如何变化,总可把它分为固定部分和变动部分,所以补偿电容应采取固定补偿与自动补偿相结合的方法,配置固定补偿电容以减少投资,配置自动补偿电容以满足补偿需要,做到二者兼顾。因此变电站集中补偿具有管理容易、维护方便等优点,但是这种方案对配电网的降损起不到什么作用。

相关文档
最新文档