新版进程同步典型例题

新版进程同步典型例题
新版进程同步典型例题

1. 在公共汽车上,司机和售票员的工作流程如图所示。为保证乘客的安全,司机和售票员应密切配合协调工作。请用信号量来实现司机与售票员之间的同步。

司机

售票员

图司机和售票员工作流程图

2. 桌子上有一只盘子,盘子中只能放一只水果。爸爸专向盘子中放苹果,妈妈专向盘子中放橘子,一个儿子专等吃盘子中的橘子,一个女儿专等吃盘子中的苹果。用PV操作实现他们之间的同步机制。

3. a,b两点之间是一段东西向的单行车道,现要设计一个自动管理系统,管理规则如下:(1)当ab之间有车辆在行驶时同方向的车可以同时驶入ab段,但另一方向的车必须在ab 段外等待;

(2)当ab之间无车辆在行驶时,到达a点(或b点)的车辆可以进入ab段,但不能从a 点和b点同时驶入;

(3)当某方向在ab段行驶的车辆驶出了ab段且暂无车辆进入ab段时,应让另一方向等待的车辆进入ab段行驶。

请用信号量为工具,对ab段实现正确管理以保证行驶安全。

4.将只读数据的进程称为“读者”进程,而写或修改数据的进程称为“写者”进程。允许多个“读者”同时读数据,但不允许“写者”与其他“读者”或“写者”同时访问数据。另外,要保证:一旦有“写者”等待时,新到达的“读者”必须等待,直到该“写者”完成数据访问为止。试用P、V操作正确实现“读者”与“写者”的同步。(第二类读者写者问题,信号量解决方法)

5.一条河上架设了由若干个桥墩组成的一座桥。若一个桥墩只能站一个人,过河的人只能沿着桥向前走而不能向后退。过河时,只要对岸无人过,就可以过。但不允许河对岸的两个人同时过,以防止出现死锁。请给出两个方向的人顺利过河的同步算法。

6.有一个仓库,可以存放A和B两种产品,但要求:

(1)每次只能存入一种产品(A或B);

(2)-N<A产品数量-B产品数量<M。其中,N和M是正整数。试用同步算法描述产品A与产品B的入库过程。

1、在公共汽车上,司机和售票员的工作流程如图所示。为保证乘客的安全,司机和售票员应密切配合协调工作。请用信号量来实现司机与售票员之间的同步。

司机

售票员

图司机和售票员工作流程图

【答案】

设置两个资源信号量:S1、S2。S1表示是否允许司机启动汽车,其初值为0;S2表示是否允许售票员开门,其初值为0.

semaphoere S1=S2=0;

void Driver()

{

while(1)

{

wait(S1);

启动车辆;

正常行车;

到站停车;

signal(S2);

}

}

void Busman()

{

while(1)

{

关车门;

signal(S1);

售票;

wait(S2);

开车门;

}

}

main()

{

cobegin{

Driver();

Busman();

}

}

2. 桌子上有一只盘子,盘子中只能放一只水果。爸爸专向盘子中放苹果,妈妈专向盘子中放橘子,一个儿子专等吃盘子中的橘子,一个女儿专等吃盘子中的苹果。用PV操作实现他们之间的同步机制。

【答案】

信号量S用来实现盘子的互斥访问,S1表示盘子中苹果个数,S2表示盘子中橘子的个数。

semaphore S=1,S1=S2=0;

void father()

{

while(1)

{

准备苹果;

wait(S);

将苹果放在盘子内;

signal(S1);

}

}

void mother()

{

while(1)

{

准备橘子;

wait(S);

将橘子放在盘子内;

signal(S2);

}

}

void daughter()

{

while(1)

{

wait(Sl);

从盘子里拿走苹果;

signal(S);

吃苹果;

}

}

void son()

{

while(1)

{

wait(S2);

从盘子里拿走橘子;

signal(S);

吃橘子;

}

}

main()

{

cobegin{

father();

mother();

daughter();

son();

}

}

3. a,b两点之间是一段东西向的单行车道,现要设计一个自动管理系统,管理规则如下:(1)当ab之间有车辆在行驶时同方向的车可以同时驶入ab段,但另一方向的车必须在ab 段外等待;

(2)当ab之间无车辆在行驶时,到达a点(或b点)的车辆可以进入ab段,但不能从a 点和b点同时驶入;

(3)当某方向在ab段行驶的车辆驶出了ab段且暂无车辆进入ab段时,应让另一方向等待的车辆进入ab段行驶。

请用信号量为工具,对ab段实现正确管理以保证行驶安全。

【答案】

此题是读者-写者问题的变形。设置3个信号量S1、S2和Sab,分别用于从a点进入的车互斥访问共享变量ab(用于记录当前ab段上由a点进入车辆的数量),从b点进入的车互斥访问共享变量ba(用于记录当前ab段上由b点进入车辆的数量)和a、b点的车辆互斥进入ab段。3个信号量的初值分别为1、1和1,两个共享变量ab和ba的初值分别为0、0。

semaphore S1=1,S2=1,Sab=1;

int ab=ba=0;

void Pab()

{

while(1)

{

wait(S1);

if(ab==0)

wait(Sab);

ab=ab+1;

signal(S1);

车辆从a点驶向b点;

wait(S1);

ab=ab-1;

if(ab==0)

signal(Sab);

signal(S1);

}

}

void Pba()

{

while(1)

{

wait(S2);

if(ba==0)

wait(Sab);

ba=ba+1;

signal(S2);

车辆从b点驶向a点;

wait(S2);

ba=ba-1;

if(ba==0)

signal(Sab);

signal(S2);

}

}

main()

{

cobegin{

Pab();

Pba();

}

}

4. 将只读数据的进程称为“读者”进程,而写或修改数据的进程称为“写者”进程。允许多个“读者”同时读数据,但不允许“写者”与其他“读者”或“写者”同时访问数据。另外,要保证:一旦有“写者”等待时,新到达的“读者”必须等待,直到该“写者”完成数据访问为止。试用P、V操作正确实现“读者”与“写者”的同步。(第二类读者写者问题,信号量解决方法)

【答案】

为了使写者优先,可在原来的读优先算法的基础上增加一个互斥信号量s,初值为1,使得当至少有一个写者准备访问共享对象时,它可以使后续的读者进程等待;

整型变量writecount,初值为0,用来对写者进行计数;

互斥信号量wmutex,初值为1,用来实现多个写者对writecount进行互斥访问。Process reader()

{ while(1)

{

wait(s);

wait(rmutex);

if(readcount==0)wait(mutex);

readcount++;

signal(rmutex);

signal(s);

perform read operation;

wait(rmutex);

readcount--;

if(readcount==0)signal(mutex);

signal(rmutex);

}

}

Process writer()

{ while(1)

{

wait(wmutex);

if(writecount==0)wait(s);

writecount++;

signal(wmutex);

wait(mutex);

perform write operation;

signal(mutex);

wait(wmutex);

writecount--;

if(writecount==0)signal(s);

signal(wmutex);

}

}

Main( )

{

cobegin

{ reader();

writer();

}

}

5. 一条河上架设了由若干个桥墩组成的一座桥。若一个桥墩只能站一个人,过河的人只能沿着桥向前走而不能向后退。过河时,只要对岸无人过,就可以过。但不允许河对岸的两个人同时过,以防止出现死锁。请给出两个方向的人顺利过河的同步算法。

【答案】

信号量s:互斥使用桥,初值为1

信号量scount1:对方向1上过河人计数器count1的互斥使用,初值为1

信号量scount2:对方向2上过河人计数器count2的互斥使用,初值为1

信号量scount:代表桥上过河人的计数信号量,初值为桥墩个数N

变量count1:方向1上过河人计数器

变量count2:方向2上过河人计数器Semaphore s, scount1, scount2, scount; int count1, count2;

s=1; scount1=1; scount2=1; scount=N; count1=0; count2=0;

void direct1(int i)

{

wait(scount1);

if(count1==0)

wait(s);

count1++;

signal(scount1);

wait(scount);

上桥,过桥,下桥;

signal(scount);

wait(scount1);

count1--;

if(count1==0)

signal(s);

signal(scount1);

}

void direct2(int i)

{

wait(scount2);

if(count2==0)

wait(s);

count2++;

signal(scount2);

wait(scount);

上桥,过桥,下桥;

signal(scount);

wait(scount2);

count2--;

if(count2==0)

signal(s);

signal(scount2);

}

main()

{

cobegin{

direct1(1);

direct1(n);

direct2(1);

direct2(m);

}

}

6、有一个仓库,可以存放A和B两种产品,但要求:(1)每次只能存入一种产品(A或B);(2)-N<A产品数量-B产品数量<M。其中,N和M是正整数。试用同步算法描述产品A与产品B的入库过程。

【答案】

A产品的数量不能比B产品的数量少N个以上,A产品的数量不能比B产品的数量多M个以上.

设置两个信号量来控制A、B产品的存放数量,sa表示当前允许A产品比B产品多入库的数量(当前允许A产品入库数量),即在当前库存量和B产品不入库的情况下,还可以允许sa个A产品入库;

sb表示当前允许B产品比A产品多入库的数量(当前允许B产品入库数量),即在当前库存量和A产品不入库的情况下,还可以允许sb个B产品入库。

初始时,sa为M一1,sb为N一1。当往库中存放入一个A产品时,则允许存入B产品的数量也增加1;当往库中存放入一个B产品时,则允许存入A产品的数量也增加1。

semaphore mutex=1,sa=M-1, sb=N-1;

process puta()

{ while(1)

{ 取一个产品;

wait(sa);

wait(mutex);

将产品入库;

signal(mutex);

signal(sb);

}

}

process putb()

{ while(1)

{ 取一个产品;

wait(sb);

wait(mutex);

将产品入库;

signal(mutex);

signal(sa);

}

}

main()

{ cobegin{

puta();

putb();

}

}

进程同步机制与互斥-生产者消费者问题

学习中心: 专业: 年级:年春/秋季 学号: 学生: 题目:进程同步与互斥生产者-消费者问题 1.谈谈你对本课程学习过程中的心得体会与建议? 转眼间,学习了一个学期的计算机操作系统课程即将结束。在这个学期中,通过老师的悉心教导,让我深切地体会到了计算机操作系统的一些原理和具体操作过程。在学习操作系统之前,我只是很肤浅地认为操作系统只是单纯地讲一些关于计算机方面的操作应用,并不了解其中的具体操作过程 1.1设计思路 在这次设计中定义的多个缓冲区不是环形循环的,并且不需要按序访问。其中生产者可以把产品放到某一个空缓冲区中,消费者只能消费被指定生产者生产的产品。本设计在测试用例文件中指定了所有生产和消费的需求,并规定当共享缓冲区的数据满足了所有有关它的消费需求后,此共享才可以作为空闲空间允许新的生产者使用。

本设计在为生产者分配缓冲区时各生产者之间必须互斥,此后各个生产者的具体生产活动可以并发。而消费者之间只有在对同一个产品进行消费时才需要互斥,它们在消费过程结束时需要判断该消费者对象是否已经消费完毕并释放缓冲区的空间。 1.2程序流程图 1.3基本内容 在设计程序时主要有三个主体部分、三个辅助函数和一个数据结构。 其中主体部分为一个主函数main(),用于初始化缓冲区和各个同步对象,并完成线程信息的读入,最后根据该组的线程记录启动模拟线程,并等待所有线程的运 Y

行结束后退出程序; 生产者函数Produce()和消费者函数Consume(),生产者和消费者函数运行于线程中完成对缓冲区的读、写动作,根据此处生产消费的模型的特点,生产者和消费者之间通过使用同步对象实现了生产和消费的同步与互斥,是本实验的核心所在。 另外三个辅助性函数被生产者和消费者函数调用,是上述生产和消费函数中对缓冲区进行的一系列处理。 3)在实现本程序的消费生产模型时,具体的通过如下同步对象实现互斥: ①设一个互斥量h_mutex,以实现生产者在查询和保留缓冲区内的下一个位置时进行互斥。 ②每一个生产者用一个信号量与其消费者同步,通过设置h_Semaphore[MAX_THREAD_NUM]信号量 ③数组实现,该组信号量用于相应的产品已产生。同时用一个表示空缓冲区

实验二(1)进程同步

实验二(2)进程同步 一、实验目的 1、生产者-消费者问题是很经典很具有代表性的进程同步问题,计算机中的很多同步问题都可抽象为生产者-消费者问题,通过本实验的练习,希望能加深学生对进程同步问题的认识与理解。 2、熟悉VC的使用,培养和提高学生的分析问题、解决问题的能力。 二、实验内容及其要求 1.实验内容 以生产者/消费者模型为依据,创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 学习并理解生产者/消费者模型及其同步/互斥规则;设计程序,实现生产者/消费者进程(线程)的同步与互斥; 三、实验算法分析 1、实验程序的结构图(流程图); 2、数据结构及信号量定义的说明; (1) CreateThread ●功能——创建一个在调用进程的地址空间中执行的线程 ●格式 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize,

LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParamiter, DWORD dwCreationFlags, Lpdword lpThread ); ●参数说明 lpThreadAttributes——指向一个LPSECURITY_ATTRIBUTES(新线程的安全性描述符)。dwStackSize——定义原始堆栈大小。 lpStartAddress——指向使用LPTHRAED_START_ROUTINE类型定义的函数。 lpParamiter——定义一个给进程传递参数的指针。 dwCreationFlags——定义控制线程创建的附加标志。 lpThread——保存线程标志符(32位) (2) CreateMutex ●功能——创建一个命名或匿名的互斥量对象 ●格式 HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpMutexAttributes, BOOL bInitialOwner, LPCTSTR lpName); bInitialOwner——指示当前线程是否马上拥有该互斥量(即马 ●参数说明 lpMutexAttributes——必须取值NULL。上加锁)。 lpName——互斥量名称。 (3) CreateSemaphore ●功能——创建一个命名或匿名的信号量对象 ●格式 HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, LONG lInitialCount, LONG lMaximumCount, LPCTSTR lpName ); ●参数说明 lpSemaphoreAttributes——必须取值NULL。

进程间的同步和互斥-

实验报告 1、实验名称 进程间的互斥和同步 2、小组成员:姓名+学号 3、实验目的 Linux命名信号量实现进程间的互斥和同步 4、实验背景知识 进程同步也是进程之间直接的制约关系,是为完成某种任务而建立的两个或多个线程,这个线程需要在某些位置上协调他们的工作次序而等待、传递信息所产生的制约关系。进程间的直接制约关系来源于他们之间的合作。比如说进程A需要从缓冲区读取进程B产生的信息,当缓冲区为空时,进程B因为读取不到信息而被阻塞。而当进程A产生信息放入缓冲区时,进程B才会被唤醒。 进程互斥是进程之间的间接制约关系。当一个进程进入临界区使用临界资源时,另一个进程必须等待。只有当使用临界资源的进程退出临界区后,这个进程才会解除阻塞状态。比如进程B需要访问打印机,但此时进程A占有了打印机,进程B会被阻塞,直到进程A释放了打印机资源,进程B才可以继续执行。 5、实验步骤演示 大概步骤: 先进行单次同步,把信号量先初始化为0,创建一个命名信号量,设置信号捕捉处理代码,安装捕捉信号;其次使用信号量进行同步和互斥的操作。 详细步骤: 1.创建一个命名信号量,sem = sem_open(SEM_NAME, OPEN_FLAG, OPEN_MODE, INIT_V); 2.创建子进程,pid = fork(); 3.V操作,sem_post(sem); 4.P操作,sem_wait(sem); 5.等待子进程结束,wait(&status); 6.删掉在系统创建的信号量,sem_unlink(SEM_NAME); 7.彻底销毁打开的信号量,sem_close(sem);

8.信号捕捉处理,static void myhandler(void); 9.迭代同步,两个信号量,开始时一个为1,一个为0,一个进程执行完换另一个执行; 10.安装捕捉信号,signal(SIGINT,(void *)myhandler ); 11.创建一个命名信号量:sem1 = sem_open(SEM_NAME1, OPEN_FLAG, OPEN_MODE, 1);sem2 = sem_open(SEM_NAME2, OPEN_FLAG, OPEN_MODE, 0); 12.创建子进程,pid = fork(); 13.if(0 == pid) P操作:sem_wait(sem1); V操作:sem_post(sem2); 14.if(0 < pid) P操作:sem_wait(sem2); V操作:sem_post(sem1); 15.static void mysem(char *str) { int i = 0; //P操作 sem_wait(sem); while('\0' != str[i]) { printf("%c\n", str[i++]); sleep(1); } //V操作 sem_post(sem); } 进程排斥,在临界区设置PV操作 16.创建一个命名信号量,sem = sem_open(SEM_NAME, OPEN_FLAG, OPEN_MODE, INIT_V); 17.if(0 == pid) { mysem("abcd"); } 18.if(0 < pid) { mysem("1234"); //等待子进程结束 wait(&status); //删掉在系统创建的信号量 sem_unlink(SEM_NAME); //彻底销毁打开的信号量 sem_close(sem); } 说明: 命名信号量不带内存共享,编译时要带库文件-lpthread或-lrt

二进程同步算法模拟

实验二进程同步算法模拟 一、实验目的 1、模拟设计一种进程调度过程:FCFS、短作业优先、高响应比优 先(任选其一)。 2、算法代码实现,模拟数据演示,模拟结果验证。 二、实验学时 4课时 三、实验环境与平台 Windows 2000, C/C++程序开发集成环境(开发语言可自选) 四、实验内容及要求 1、实验内容:(1)自定义PCB的数据结构;(2)针对资源分配 中出现的问题,选择适合的算法,实现资源的合理分配。 2、实验要求:(1)完成规定的实验内容;(2)在实验之前,利 用课外时间浏览帮助文件的相关主题内容;(3)实验时保存程序代码;(4)写出实验报告.(实验目的、实验时间、实验设备和实验环境平台、完成的实验内容、实验结果和结论)。 五、完成的实验内容 下例是用C语言编写,用TC2.0调试结果 六、实现代码如下: #include "stdio.h" #define getjcb(type) (type*)malloc(sizeof(type)) #define NULL 0 int n=0,time=0;float eti,ewi; struct jcb{ char name[10]; /* 作业名 */ char state; /* 作业状态 */ int ts; /* 提交时间 */ float super; /* 优先权 */ int tb; /* 开始运行时间 */ int tc; /* 完成时间 */

float ti; /* 周转时间 */ float wi; /* 带权周转时间 */ int ntime; /* 作业所需运行时间 */ char resource[10]; /* 所需资源 */ struct jcb *link; /* 结构体指针 */ } *p,*q,*head=NULL; typedef struct jcb JCB; inital(){ int i; printf("\nInput jcb num\n"); scanf("%d",&n); printf("Input\nname\tts\tntime\tresource\n"); for(i=0;iname,&p->ts,&p->ntime,&p->resou rce); p->state='W'; p->link=NULL; if(head==NULL) head=q=p; else{ q->link=p; q=p; } } } fileinput(){ FILE *fp; int i; if((fp=fopen("os2.txt","r"))==NULL) printf(" open error!") ; fscanf(fp,"%d\n",&n); for(i=0;iname,&p->ts,&p->ntime,&p->resource ); p->state='W'; p->link=NULL; if(head==NULL) head=q=p;

进程同步互斥1

进程的同步互斥实验 实验目的 1、进一步认识并发执行的实质 2、分析进程竞争资源的现象,学习解决进程同步互斥的方法 实验内容 1、编写程序,使用相关函数实现父子进程对共享文件的同步互斥访问。 2、修改程序,观察对临界资源访问的互斥控制的作用。 实验基础 一、临界资源的互斥访问 为了实现多进程对临界资源的互斥访问,一个进程访问临界资源的典型程序段类似如下形式: { ………. 进入区 临界区; 退出区 其余代码; ………} 其中,进入区中判断资源是否可用,如果可用,则资源数量减1,进程进入临界区;否则进程阻塞等待。退出区中资源数量加1,唤醒阻塞等待该资源的进程。进入区和退出区都是原子操作。 操作系统中,通常用信号量来实现进入区和退出区,即P操作和V操作。为了实现用户程序中对某些资源的同步互斥访问,操作系统也提供了一些函数接口,功能类似于对特定临界区的进入区和退出区功能。 二、相关的系统调用 (1)lockf(files,function,size) :用作锁定文件的某些段或者整个文件。 函数原型: #include int lockf(int files,int function;long size) 其中:files是文件描述符;参数function可以取以下值:F_LOCK:锁定一个区域。F_ULOCK:解除锁定。参数size指明了从文件当前位置开始的一段连续锁定区域的长度,当size为0时,锁定记录将由当前位置一直扩展到文件尾。 如果lockf的参数function取值为F_LOCK,而指定文件的对应区域已被其他进程锁定,

那么lockf的调用进程将被阻塞直到该区域解锁。 通过使用lockf函数,可实现多进程对共享文件进行互斥访问。进程的实现中,必须使得每个进程在使用文件前对文件加锁,使用文件后解锁。 (2)open:打开一个文件 函数原型:#include #include #include int open(char *path,int flags,mode_t mode); 其中:参数path 是指向所要打开的文件的路径名指针。 参数falgs 规定如何打开该文件,它必须包含以下值之一:O_RDONL Y,只读打开;O_WRONL Y,只写打开;O_RDWR,读/写打开;O_CREAT,当文件不存在时创建文件,需参数mode;O_APPEND,不论当前文件位置在何处,将文件指针移至文件尾,为write添加数据到文件;O_TRUNC,当以可写的方式成功打开普通文件时,截断该文件的长度为0。 参数mode 规定对该文件的访问权限。 open系统调用可以只使用前面介绍的这两个参数,省略第三个参数mode。第三个参数是在用O_CREAT创建文件时使用,指出新建文件的存取许可权。由这个参数指出的存取许可权还要和umask进行运算后才得到新建文件的真正存取许可权。该运算是由umask按位取反,再按位与上第三个参数给出的数取或(~umask&mode)。例如:umask为022,mode为0770,则新建文件的存取许可权为0750即-rwxr-x---。 (3)read:读文件 函数原型:#include int read(int fd,void *buf,size_t nbytes) 该系统调用从文件描述符fd所代表的文件中读取nbytes 个字节,到buf指定的缓冲区内。所读取的内容从当前的读/写指针所指示的位置开始,这个位置由相应的打开文件描述中的偏移值(off_set)给出,调用成功后文件读写指针增加实际读取的字节数。 使用read 系统调用时,应注意设置的数据缓冲区充分大,能够存放所要求的数据字节,因为内核只复制数据,不进行检查。 返回:-1:错误;0:文件偏移值是在文件结束处;整数:从该文件复制到规定的缓冲区中的字节数。通常这个字节数与所请求的字节数相同。除非请求的字节数超过剩余的字节数,这时将返回一个小于请求的字节数的数字。 (4)write:写文件 函数原型:#include int write(int fd,void *buf,size_t nbytes) 该调用从buf所指的缓冲区中将nbytes 个字节写到描述符fd所指的文件中。 (5)lseek:定位一个已打开文件。 函数原型:#include int lseek(int fildes,off_t offset,int whence); 系统调用根据whence指定的位置将文件描述符fildes指向文件的文件指针偏移offset

实验三 进程同步的经典算法

实验三进程同步的经典算法 背景知识 Windows提供的常用对象可分成三类:核心应用服务、线程同步和线程间通讯。其中,开发人员可以使用线程同步对象来协调线程和进程的工作,以使其共享信息并执行任务。此类对象包括互锁数据、临界段、事件、互斥体和信号等。 多线程编程中关键的一步是保护所有的共享资源,工具主要有互锁函数、临界段和互斥体等;另一个实质性部分是协调线程使其完成应用程序的任务,为此,可利用内核中的事件对象和信号。 在进程内或进程间实现线程同步的最方便的方法是使用事件对象,这一组内核对象允许一个线程对其受信状态进行直接控制(见表3-1) 。 而互斥体则是另一个可命名且安全的内核对象,其主要目的是引导对共享资源的访问。拥有单一访问资源的线程创建互斥体,所有想要访问该资源的线程应该在实际执行操作之前获得互斥体,而在访问结束时立即释放互斥体,以允许下一个等待线程获得互斥体,然后接着进行下去。 与事件对象类似,互斥体容易创建、打开、使用并清除。利用CreateMutex() API可创建互斥体,创建时还可以指定一个初始的拥有权标志,通过使用这个标志,只有当线程完成了资源的所有的初始化工作时,才允许创建线程释放互斥体。 为了获得互斥体,首先,想要访问调用的线程可使用OpenMutex() API来获得指向对象的句柄;然后,线程将这个句柄提供给一个等待函数。当内核将互斥体对象发送给等待线程时,就表明该线程获得了互斥体的拥有权。当线程获得拥有权时,线程控制了对共享资源的访问——必须设法尽快地放弃互斥体。放弃共享资源时需要在该对象上调用ReleaseMute() API。然后系统负责将互斥体拥有权传递给下一个等待着的线程(由到达时间决定顺序) 。

操作系统实验-进程同步与互斥

实验四:进程的管道通信 实验题目 进程的管道通信 实验目的 加深对进程概念的理解,明确进程和程序的区别。学习进程创建的过程,进一步认识进程并发执行的实质。分析进程争用资源的现象,学习解决进程互斥的方法。学习解决进程同步的方法。掌握Linux系统中进程间通过管道通信的具体实现 实验内容 使用系统调用pipe()建立一条管道,系统调用fork()分别创建两个子进程,它们分别向管道写一句话,如: Child process1 is sending a message! Child process2 is sending a message! 父进程分别从管道读出来自两个子进程的信息,显示在屏幕上。 当然,仅仅通过屏幕上输出这两句话还不能说明实现了进程的管道通信,为了能够更好的证明和显示出进程的同步互斥和通信,在其中要加入必要的跟踪条件,如一定的输出语句等,来反映程序的并发执行情况 实验要求 这是一个设计型实验,要求自行、独立编制程序。两个子进程要并发执行。实现管道的互斥使用。当一个子进程正在对管道进行写操

作时,另一个欲写入管道的子进程必须等待。使用系统调用lockf(fd[1],1,0)实现对管道的加锁操作,用lockf(fd[1],0,0)解除对管道的锁定。实现父子进程的同步,当父进程试图从一空管道中读取数据时,便进入等待状态,直到子进程将数据写入管道返回后,才将其唤醒。 为了清楚的反应进程的同步,在子进程完成相应的操作后,调用sleep()函数睡眠一段时间(程序中定为3s)。父进程先执行wait()函数,当有子进程执行完毕后,会得到子进程的返回结果并清理子进程。若子进程没执行完,父进程一直执行wait()进行监听,知道有一个子进程执行完成为僵尸进程。 程序中用到的系统调用 因为程序时在linux系统上进行编写的,所以其中要利用到相关的linux提供的系统调用。 所用到的系统调用包含在如下头文件中。 #include #include #include #include #include #include fork() 用于创一个子进程。 格式:int fork();

[操作系统]经典进程同步问题题库

1、测量控制系统中的数据采集任务把所采集的数据送一单缓冲区;计算任务则从该缓冲区中取出数据并进行计算。试写出利用信号量机制实现两者共享单缓冲区的同步算法。 Var Sempty,Sfull: semaphore:= 1,0 Begin Parbegin Collection:begin repeat 采集一个数据; wait(Sempty); 数据放入缓冲区; signal(Sfull); untill false; end; Compute:begin repeat wait(Sfull); 从缓冲区取出数据; signal(Sempty); 计算; ` until false; end; Parend End 2、有一阅览室,共有100个座位。读者进入时必须先在一种登记表上登记,该表为每一座位列一个表目,包括座号和读者姓名。读者离开时要注销掉登记内容。试用wait和signal原语描述读者进程的同步问题。 var mutex, readcount :semaphore := 1,100; Begin Parbegin Process Reader:begin repeat wait(readcount); wait(mutex); <填入座号和姓名完成登记>; signal(mutex); <阅读> wait(mutex) <删除登记表中的相关表项,完成注销> signal(mutex); signal(readcount); until false; end; parend; End; 1)、桌上有一空盘,只允许放一个水果,爸爸专向盘中放苹果,妈妈专向盘中放桔子;女儿专吃盘中的苹果,儿子专吃盘中的桔子;试用wait 和signal原语实现爸爸、妈妈、女儿、儿子之间的同步问题。 var Sempty, Sapple, Sorange,: semaphore:= 1,0,0; begin parbegin Father: begin repeat wait(Sempty); ; signal(Sapple); until false; end; Mother: begin repeat wait(Sempty); ; signal(Sorange); until false; end; Son: begin repeat wait(Sorange); ; signal(Sempty); until false; end; Daughter: begin repeat wait(Sapple); ; signal(Sempty); until false; end; parend; end; 1、在4×100米接力赛中,4个运动员之间存在如下关系,运动员1跑到终点把接力棒交给运动员2;运动员2一开始处于等待状态,在接到运动员1传来的接力棒后才能往前跑,他跑完100米后交给运动员3,运动员3也只有在接到运动员2传来的棒后才能跑,他跑完100米后交给运动员4,运动员4接到棒后跑完全程。请试用信号量机制对其上过程进行分析。 var s1,s2,s3:semaphpre:=0,0,0; begin parbegin Athlete1: begin Run 100m; signal(s1); end; Athlete2: begin wait(s1); Run 100m; signal(s2); end; Athlete3: begin wait(s2); Run 100m; signal(s3); end; Athlete4: begin wait(s3); Run 100m; end; parend; end 2、在公共汽车上,司机和售票员各行其职,司机负责开车和到站停车;售票员负责售票和开、关车门;当售票员关好车门后驾驶员才能开车行驶。试用wait和signal操作实现司机和售票员的同步。

进程同步与互斥汇总

进程同步与互斥

进程的PV操作 在操作系统中,P、V操作是进程管理中的难点。这是1968年荷兰人Dijkstra 给出的一种解决并发进程间互斥和同步关系的通用方法。 1. P、V操作的意义 定义了信号量及其上的P操作和V操作,来实现并发进程间的同步和互斥,甚至可以用来管理资源的分配。P、V操作因交换的信息量少,属于进程的低级通信。 2. 什么是信号量? 信号量(semaphore)是由一个值和一个指针构成的数据结构。值为整型变

量,表示信息量的值;指针指向进程控制块(PCB)队列的队头,表示等待该信号量的下一个进程。如下图所示。 信号量的一般结构及PCB队列 信号量的值与相应资源的使用情况有关。当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。注意,信号量的初值不能为负,且其值只能由P、V操作来改变。 3. P、V操作的含义 P、V操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量S进行操作,具体定义如下: P(S): ①将信号量S的值减1,即S=S-1; ②如果S≥0,则该进程继续执行;否则该进程状态置为阻塞状态,进程PCB 排入信号量PCB队列末尾,放弃CPU,等待V操作的执行。 V(S): ①将信号量S的值加1,即S=S+1; ②如果S≤0,释放信号量队列中第一个PCB所对应的进程,将进程状态由阻塞态改为就绪态。执行V操作的进程继续执行。 一般来说,信号量S≥0时,S表示可用资源的数量。执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。而执行一个V操作意味着释放一个单位资源,因此S的值加1;若S≤0,表示有某些进程正在等待该资源,因此要唤醒一个阻塞状态的进程,使之成为就绪状态。 4. 利用信号量和P、V操作实现进程互斥 一般地,n个进程利用信号量和P、V操作实现进程互斥的一般模型如下: 进程P 1进程P 2 ……进程Pn …… …… …… P(S); P(S); P(S); 临界区;临界区;临界区; V(S); V(S); V(S); …… …… …… …… 其中S是互斥信号量,初值为1。 使用P、V操作实现进程互斥时应该注意的问题是: (1)每个程序中,用户实现互斥的P、V操作必须成对出现,先做P操作,进临界区,后做V操作,出临界区。若有多个分支,要认真检查P、V操作的成对性。 (2)P、V操作应分别紧靠临界区的头尾部,临界区的代码应尽可能短,不能有死循环。 (3)互斥信号量的初值一般为1。 由于用于互斥的信号量sem与所有的并发进程有关,所以称之为公有信号量。公有信号量的值反映了公有资源的数量。只要把临界区置于P(sem)和V(sem)

计算机操作系统_进程间互斥与同步

进程间互斥与同步 实验内容: 编写算法,实现进程间对临界资源的互斥访问以及进程间的同步关系。 实验要求: 1、要求进程互斥使用文本文件; 2、假定文本文件txt1最大可写入30个字符; 3、写满后复制进程将文本文件的内容复制到另一个文本文件txt2中(无长度限制)。 4、复制进程复制完毕写入进程可再重新写入,重复执行3,4,直到给出停止命令。 5、实现进程间的同步和互斥。 代码: #include #include//stdio.h #include//函数库 #include//linux/unix的系统调用 #include//信号量 #include using namespace std; typedef union _semnu{ int val; struct semid_ds *buf; ushort *array; }semun; //v操作 void v(int &sem_id) { struct sembuf sem_b;

sem_b.sem_num=0; sem_b.sem_op=1; sem_b.sem_flg=SEM_UNDO; if(semop(sem_id,&sem_b,1)==-1) { cout<<"error"<

Windows下进程同步与互斥

实验进程同步与互斥 一、实验目的 1.掌握基本的同步与互斥算法,理解生产者消费者模型。 2.学习使用Windows 2000/XP中基本的同步对象,掌握相关API的使用方法。 3.了解Windows 2000/XP中多线程的并发执行机制,实现进程的同步与互斥。 二、实验内容及要求 1.实验内容 以生产者/消费者模型为依据,在Windows 2000环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 ●学习并理解生产者/消费者模型及其同步/互斥规则; ●学习了解Windows同步对象及其特性; ●熟悉实验环境,掌握相关API的使用方法; ●设计程序,实现生产者/消费者进程(线程)的同步与互斥; ●提交实验报告。 三、相关知识介绍 1.同步对象 同步对象是指Windows中用于实现同步与互斥的实体,包括信号量(Semaphore)、互斥量(Mutex)、临界区(Critical Section)和事件(Events)等。本实验中使用到信号量、互斥量和临界区三个同步对象。 同步对象的使用步骤: ●创建/初始化同步对象。 ●请求同步对象,进入临界区(互斥量上锁)。 ●释放同步对象(互斥量解锁)。 这些对象在一个线程中创建,在其他线程中都可以使用,实现同步与互斥。 2.相关API的功能及使用 我们利用Windows SDK提供的API编程实现实验题目要求,而VC中包含有Windows SDK的所有工具和定义。要使用这些API,需要包含堆这些函数进行说明的SDK头文件——最常见的是Windows.h(特殊的API调用还需要包含其他头文件)。 下面给出的是本实验使用到的API的功能和使用方法简单介绍。 (1) CreateThread ●功能——创建一个在调用进程的地址空间中执行的线程 ●格式 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,

进程同步经典问题

1、有一个仓库可存放A、B两种零件,最大库容量各为m个。生产车间不断地取A和B 进行装配,每次各取一个。为避免零件锈蚀,按先入库者先出库的原则。有两组供应商分别不断地供应A和B,每次一个。为保证配套和合理库存,当某种零件比另一种零件超过n(n

实验一 进程同步与互斥

实验一进程同步与互斥 一、实验目的 1.掌握基本的同步与互斥算法,理解生产者消费者模型。 2.学习使用Windows 2000/XP中基本的同步对象,掌握相关API的使用方法。 3.了解Windows 2000/XP中多线程的并发执行机制,实现进程的同步与互斥。 二、实验内容及要求 1.实验内容 以生产者/消费者模型为依据,在Windows 2000环境下创建一个控制台进程,在该进程 中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 , 学习并理解生产者/消费者模型及其同步/互斥规则; , 学习了解Windows同步对象及其特性; , 熟悉实验环境,掌握相关API的使用方法; , 设计程序,实现生产者/消费者进程(线程)的同步与互斥; , 提交实验报告。 三、相关知识介绍 1.同步对象 同步对象是指Windows中用于实现同步与互斥的实体,包括信号量(Semaphore)、互斥量(Mutex)、临界区(Critical Section)和事件(Events)等。本实验中使用到信号量、互斥量和临

界区三个同步对象。 同步对象的使用步骤: , 创建/初始化同步对象。 , 请求同步对象,进入临界区(互斥量上锁)。 , 释放同步对象(互斥量解锁)。 这些对象在一个线程中创建,在其他线程中都可以使用,实现同步与互斥。 2.相关API的功能及使用 我们利用Windows SDK提供的API编程实现实验题目要求,而VC中包含有Windows SDK的所有工具和定义。要使用这些API,需要包含堆这些函数进行说明的SDK头文件——最常见的是Windows.h(特殊的API调用还需要包含其他头文件)。 下面给出的是本实验使用到的API的功能和使用方法简单介绍。 (1) CreateThread , 功能——创建一个在调用进程的地址空间中执行的线程 , 格式 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParamiter, DWORD dwCreationFlags, Lpdword lpThread ); , 参数说明 lpThreadAttributes——指向一个LPSECURITY_ATTRIBUTES(新线程的安全性描述符)。

进程同步典型例题(操作系统)

进程同步练习题 1.在公共汽车上,司机和售票员的工作流程如图所示。为保证乘客的安全,司机和售票员应密切配合协调工作。请用信号量来实现司机与售票员之间的同步。 司机 售票员 图司机和售票员工作流程图 2.桌子上有一只盘子,盘子中只能放一只水果。爸爸专向盘子中放苹果,妈妈专向盘子中放橘子,一个儿子专等吃盘子中的橘子,一个女儿专等吃盘子中的苹果。用PV操作实现他们之间的同步机制。 3.a,b两点之间是一段东西向的单行车道,现要设计一个自动管理系统,管理规则如下:(1)当ab之间有车辆在行驶时同方向的车可以同时驶入ab段,但另一方向的车必须在ab 段外等待; (2)当ab之间无车辆在行驶时,到达a点(或b点)的车辆可以进入ab段,但不能从a 点和b点同时驶入; (3)当某方向在ab段行驶的车辆驶出了ab段且暂无车辆进入ab段时,应让另一方向等待的车辆进入ab段行驶。 请用信号量为工具,对ab段实现正确管理以保证行驶安全。 4.将只读数据的进程称为“读者”进程,而写或修改数据的进程称为“写者”进程。允许多个“读者”同时读数据,但不允许“写者”与其他“读者”或“写者”同时访问数据。另外,要保证:一旦有“写者”等待时,新到达的“读者”必须等待,直到该“写者”完成数据访问为止。试用P、V操作正确实现“读者”与“写者”的同步。(第二类读者写者问题,信号量解决方法) 5.一条河上架设了由若干个桥墩组成的一座桥。若一个桥墩只能站一个人,过河的人只能沿着桥向前走而不能向后退。过河时,只要对岸无人过,就可以过。但不允许河对岸的两个人同时过,以防止出现死锁。请给出两个方向的人顺利过河的同步算法。

操作系统进程同步

操作系统进程同步实验报告

实验三:进程同步实验 一、实验任务: (1)掌握操作系统的进程同步原理; (2)熟悉linux的进程同步原语; (3)设计程序,实现经典进程同步问题。 二、实验原理: (1)P、V操作 PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下: P(S):①将信号量S的值减1,即S=S-1; ②如果S30,则该进程继续执行;否则该进程置为等待状态,排入等待队列。 V(S):①将信号量S的值加1,即S=S+1; ②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。(2)信号量 信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。信号量的值与相应资源的使用情况有关。当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。注意,信号量的值仅能由PV操作

来改变。 一般来说,信号量S30时,S表示可用资源的数量。执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。而执行一个V操作意味着释放一个单位资源,因此S的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。 (3)linux的进程同步原语 ①wait();阻塞父进程,子进程执行; ②#include #include key_t ftok (char*pathname, char proj);它返回与路径pathname相对应的一个键值。 ③int semget(key_t key, int nsems, int semflg) 参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与msgget()中的key相同;参数nsems指定打开或者新创建的信号灯集中将包含信号灯的数目;semflg参数是一些标志位。参数key和semflg的取值,以及何时打开已有信号灯集或者创建一个新的信号灯集与msgget()中的对应部分相同。该调用返回与健值key相对应的信号灯集描述字。调用返回:成功返回信号灯集描述字,否则返回-1。 ④int semop(int semid, struct sembuf *sops, unsigned nsops); semid是信号灯集ID,sops指向数组的每一

实验二 进程(线程)的同步与互斥

实验二 进程(线程)的同步与互斥 一、实验目的 1. 掌握基本的同步与互斥算法,理解生产者消费者模型。 2. 学习使用Windows 中基本的同步对象,掌握相关API 的使用方法。 3. 了解Windows 中多线程的并发执行机制,实现进程的同步与互斥。 二、实验内容 1. 实验内容 以生产者/消费者模型为依据,在Windows 环境下创建一个控制台进程,在该进程中创建n 个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2. 实验要求 ● 学习并理解生产者/消费者模型及其同步/互斥规则; ● 学习了解Windows 同步对象及其特性; ● 熟悉实验环境,掌握相关API 的使用方法; ● 设计程序,实现生产者/消费者进程(线程)的同步与互斥; 三、相关API 的功能及使用 我们利用Windows SDK 提供的API 编程实现实验题目要求,而VC 中包含有Windows SDK 的所有工具和定义。要使用这些API ,需要包含堆这些函数进行说明的SDK 头文件——最常见的是Windows.h(特殊的API 调用还需要包含其他头文件)。 下面给出的是本实验使用到的API 的功能和使用方法简单介绍。 (1) CreateThread ● 功能——创建一个在调用进程的地址空间中执行的线程 ● 格式 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParamiter, Buffer(共享内存) 生产者 消费者

进程同步典型例题

进程同步练习题 1. 在公共汽车上,司机和售票员的工作流程如图所示。为保证乘客的安全,司机和售票员应密切配合协调工作。请用信号量来实现司机与售票员之间的同步。 司机 售票员 图司机和售票员工作流程图 2. 桌子上有一只盘子,盘子中只能放一只水果。爸爸专向盘子中放苹果,妈妈专向盘子中放橘子,一个儿子专等吃盘子中的橘子,一个女儿专等吃盘子中的苹果。用PV操作实现他们之间的同步机制。 3. a,b两点之间是一段东西向的单行车道,现要设计一个自动管理系统,管理规则如下:(1)当ab之间有车辆在行驶时同方向的车可以同时驶入ab段,但另一方向的车必须在ab 段外等待; (2)当ab之间无车辆在行驶时,到达a点(或b点)的车辆可以进入ab段,但不能从a 点和b点同时驶入; (3)当某方向在ab段行驶的车辆驶出了ab段且暂无车辆进入ab段时,应让另一方向等待的车辆进入ab段行驶。 请用信号量为工具,对ab段实现正确管理以保证行驶安全。 4.将只读数据的进程称为“读者”进程,而写或修改数据的进程称为“写者”进程。允许多个“读者”同时读数据,但不允许“写者”与其他“读者”或“写者”同时访问数据。另外,要保证:一旦有“写者”等待时,新到达的“读者”必须等待,直到该“写者”完成数据访问为止。试用P、V操作正确实现“读者”与“写者”的同步。(第二类读者写者问题,信号量解决方法) 5.一条河上架设了由若干个桥墩组成的一座桥。若一个桥墩只能站一个人,过河的人只能沿着桥向前走而不能向后退。过河时,只要对岸无人过,就可以过。但不允许河对岸的两个人同时过,以防止出现死锁。请给出两个方向的人顺利过河的同步算法。

相关文档
最新文档