浅析桥梁工程中的互通立交桥梁设计要点

浅析桥梁工程中的互通立交桥梁设计要点
浅析桥梁工程中的互通立交桥梁设计要点

浅析桥梁工程中的互通立交桥梁设计要点

随着桥梁工程建设的发展,使得互通立交桥梁建设项目日渐增多。由于互通立交桥梁没有固定是模式,所以其设计需要根据地形、地质基础、自然条件和人文条件等实际情况进行设计,基于此,本文概述了互通立交桥梁,简述了桥梁工程建设中互通立交桥梁设计的必要性,对桥梁工程建设中的互通立交桥梁设计要点进行了探讨分析。

關键词:互通立交桥梁;桥梁工程;设计;必要性;要点

一、互通立交桥梁的概述

互通立交桥梁和一般桥梁的相同之处在于都有着跨越山川河谷等自然障碍的功能。不同之处在于一般桥梁都是只有一条线贯穿,工程的范围较小,对于设计的要求不多。而互通立交桥梁要涉及的工程范围较大,而且多条线之间的联系贯通需要设计到许多类型桥梁的设计,同一条桥梁之间的线型组合等,都是一个比较繁复的过程,这就要求设计者根据地形、气候和技术水平进行合理设计,从而保障桥梁结构的协调以及桥梁整体性能优。

二、桥梁工程中互通立交桥梁设计的必要性

桥梁工程中的互通立交桥梁合理设计对结构受力、桥梁造价以及互通立交桥梁的安全运行均有重要作用。随着桥梁工程建设的不断发展,立交桥梁设计除了考虑其经济效益外,越来越多地考虑到其结构轻巧、造型美观、便于制造等方面。而更高、更新的要求是更人性化的设计,设计时更多地考虑立交桥梁建成后使用者的安全需要,使其具有舒适的感觉,因此必须加强互通立交桥梁的合理设计。

三、桥梁工程中的互通立交桥梁设计要点分析

1、桥梁形式设计要点分析。主要表现为:(1)桥面宽度设计要点分析。互通立交桥梁的桥面宽度要根据互通立交桥梁的建设需要,对行车道、人行道以及护栏进行相应的数据调整,还要根据当地交通部门对于道路建设的相关交通规划,以确定跨线桥的桥梁宽度,通常跨线桥的行车宽度和它所连接的桥梁的行车宽度是一样的。如果出现特殊的情况,还要对此做相应的调整。(2)桥梁跨径设计要点分析。通常互通立交桥梁的桥梁跨径越大,桥梁的造价就越高。桥梁的跨径是根据跨越高速公路的数值或者被交道的数值来决定的。而进行桥梁跨径的设计时,往往会因为桥梁跨径的造价而对跨径的幅度进行相应的技术改进,以此来降低成本。如在高速公路的中央分隔带处,设立中墩,一边一孔跨越高速公路,这样的设计就能大大地减少了桥梁的跨径,而又不影响原有的桥梁的功能,反而还能使工程量减少,经济效果比较明显。但是如果这样在路中间设立桥墩,会阻碍到行车驾驶员的视线,影响交通的畅通,也会影响桥梁建筑的美观,与周围的环境不形成协调,不利于交通建设规划。这时候可以采取大跨径连续桥梁的设计方法,不在路中央设置桥墩,这样的设计需要在桥梁承重能力允许的基础上进行。

互通式立交设计实例-2

2.7.17.2 延安路-南北高架立交 1.立交概况 1)立交等级 延安路-南北高架立交位于成都路、延安路交叉口,是市中心的重要交通节点。延安路是横穿上海市中心城区高架系统东西向的交通主干道,东接延安路隧道复线与浦东陆家嘴地区相连,西至虹桥国际机场和沪青平高速公路。南北高架是一条纵贯市中心区南北向的城市主干道,往南穿越黄浦江与浦东济阳快速路连接,往北至南北高架延伸线,与彭浦工业区和宝钢地区连接。延安路-南北高架立交不仅是连接这两条干道的交通枢纽,而且是上海市高架系统“申”字型骨架的中心点。因此,该立交是市区高架系统中最重要的交通枢纽工程之一,它的建成将为高架系统安全、畅通、快速运行起到极其重要的作用。根据立交所处的地理位置、相交道路的等级和在路网中的重要性,立交等级确定为互通式立交1级。 2)设计标准 立交主线设计车速为60km/h,匝道为30km/h;主线净空为5.2m,主线最小半径为1000m;匝道净空为4.5m,匝道最小半径为55m;主线最大纵坡为4.16%,匝道最大纵坡为5.5%。 3)选型依据 (1)用地条件 南北高架与延安路高架轴线间呈斜交72度,规划红线均控制在65m范围内,交叉口规划半径仅为80m。立交四周建筑物稠密,有8层高的浦东大楼,多幢5层楼新工房,其余大多为2至3层的老式砖房,在交叉口西南象限紧贴红线有2幢24层新建高层建筑,立交占地很小,设计条件极为苛刻,立交方案的取舍受地形约束较大。 (2)交通量预测 根据上海市交研所提供的交通流量预测资料,该立交远期2020年立交高峰小时流量为12683pcu/h,南北高架与延安路高架的交通比重2020年为54:45,南北高架流量略大于延安路高架流量。南北高架的直行流量占进口总流量的58%,延安路高架的直行流量占进口总流量的53%,因此首先应保证该节点直行车流的流量。

简支T形桥梁工程课程设计报告

桥梁工程课程设计(本科) 专业道路桥梁与渡河工程班级15春 姓名炜灵 学号9

理工大学网络教育学院 2016年12月 一、课程设计目的 本课程的任务和目的:学生通过本课程的设计练习,使学生掌握钢筋混凝土简支T梁设计计算的步骤和法,学会对T梁进行结构自重力计算、汽车荷载和人群荷载力计算、作用效应组合;在汽车和人群荷载力计算时,学会用偏心受压法和杆杠原理法求解荷载横向分布系数。 二、课程设计题目 装配式钢筋混凝土简支T形梁桥设计 三、课程设计任务与指导书(附后) 四、课程设计成果要求 设计文本要求文图整洁,设计图表装订成册,所有图表格式应符合一般工程设计文件的格式要求。 五、课程设计成绩评定 课程设计文本质量及平时成绩,采用五级制评定:优、良、中、及、不及。

装配式钢筋混凝土简支T形梁桥 课程设计任务与指导书 一、设计容 根据结构图所示的一标准跨径为L b=25m的T形梁的截面尺寸,要求对作用效应组合后的最不利的主梁(一根)进行下列设计与计算: 1、行车道板的力计算; 2、主梁力计算; 二、设计资料 1、桥面净宽:净-7(车行道)+2×1.0(人行道)+2×0.25(栏杆)。 2、设计荷载:公路-II级,人群3.5kN/m2。 4、结构尺寸图: 主梁:标准跨径Lb=25m(墩中心距离)。 计算跨径L=24.50m(支座中心距离)。 预制长度L’=24.95m(主梁预制长度)。 横隔梁5根,肋宽15cm。

桥梁纵向布置图(单位:cm) 桥梁横断面图(单位:cm) T型梁尺寸图(单位:cm) 三、知识点(计算容提示) 1、行车道板计算 1)采用铰接板计算恒载、活载在T梁悬臂根部每延米最大力(M和Q)。 2)确定行车道板正截面设计控制力。 2、主梁肋设计计算 1)结构重力引起力计算(跨中弯矩和支点剪力),剪力按直线变化,弯矩按二次抛物线变化。

公路互通式立交设计分析

公路互通式立交设计分析 发表时间:2019-07-05T10:48:27.290Z 来源:《基层建设》2019年第11期作者:曾海清 [导读] 摘要:立交桥梁是互通式立体交叉工程的重要组成部分,对整个立交工程有较大影响。 青州弘正建设工程质量检测有限公司山东青州 262500 摘要:立交桥梁是互通式立体交叉工程的重要组成部分,对整个立交工程有较大影响。结合设计实践,分析立交桥梁的若干技术问题。总结一些设计经验,与同行探讨。 关键词:互通式立交;桥梁;设计 立交桥梁是互通式立体交叉工程的重要组成部分,其设计多是互通式立交专业设计的难点、重点,其造价一般在整个立交工程中占有较大比例,对整个立交工程有较大影响。本文结合湖南多条高速公路上的互通式立交区域的桥梁设计实践,分析立交桥梁的若干技术问题,总结一些设计经验,与同行探讨。 1互通式立交的设计原则 互通式立交主要设计在车流量比较集中的城市路段和高速公路上。互通式立交通过设计多个通行车道达到分流的目的,专业称为匝道。通过设计向左或向右的匝道来分流。目前城市中和高速公路上已经设计有一些互通式立交,但是由于城市规划的关系,大部分的互通式立交并没有在市中心,而是在中环以外。因此,市中心的拥堵现象还无法用互通式立交来解决。 互通式立交需要的技术难度高,占地面积大,建造成本高,因此,互通式立交的设计要综合考虑,尽量用最低成本发挥最大效益。 互通式立交设计原则:一是考察路段的车流量。根据车流量的大小设计匝道的宽窄,以及单向匝道或是双向匝道。二是考虑地形条件。根据地形来设计适当地互通式立交,可以最大限度地减少成本。三是要考虑气候条件给此路段带来的影响。比如雨季的时候,该路段会不会积水,会不会有滑坡、泥石流的现象。要将这些条件进行综合考虑,设计最合理的互通式立交。 2互通式立交的设计要点 互通式立交的详细设计互通式立交的详细设计是在选型设计基础上针对地形、地物、交通量、技术规范等要求对互通式立交匝道布局的进一步深化,是互通式立交设计的参数化和指标化。 平面线形设计互通式立交平面线形设计,要根据互通式立交的重要性、地形、用地条件等因素确定,并保证车辆能连续安全地运行。互通式立交平面线形的要素主要有直线、缓和 曲线和圆曲线。匝道及其端部,凡曲率变化较大处应缓和曲线,一般缓和曲线采用回旋线。在匝道与匝道、匝道与主要道路拼接处,如采用缓和曲线,要注意回旋线参数要稍大一点,主要是便于超高过渡和适应汽车行驶速度的变化,特别是分流点处更应注意。在反向S型曲线处,选择回旋线参数时注意同超高过渡的协调一致,否则容易形成反超高。此外,匝道平面线形要与其交通量相适应,转向交通量大的匝道平面线形技术指标应高一些;驶出匝道的平面线形技术指标应高于驶入匝道的平面线形技术指标;反向曲线间的两个回旋线,其参数宜相等,不相等时,其比值应小于1.5。 纵面线形设计纵面线形应与地形相适应,设计成视觉连续、平顺而圆滑的线形,避免在短距离内出现频繁起伏。互通式立交的纵面线形设计实质是匝道的拉坡,不少设计人员将匝道拉坡范围完全与匝道的线位长度一致起来,这是不合适的。因为这样处理会在车流分合流端部形成剪刀差,路容、排水可能都有问题。拉坡的范围应该以车流分合流端部开始或结束,分合流端部以前的变速车道部分随主线的横坡和纵坡变化而变化。但在具体确定分合流匝道的起点和终点高程以及横坡时要综合考虑主线的纵坡和横坡,匝道在该处的纵坡、横坡不能简单地取主线的纵坡、横坡,这样至少在理论上是不连续的。另外,确定分合流点处的高程、纵坡、横坡时还须注意,当主线为曲线且有超高时,主线外侧变速车道先做成向外的横坡,然后根据变速车道形式向超高过渡,如果是直接式车道,则在变速车道全长范围内过渡,如果是平行式车道则在端部至匝道线位与主线“切点”范围内过渡。确定拉坡范围还应注意, 对于首尾相接的匝道,其拉坡范围应统一考虑。另外在拉坡时还要遵循平、纵配合的设计原则,注意平纵组合,注意线形与自然环境和景观的配合与协调。 超高及其过渡由于互通式立交范围内的平曲线指标比较低,所以超高不可避免,但超高的取值及过渡需要深入研究。 匝道超高设计匝道超高设计要充分考虑车辆在匝道上行驶速度经常变化的实际情况,采用不同的超高值。定向匝道跨越主要道路时,往往采用圆曲线最小半径的一般值或介于极限值与一般值之间,相应的超高按规范要求应取值8%以上,在这种情况下,由于定向匝道路基较宽,而且采用桥梁等结构物,没有路基边坡,所以在视觉上往往横向坡度比一般单匝道或土基填筑有边坡的路段横坡大,给驾驶员视觉上造成悬空的感觉,心理压力大,所以最大超高在这些地方宜放缓,收费站附近的超高值应小于匝道计算行车速度所对应的值。接近分流、合流处匝道超高值就应大一些。 超高过渡段匝道上直线至圆曲线间或两超高不同的曲线间应设置超高过渡段。超高过渡段的设置要根据计算行车速度、横断面的类型、旋轴的位置以及渐变率等因素来确定。 超高过渡区间。有缓和曲线时,超高过渡在回旋线的全长或部分范围内进行;没有缓和曲线时,可将所需过渡段长度的1/3~1/2插入圆曲线,其余设置在直线上;在有构造物地段,超高过渡应充分考虑桥跨布置,一般过渡范围最好放在桥梁的同一联里,这样可减少构造物处理上的难度; 反向超高的过渡。为了减少排水上的困难,反向超高的过渡采用较大的超高渐变率是合适的;C超高渐变率的取值。超高渐变率的取值在一般路段只需满足规范要求,但在宽度变化路段则要注意,由于宽度变化,行车道宽度的B值也是变化的。由于容易忽略宽度变化对超高渐变率的“折减”作用,此时超高渐变率似乎满足要求了,但象收费站等宽度变化较大的地方,边部将扭曲得很厉害,如果同时又在反向超高的地方,则排水就成问题了。因此在宽度变化路段要注意超高渐变率的取值;d超高旋转方式。这里是指过渡范围内行车道外侧边缘的竖向形状是直线的还是曲线的。一般情况下采用直线方式,但直线方式比较生硬,在过渡段两端有折曲感,所以从美观等因素考虑,采用曲线方式更好。 变速车道的设计变速车道分为直接式与平行式两种,减速车道原则上采用直接式,加速车道原则上采用平行式。当变速车道为双车道时,加、减速车道均采用直接式。一般双车道加速车道也采用直接式,但应注意直接式加速车道应采用较小的流入角度,这对车辆合流较为有利。另外双车道的匝道与主要公路拼接时应注意车道平衡问题,否则当车流量较大时,车流的分流与合流将产生问题。单车道减速车

山区高速公路单喇叭型互通立交设计浅析

山区高速公路单喇叭型互通立交设计浅析 李军发山西省交通科学研究院 摘要:重点阐述了山区高速公路单喇叭型互通立交匝道平面、纵面线形及横断面设计要点,结合本人的体会,对于山区单喇叭型互通立交的布设在满足互通功能的情况下应扩展思路,根据地形灵活布置立交线形。 关键词:山区高速公路单喇叭型互通立交设计浅析 1.山区高速公路互通立交的特点 a)在山区设置一般出入口互通立交的目的是为了服务于当地乡镇及县域经济发展,交通量往往都不大。 b)山区地形复杂、场地狭小、走廊内常常伴随河流、地方道路,使互通立交布设的位置和形式受到一定的限制。 c)山区高速公路主线构造物较多,互通布设范围常常受到前后大桥、隧道等构造物的限制,互通立交与隧道的间距在地形受限制的山区是很难达到标准、规范的要求,互通的布设还需特别注意行车安全性方面的要求。 d)山区高速公路主线平纵指标往往偏低,互通立交有时不可避免的处于主线长下坡或主线小半径平曲线上,同样也需要注意安全性方面的问题。 2.设计交通量 公路的交通量是随着社会经济的发展而变化,其远景设计年限交通量应包括正常的交通量以及诱增交通量。设计交通量应根据交通工程学原理,进行切实的调查、统计,通过科学的分析、预测,建立相关的数学模型,求得设计年限内平均日交通量(AADT)作为设计依据。设计过程中采用设计小时交通量对匝道的通行能力及横断面采用的车道数等进行验算,匝道设计小时交通量按(1)式计算: DDHV=AADT×D×K (1) 式中: DDHV——单向设计小时交通量,veh/h;AADT为预测年度的年平均日交通量,veh/d; D——方向不均匀系数,%;K为设计小时交通量系数,%,为第30个高峰小时交通量与AADT的比值。 3.匝道平面设计

浅析互通式立交匝道起终点平面接线设计

浅析互通式立交匝道起终点平面接线设计 摘要:互通式立交匝道起点平面线形设计尤为重要,尤其是对应主线上为缓和曲线时,在匝道起、终点设计中较为复杂。规范中对此没有明确具体的规定,本文将通过设计实例,对此加以总结归纳,以供参考。 关键词:互通式立交;主线为缓和曲线;匝道起终点设计 Abstract: Thehorizontal alignmentdesignoftheinterchangerampstarting pointis particularlyimportant, especiallywhenthetransition curvecorresponding to the main line, rampterminaldesign more complex.Thereisnoclear and specificprovisions of the specification,design examples, whichtobesummarizedfor reference. Key words: interchange;mainlinefor transition curve;rampterminaldesign 1、前言 互通立交是路网的一个重要组成部分,无论在高速公路还是在城市道路中都具有交通枢纽的作用,其中匝道就是相交道路的连接道,供车辆驶入驶出,其变速车道与主线部分相依,此部分的设计需要综合考虑主线线形,如果设置不当,很容易出现不顺适,造成该处行车不舒适,或者使车辆行驶条件恶化,存在交通安全隐患。 匝道起终点的接线设计,规范上要求变速车道全长范围内原则上采用与主线相同的线形(相同半径的圆弧或相同参数的回旋线),实际设计中,当匝道起终点对应主线线形为直线或者圆曲线时,较为容易;当主线对应处为缓和曲线时,设计时相对复杂,理论上应采用缓和曲线接线设计,但是由于主线上的缓和曲线曲率半径很大,所以为方便设计和施工,也可以采用圆曲线进行接线设计,本文就是针对这种情况进行总结分析。 2、匝道起点设计 以山东省某高速公路互通立交减速车道设计为例,该公路主线设计速度为120km/h,A匝道驶离主线,其中此处主线平面线形为A=775、Ls=280m的不完整缓和曲线(半径由4980m变化到1500m)。 确定起点位置 首先根据互通总体位置,确定A匝道设计起点(主线渐变段终点)的大约位置,在这个范围内由于主线是缓和曲线,其每一点的曲率半径都不同,故需要人为取其中一点作为设计起点,通常可取一个整桩号点,以方便计算、标注。

桥梁工程课程设计(完整版)

桥梁工程课程设计报告书 一、设计资料 1 桥面净宽净-7 +2×1.5m人行道 2 主梁跨径及全长 标准跨径 l=21.70m(墩中心距离) 计算跨径l=21.20m(支座中心距离) 主梁全长l =21.66m(主梁预制长度) 全 3 设计荷载 公路—I级;人群荷载3.02 kN/ m 4 设计安全等级 二级 5 桥面铺装 沥青表面处厚5cm(重力密度为233 kN/),混凝土垫层厚6cm(重力密度为 m 243 m m kN/ kN/),T梁的重力密度为253 6 T梁简图如下图

主梁横截面图 二、 设计步骤与方法 Ⅰ. 行车道板的力计算和组合 (一)恒载及其力(以纵向 1m 宽的板条进行计算) 1)每延米板上的恒载 g 沥青表面 1g : 0.05×1.0×23 1.15kN m / 混凝土垫层 2g : 0.06×1.0 ×24 1.44kN m / T 梁翼板自重3g :30.080.14g 1.025 2.752+= ??=kN m / 合计:g=g 5.34i =∑kN m / 2)每米宽板条的恒载力 悬臂板长 ()0160180.712l m -= = 弯矩 2211 5.34(0.71) 1.3522 Ag M gl =-=-??=-·kN m 剪力 0 5.340.71 3.79Ag Q gl ==?=kN (二)汽车车辆荷载产生的力

60 50 1)将车辆荷载后轮作用于铰缝轴线上,后轴作用力为 140kN ,轮压分布宽度如图 5 所示,车辆荷载后轮着地长度为 a 2 0.20m ,宽度 b 2 0.60m , 则得: a 1 a 2 2H 0.2 2×0.11 0.42m b 1 b 2 2H 0.6 2× 0.11 0.82m 荷载对于悬臂梁根部的有效分布宽度: 12l 0.421.420.71 3.24m o a a d =++=++?= 2)计算冲击系数μ 结构跨中截面的惯矩c I : 翼板的换算平均高度:()1814112 h =?+=cm 主梁截面重心位置:()()11130 1601811130182241.18160181113018 a -??+??==-?+?cm 则得主梁抗弯惯矩: ()()22 326411111301601811160181141.2181813041.2 6.6310122122c I m ????=?-?+-??-+??130+??-=? ? ????? 结构跨中处单位长度质量c m : 3 315.4510 1.577109.8 c G m g ?===? 22/Ns m 混凝土弹性模量E :

高速公路互通式立交选型诠释

高速公路互通式立交选型诠释 摘要:互通式立体交叉公路是高速公路网的主要节点,高速公路互通式立交的选型关系对路网功能作用的发挥起着关键的作用。互通的选型应满足路网规划的要求,同时其位置和型式亦是高速公路路线走向的一个重要制约因素。 关键词:高速公路;互通式立交;选型 1高速公路互通式立体交叉设计分析 1.1互通式立体交叉的设计交通量与通行能力道路立体交叉的主要目的是为了提高交叉路口的通行能力,减少交叉时交通的干扰,从而保证道路交叉处的交通安全与快速通行。 1.2互通式立交设计车速我国对设计车速的定义是:在天气良好,交通量小,路面干净的条件下,中等技术水平的驾驶员在道路受限制部分能够保持安全而舒适行驶的最大速度。设计车速实际是个理论的车速,而车辆的运行车速是实际的85%车速。 1.3互通式立交的匝道设计匝道设计按一个固定车速来控制整个匝道的设计指标,是不符合汽车行驶特性的,导致匝道不能提供顺适、安全、经济和通畅的要求。匝道的设计车速与公路主线的设计车速的应用在设计中是不一样的。公路主线按设计车速来控制整个路线指标(公路主线没有要求不同设计车速或等级情况下),来提供全线的安全、舒适的行驶。而匝道是提供车辆转弯的连接道,匝道的设计车速除了满足匝道本身设计的安全、经济外,还要考虑到与连接道路的顺畅连接,这也是匝道的设计车速不能用一个速度来控制的原因。 1.4互通式立交的变速车道设计变速车道的横断面由左侧路缘带(与主线车道共用)、车道、右路肩(含右侧路缘带)组成。变速车道分为直接式和平行式,路线规范规定:变速车道为单车道时,减速车道宜采用直接式,加速车道宜采用平行式。变速车道为双车道时,加、减速车道均应采用直接式。 对直接式减速车道传统的做法是从主线外侧行车道中心,用同于主线线形(一般情况)以1/17.5~1/25流出角向外流出,在流出达到一个车道宽度即减速车道起点,到分离主线,形成整个减速车道。该设计方法主要优点是线形流出自然,符合车辆行驶轨迹,但驾驶员不易辨认出流出位置,并且在设计过程中减

互通式立交桥设计

107 国道跨金水路、郑汴路立交桥方案设计概况 1 概况 107国道北起北京南至珠海,是我国南北向交通运输的大动脉。目前郑州以北的北京至新乡段和郑州以南的郑州至漯河段已相继建成高速公路,而郑州至新乡段仍为一级公路。由于受一级公路的平面交叉制约,交通堵塞比较严重。特别是郑州东出口金水路和郑汴路两处平交,双向直行和转向车交通量都很大,还有进出市区的行人、自行车、摩托车和拖拉机等,严重影响南来北往的车辆顺利通行。已成为107国道上的两个卡脖子路段。不仅严重影响了国道主干线上交通的正常通行,而且给郑州车辆进出造成极大的不便。为解决这两个交叉口的交通堵塞问题,修建立交进行交通分流十分必要。 2 立交总体方案 要解决金水路、郑汴路与107国道交叉的交通堵塞问题,考虑到近期及远期交通量和流向可避免修建两座投资大、占地多的大型互通式立交,因为:①近期107国道的交通量是另外两条被交叉道路两倍以上;②远期郑州黄河二桥及新乡至郑州的高速公路修建必将大大缓解107国道的交通压力。将主要流向107的交通无干扰直通,我们设计了以下两种方案,以达到投资小见效快的目的。 2.1方案一 107国道上跨金水路和郑汴路,跨线桥宽17.5m,双向四车道,

桥长分别为401.0m、431.0m,两端引道均为100m。桥下平交进行渠化并增设郑州至机场方向的右转车专用车道。 2.2方案二 金水路、郑汴路上跨107国道,跨线桥宽17.5m,双向四车道,桥长分别为401.0m、431.0m,两端引道均为100m。107国道在下层通过,平面处进行渠化,并增设郑州至机场方向的右转专用车道。这两种方案均增设了郑州至机场方向的右转车专用车道,能够解决郑州的车辆出市问题,设置跨线桥使直行车不经过平面交叉口而直接通过,能有效地缓解由原来直行车绕行环岛引起的交通干扰,达到解决交叉口交通堵塞的目的。从直行车交通量分析,107国道上的直行交通量较金水路、郑汴路的直行交通量要大得多,采用107国道上跨金水路和郑汴路的跨线桥方案能最有效地分流交通。从远期发展考虑,郑州黄河公路二桥和新乡至郑州高速公路建成后,107国道北连开洛高速公路,南通机场路和郑许高速公路,远期做为郑州市的主干线,其重要作用仍不可替代。综合近期和远期的分析情况,推荐107国道上跨方案,即方案一(见图1、图2)。 推荐方案和比较方案工程数量对比见表1。

桥梁工程课程设计报告书

本科桥梁工程课程设计 4×25 m预应力钢筋混凝土T梁桥设计净—11+2×0.75m 学院(系): 专业: 学生: 学号: 指导教师:

燕山大学课程设计(论文)任务书院(系):建筑工程与力学学院

一设计资料 (4) 二构造布置 (4) 2.1截面布置 (4) 2.1.1主梁间距与主梁片数 (4) 2.1.2主梁跨中截面主要尺寸拟定 (5) 2.2横截面沿跨长的变化 (8) 2.3横隔梁的设置 (8) 三.主梁作用效应计算 (9) 3.1永久作用效应计算 (9) 3.1.1永久作用集度 (9) 3.1.2永久作用计算 (10) 3.2可变作用效应计算 (12) 3.2.1冲击系数和车道折减系数 (12) 3.2.2计算主梁的荷载横向分布系数 (12) 3.2.3 计算可变作用效应 (17) 3.3主梁作用效应组合 (23) 四.参考文献 (24)

一设计资料 1.桥梁类型: 预应力混凝土连续梁桥 2.桥梁跨径: 20+55+20m,主跨:标准跨径:55.00m;主梁全长:54.96m;计算跨径:54.50m 3.桥面净空:净—7.0m+1.0m×2=9.0m 4.设计荷载: 公路-Ⅰ级,根据《公路桥涵设计通用规》:均布荷载标准值为qk=10.5 kN/m;集中荷载取Pk=360 kN。计算剪力效应时,上述集中荷载标准值应乘以1.2的系数。人群载荷标准值为3.0 kN/m2 。每侧人行柱防撞栏重力作用分别为1.52 kN/m和4.99 kN/m 二构造布置 2.1截面布置 2.1.1主梁间距与主梁片数 主梁间距通常应随梁高与跨径的增大而加宽为经济。同时加宽翼板对提高主梁截面效率指标很有效,故在许可条件下应适当加宽T梁翼板。上翼缘宽度一般为1.6~2.4 m或更宽。本设计拟取翼板宽为2250 mm(考虑桥面宽度)。由于宽度较大,为保证桥梁的整体受力性能,桥面板采用现浇混凝土刚性接头,因此主梁的工作截面有两种:预施应力、运输、吊装阶段 的小截面(b i =1550 mm)和运营阶段的大截面(b i =2250 mm),净-7.0 m+2 ×1.0 m的桥宽选用四片主梁,如图2.1所示。

市政道路互通式立交设计要点分析

市政道路互通式立交设计要点分析 发表时间:2019-02-22T11:26:49.853Z 来源:《防护工程》2018年第32期作者:王爱祥 [导读] 随着城市化进程的不断推进,市政建设也不断在加强。现阶段,互通式立交凭借着其自身的优越性,已经在高速公路以及城市道路中得到了广泛的应用。互通式立交是道路的一个重要组成部分 王爱祥 身份证号码:42011119731029XXXX 摘要:随着城市化进程的不断推进,市政建设也不断在加强。现阶段,互通式立交凭借着其自身的优越性,已经在高速公路以及城市道路中得到了广泛的应用。互通式立交是道路的一个重要组成部分,但在设计时要考虑到多个方面,因此设计起来比较复杂。本文主要先介绍互通式立交的概念及相关,进而对市政道路互通式立交的设计要点进行分析。 关键词:市政道路;互通式立交;设计要点 一、前言 近些年来,随着交通运输行业的快速发展,互通式立交在道路中的作用愈来愈突出。互通式立交是城市道路网的重要组成部分,对道路网的高效、安全运行有着决定性的影响。由于互通式立交的组成要素较多,并且还受到车辆行驶路径、速度以及行驶的多向性等的影响,从而导致其设计方法较为复杂。20世纪80年代后,我国建立了大量的立交,以解决交通疏解的问题,但由于研究不够,不仅没能解决问题,而且后期还为交通带来了新的问题。据统计发现,大多数的交通事故都是发生在交叉口,尤其是城区,因此重视交叉口的设计,掌握全面、正确的互通式立交设计要点,合理的进行设计是很有必要的。下面对互通式立交的设计要点进行具体的分析。 二、关于互通式立交 1、互通式立交的分类 从道路网的系统功能上来讲,互通式立交可分为服务型互通式立交、疏导型互通式立交以及枢纽型互通式立交等;从交通组织特性上来讲,互通式立交可分为完全是互通式立交、部分互通式立交、以及交织型互通式立交等;从相交道路的跨越方式上来讲,互通式立交可分为上跨式互通式立交、下穿式互通式立交 2、互通式立交的基本类型及适用范围 不同的左右转弯匝道的选择和组合就形成了不同的互通式立交类型,因此可以说互通式立交的类型主要是根据道路的各种左右转弯匝道的选择及组合来决定的。现阶段,在市政道路中常见的互通式立交的基本类型主要有以下几种: 2.1苜蓿叶型立交 苜蓿叶型立交是一种较为常见的互通式立交,通过苜蓿叶型立交桥时,直行的车辆按照原来的方向行驶,右转弯的车辆进入右侧匝道行驶,而左转弯的车辆则须先直行通过立交桥,然后进入相应匝道后右转270度才能实现左转。其主要特点是平面布置呈苜蓿叶的形状,匝道布置对称,造型简洁美观,虽然占地面积较大,但工程投资低,而且使用性能也好,因此是最经济合理的互通式立交类型。苜蓿叶型立交一般适用于地形比较开阔,而且无大型建筑物或者无用地限制的十字交叉口。 2.2部分苜蓿叶型立交 部分苜蓿叶型立交是在立交的两个左转弯处采用环形匝道设计,而在另外两个左转弯处采用定向或迂回匝道的设计,从而使平面呈部分苜蓿叶的形状,这两个左转弯匝道设计可设计在相邻的或是对角的位置,从而使得占地面积适中。部分苜蓿叶型立交的特点是立交层次较高,造型对称且美观,虽然建设投资较大,但占地面积适中,交通运行性能较好,一般适用于有大型建筑物、中心城区或是用地局部受限制的十字路口。 2.3喇叭型立交 喇叭型立交主要是在左转弯处采用环形匝道分别进出主干道的设计,其平面呈喇叭形状,一般适用于T型交叉路口。 2.4Y型立交 Y型立交主要是在左转弯处采用定向匝道分别进出主干道的设计,其平面布置呈Y型,一般适用于转向交通量较大的T型或Y型路口以及各种高等级、高标准道路在T型、Y型路口的连接等。 2.5环形立交 环形立交是将道路的交叉点设计为环岛,从而使车辆按照环道行驶,可分为大半径环形立交和小半径环形立交。这种类型的互通式立交占地面积较大,因此目前采用较多的是 是小半径环形立交。此外,环形立交通行速度和通行能力都较低,一般适用于中、小城市以及左转向交通量较少的交叉口。 三、市政道路互通式立交的设计要点分析 1、互通式立交整体线形的设计 互通式立交在作为一种交通道路构成的同时,也是一种景观性的建筑,因此在设计时应注意其内容和形式的统一,在内容上不仅要做到横、纵指标符合相应的要求规范,在形式上也应做好整体线形设计,合理利用各种曲线如回旋曲线,从而使得匝道与交叉道路所形成的整体看起来流畅且富有动感美。例如:在采用喇叭形型互通式立交时,设计时可将喇叭设计成水滴的形状,从而避免匝道与主线垂直交叉连接时的呆板。 2、立交类型选择及断面布置 2.1立交类型的选择 不同的立交类型具有不同的适用范围,因此立交类型的选择主要是根据立交所在地的实际情况决定。在苜蓿叶型互通式立交中,由于其存在行车交织区段,因此要注意交织区段是否满足行车交织要求。当左转交通量较大或主线设计较高,其交织长度满足不了要求时,应取消主干道上的交织,将其交织段设在主干道的集散道上即可。在喇叭型互通式立交中,设计师应注意采取将两个左转弯进出匝道上跨主

桥梁工程课程设计

广东工业大学课程设计任务书 一、课程设计的内容 1、教学目的: 学生通过桥梁工程设计的训练,可以进一步掌握在桥梁工程课本中所学到理论知识,并经过亲自做桥梁工程设计来熟悉设计方法、计算理论、计算公式,熟悉在桥梁设计中如何运用桥梁规范,为今后的毕业设计及走上工作岗位打下一个良好的专业基础。 2、设计基本资料: 说明:学生共分为四个小组,每个小组基本资料不同,简支梁主梁高H 分别取为:130CM、133CM、135CM、139CM,见图1。 1)桥面净宽:净7+2×0.75M 2)设计荷载:汽车“公路—Ⅰ级,人群荷载:3KN/M2 3)材料:主筋:Ⅱ级,构造筋:Ⅰ级 混凝土:桥面铺装:C25,主梁:C30 4)结构尺寸:详见图1、图2 主梁:计算跨径:L=1950cm 全长:L=1996cm 人行道、栏杆每延米(两侧)重2.0KN/m(为每片主梁分到的值)。 沥青混凝土厚2cm

3、设计计算内容: 1)计算行车道板内力,并据此计算和配置翼板主筋。 行车道板按铰接板计算; 汽车荷载:按车辆荷载计算。 2)主梁设计计算: ①、计算主梁1#、2#、3#在汽车、人群荷载作用下的横向分布系数。 支点用杠杆法,跨中用G —M 法。 ②、桥梁沿跨长纵向按IL(影响线)布载求活载内力。 ③、计算活载跨中弯矩时,不考虑横向分布系数沿桥长方向的变化,计 算支点活载剪力时,要计入横向分布系数沿跨长方向的变化的影响。 ④、主梁控制截面:M 中 、M 1/4 、Q 支点 ⑤、主梁跨中截面受拉主筋计算(其余钢筋不算)。 ⑥、计算活载挠度及预拱度。参见教材第172页公式。 3)横隔梁内力计算,并据此计算配置主筋(按T 形截面配置下缘受拉主筋)。 说明:①、横隔梁内力计算采用“偏心法”,取中横隔梁计算。 ②、控制截面:M 3、M 2-3、Q 1右、Q 1-2右 4、绘图内容: 1)上部构造纵、横剖面图(纵断面只画主梁,参见教材第152页,图2-5-55,但尺寸要改变)。 2)主梁配筋图(参考教材第81页,图2-4-15绘制,但主筋按自己计算值配制,梁高按各组的H 值计)。 二、课程设计的要求与数据 1、 必须严格执行各桥梁设计规范,每一设计步骤都必须按规范的要求进行,要训练会查规范、会用规范。 2、 设计中多参阅有关资料,特别是对于没有设计经验的初学者来讲, 更应多借鉴前人的设计经验和实例。 3、 绘制桥梁设计图时必须按桥梁设计图纸的规定进行绘制,从线形、 布置、到标注方式都力求准确无误,不得自行、随意设定图中的各项参 图 2

互通式立体交叉设计与选型

公路互通式立体交叉的设计与选型 马家宇 (河南省新开元路桥工程咨询有限公司) 一、互通式立交简介 1.路线交叉的分类 加铺转角式 公路与铁路交叉渠化 平面交叉环形交叉(俗称转盘) 交通信号灯管制 路线交叉公路与公路交叉 分离式立体交叉 立体交叉 公路与管线交叉互通式立体交叉公路与公路交叉设计时,应采取措施尽可能消灭冲突点或减少改善冲突点。 (1)实行交通管制在交叉口设置交通信号灯或由交通警察指挥,使发生冲突的车流从通行时间上错开。 (2)采用渠化交通在交叉口内合理布置交通岛、交通标志和标线,或增设车道等,引导各方向车流沿固定路径行驶,以减少车辆之间的相互干扰,改善冲突点和分合流点的位置及角度。 (3)变冲突点为分合流点环形平面交叉可以变冲突点为分合流点,进行交织,消灭了冲突点。 (4)修建立体交叉将相互冲突的车流从空间上分开,使其互不干扰。这是解决交叉口交通问题最彻底的办法。 2.互通式立交发展概况 1928年美国在新泽西州修建了世界上第一座苜蓿叶型互通式立交。由于其社会、经济效益良好,发展十分迅速,到1936年,美国修建了125座互通式立交。 我国互通式立交发展较晚且发展缓慢。1955年武汉滨江路修建了我国第一座部分苜蓿叶型互通式立交;1956年北京市郊京密引水滨河路修建了三座部分互通式立交;1964年广州大北路修建了一座双层环型立交。从1988年10月沪嘉高速公路通车至今,中国大陆高速公路走过了18年的快速发展历程,公路互通式立交也随着高速公路得到快速的发展。 3.互通式立交分类 3.1 按跨越方式分:上跨式、下穿式、半上跨半下穿式 3.2 按交通功能分:全互通式、部分互通式

桥梁工程课程设计计算书

钢筋混凝土T 型梁桥设计计算书 1 行车道板内力计算 1.1恒载产生的内力 以纵向1米宽的板条进行计算如图1.1所示。 图1.1铰接悬臂板计算图示(单位:cm ) 沥青混凝土面层:= 0.02×1.0×21= 0.42/kN m C25号混凝土垫层:=0.06×1.0×24=1.44/kN m T 形翼缘板自重: = 0.100.16 1.025 3.25/2 kN m +??= 合计:g=i g ∑=++=0.42+1.44+3.25=5.11/kN m 每米宽板条的恒载内力: 弯距:22011 5.110.95 2.3122AG M gl kN m =-=-??=-? 剪力:0 5.110.95 4.85AG V gl kN ==?=1.2荷载产生的内力 按铰接板计算行车道板的有效宽度如图1.2所示)。 由<<桥规>>得=0.2m ,=0.6m 。桥面铺装厚度为8cm ,则有: =+2H=0.2+2×0.08=0.36m =+2H=0.6+2×0.08=0.76m 荷载对于悬臂板的有效分布宽 度

为:=+d+2=0.36+1.4+1.90=3.66m 冲击系数采用1+=1.3, 作用为每米宽板条上的弯矩为: 01(1)/2(/4)AP M P a l b μ=-+??- 1.3140/2/3.66(0.950.76/4)=-??-18.90KN m =-? 作用于每米宽板条上的剪力为: 图1.2 荷载有效分布宽度图示(cm ) 140(1) 1.324.8622 3.66 AP P V KN a μ=+=?=? 1.3内力组合 承载能力极限状态内力组合: 1.2 1.4 1.2 2.31 1.418.9029.23j Ag Ap M M M KN m =+=-?-?=-? 1.2 1.4 1.2 4.85 1.424.8640.62j Ag Ap V V V KN =+=?+?= 1.4 截面设计、强度验算 (HRB335钢筋:335sk f MPa =,280sd f MPa =,C25混凝土:16.7,ck f MPa = 1.78,11.5, 1.23tk cd td f MPa f MPa f MPa ===) 翼缘板的高度:h=160mm ;翼缘板的宽度:b=1000mm ;假设钢筋截面重心到截面受拉边缘距离=35mm ,则=125mm 。 按<<公预规>>5.2.2条规定:010()2d u c x M M f bx h γα==- 1.029.2311.51000(0.125)2 x x ?=???- 解得:x=0.0224m 验算00.550.1250.0688()0.0224()h m x m ξ=?=>= 按<<公预规>>5.2.2条规定:sd s cd f A f bx = 211.5 1.00.0224/280920s A mm =??= 查有关板宽1m 内钢筋截面与间距表,考虑一层钢筋为8根由规范查得可供使

高速公路互通立交景观设计说明

关于XX高速XXX互通与 曹庵互通绿化图纸优化设计的说明 一、原施工图存在的问题 1、两互通区域内的水域位置及面积已调整; 2、招标文件中的苗木清单没有包含互通区设计图纸中的大部分苗木品种; 3、原设计图纸苗木品种单一,数量较少,搭配不合理,不能满足互通区景观绿化功能; 4、原设计图纸以低矮小灌木为主,少量乔木为辅,随着时间的推移,小灌木会逐渐被杂草淹没,导致在后期整个互通区绿化效果呈现荒化; 5、原设计图纸中,主要是以低矮小灌木为主,这对养护的要求比较严格。 二、优化设计思想 互通区是高速公路整体结构中的一个节点。互通区的规划设计首先是通过植物造景,使景观的造型与自然景观相融合,以生态性为主,在大小不同、形态各异的绿地中,利用不同植物的镶嵌组合,形成一个层次丰富、景色各异的花园绿岛,营造一个优美的行车环境。 互通区景观规划设计的重点区域是匝道围合而成的圆形空敞,由于匝道区域车速较慢,创造优美、和谐的景观就显得尤为重要。为了保证视线的通透,入口处内侧应栽植植株低矮的树丛、灌木,而且入口处外侧应利用树丛、灌木勾勒出道路线性,以起到标志性和导向性的作用。以本土植物为基础种植,选择一些与其他绿化区域相似的植物,采用乔、灌、草的复合群落,在栽植时能形成图案等,能表现出当地的经济文化特色为宜。景观上要注意与周边环境和整条道路景观取得协调一致。总之,互通立交区是主线景观的一个重点,就像镶嵌在项链上的钻石,对于提高整个高速路的景观效果至关重要。互通区采用如图1所示的景观规划设计模式: 图.1

三、优化设计手法 从互通立交桥景观设计入手,例如通过植物高低的变化引导视线,构造景观的节奏感,营造出“车在路上走、人在画中游”的优美的公路交通环境。中心区域以孤植大乔木作为点缀,并以大乔木为中心,向四周辐射,搭配一些低矮的乔灌木及球类植物,形成季相分明、层次突出、色彩丰富的景观效果。在匝道周围,栽植不同树种的树阵,让驾乘人员一进入互通区就能感受到视觉上的震撼。此外,互通立交桥区色彩的充分利用,可以极大的提高驾驶的安全性。 四、优化设计原则 绿化考虑到公路互通的特点,以“安全、实 用、美观”为宗旨,以经济可行,管理、维护方 便为原则,力求建造一个集绿化、生态、美化于 一体的互通区环境。绿化满足交通要求,保证行 车安全,使司机视线畅通,转弯区有足够开阔的安图.2 全视距。乔、灌木结合,树立大绿化的思想,道路、互通的绿化与沿线自然的绿化环境 相结合,注意绿化的整体性和节奏感。 1、交通功能的绿化 (1)在互通出主车道的匝道口处种植一排具 有引导作用的乔木以诱导司机的视线,引道车辆 能安全的进入出口匝道,例如:淮南东立交G匝 道的栾树、高杆女贞。在绿化的设计上充分考虑图.3 到了互通区的功能的要求,使绿化与互通的功能结合,达到绿化美化同时又能对车辆起到交通的提示作用。如图2、图3所示。 (2)在车辆进入主线快车道与匝道口的 交接区域,充分考虑到主线行车应与接线口 保持良好的视点,使高速行驶的主线车辆能 观察到匝道的车辆,同时匝道口的车辆也能 了解主线快速道的车辆行驶情况,保证行车 的安全,所以这区域的绿化,只能种植低矮 的灌木,例如:淮南东互通2景观B、C、D 区红花继木球、丝兰、金边黄杨、红叶石楠 球等,否则会影响行车的视线,造成安全隐患。图.4 如图3所示区域。 2、互通植物种植原则 高速公路互通立交范围内的植物种植设计,除了诱导交通、提高交通安全主要作用

互通式立交的设计方法

互通式立交的设计方法 互通式立交的设计方法立交造型和位置的选取高速公路的总体设计思路确定以后,互通式立交位置的选取就显得比较重要,需要了解立交区域内许多自然条件,包括立交区域内的地形情况、岩石和水土的分布和气候条件,以及区域内植被情况, 道上不同区段的构造物采用不同的立面造型,以达到丰富立交景观的作用。从而使立交在整体造型上具有美观、大方的特点,并对周围景观起到优化的作用。 立交的坡面景观设计立交的坡面景观设计对于立交的整体设计是一个必不可少的部分,它使立交的造型具有优美、实用的特点。立交的坡面景观设计的一个主要途径是通过坡面修饰来实现的。

坡面修饰就是对匝道所包围着的区域,进行横断面设计时,根据匝道填土高度的不同,路基横坡度采用不同的值,越低越缓,一般在路肩3~4米的范围内作成园形,这样将使匝道的横断面在整体上具有柔和的自然形态,起到修饰和美化的作用。坡面修饰一般在环形匝道及三角区域内进行,而作为坡面修饰设计思路在设计文件中的具体反映即为等高线图。坡面修饰的等高线要尽可能地不与原有的地面 腐植土,可就近用于坡面修饰,减少了运距。 绿化是立交景观的重要组成部分,它兼起到宏观景观和微观景观的作用。立交的绿化主要以矮小灌木、草皮为主,从工程条件看,这些花草树木对路基边坡有一个稳定作用,此外它们对现有的景观还能起到补充的作用,调整工程中难以避免的景观影响,并同时保持了生态平衡。位于匝道两侧的矮小灌木、草皮对景观还

起着良好的衬托作用。由于匝道的平曲线半径一般较小,因而在曲线外侧的树木使曲线变化显得非常明显,而在内侧的树木既可增加识别匝道特征的能力,又能使景观与造型恰当地配合,但应注意的是,在立交内应种植矮小的灌木,以利于整个立交的通视,保证车辆的行驶安全。这些绿化仅能起到宏观景观的作用,作为互通式立交的绿化,还需搞一些集中的景观绿化,如在立交的匝道所包围着的区域内可适

丘陵地区城市快速路互通式立交设计体会--结合永九快速路与钟太快速路互通立交工程论述

丘陵地区城市快速路互通式立交设计体会--结合永九快速路 与钟太快速路互通立交工程论述 摘要:城市快速路相对高速公路,有基本不需考虑收费系统,以及出入口间距 及加减速车道控制指标相对较低等特点。针对地势起伏较大且农林用地限制因素 较多的丘陵地区,快速路互通相对高速公路互通可更加灵活紧凑。此外城市快速 路作为城市道路仍有地下管网需求,可引入服务带概念集中布置管网,并结合服 务带设置碟形边沟贯彻海绵城市理念。 关键词:城市快速路;互通立交;丘陵地区;服务带;碟形边沟 引言:本文为某丘陵地区两条城市快速路之间互通式立交设计实例,目前已 开工建设。文中结合城市快速路特点,介绍了该互通立交工程的设计思路及要点。并根据个人设计体会讨论了设施服务带及碟形排水边沟设置的特点。 一、项目背景 1.1地貌地质条件 项目位于广州知识城西北部,沿线丘陵相对高度20~60m,间夹山间冲沟、 小盆地,现状用地以农田、鱼塘、菜地、果林为主,零星分布有村庄、厂房等。 根据钻探揭露,场区从上往下覆盖层主要为第四系人工填土层(Q4ml),包括(素填土和杂填土)、第四系冲积层(Q4al)、第四系坡积层(Q4dl) 、第四系残 积层(Q3el)、基岩为燕山期四期(γ54)花岗岩。 1.2周边相关骨架交通简述 A、永九快速路 南北走向,红线宽度55米,规划断面双向十车道。北与新广从公路相交连接白云区、从化区,南接萝岗永和大道贯通整个黄埔区。 B、钟太快速路 东西走向,红线宽度45米,规划断面双向八车道。西接白云区新广从路可前往白云机场,向东贯穿知识城北部与北三环高速相交前往增城。 1.3与穗广深城际铁路的关系 根据搜集相关资料,穗莞深城际铁路规划线位在钟太快速的南侧。本互通方 案设计过程中与穗莞深城际铁路设计方案进行了对接,明确穗广深高架上跨本工 程并落实了布墩位置,避免了不必要的冲突。 二、总体方案及规模 永九快速线南起K15+000,北至K16+140,线路长1.14公里;钟太快速路段 西起K1+160,东至K2+436.972,线路长1.28公里。立交范围内的永九快速路主 线保持双向8车道,钟太快速路主线保持双向6车道。 立交范围内东北、西北、西南象限均为山体。可考虑利用现状地势布置匝道位置,增加匝道路基长度替代匝道桥以节约造价,路基纵断面尽量顺地势拉设,减少土 石方量。同时考虑避免侵占南侧基本农田及北侧山林禁建区。 三、方案设计 2035年钟太快速路-永九快速线交叉口高峰小时流量预测表(pcu/h) 道路名称进口道交通量小计合计 钟太快速路(东)左转 338 3759 17034 直行 2762 右转 659 钟太快速路(西)左转 359 3912

相关文档
最新文档