(完整版)河道治理河长制水质监测系统方案

(完整版)河道治理河长制水质监测系统方案
(完整版)河道治理河长制水质监测系统方案

河道治理河长制水质监测

“水是生命之源、生产之要、生态之基。”江河湖泊具有重要的

资源功能、生态功能和经济功能,是最重要的水源,也是人类赖以

生存的基础。

为进一步加强河湖管理保护工作,落实属地责任,健全长效机制,12 月 11 日,经中央全面深化改革领导小组第 28 次会议审议通过,中共中央办公厅、国务院办公厅印发了《关于全面推行河长制的意见》。

《意见》要求建立由党政主要负责同志领导的省、市、县、乡“四

级河长体系”,确认了六方面的主要任务:加强水资源保护、加强

河湖水域岸线管理保护、加强水污染防治、加强水环境治理、加强

水生态修复和加强执法监管。

《意见》对河湖水质提出了更高的要求,在其指导下,北京、上海、江苏、福建、浙江等地纷纷推出了地方性“河长制”《实施细则》

和《实施办法》,打响了污染防治、河道治理、建立河道管理保护

长效机制的攻坚战。

1.2河道治理与长效监管

河道治理是“河长制”的重要工作内容,上海市《关于本市全面推

行河长制的实施方案》中,提出了 2017 年底,实现全市河湖河长

制全覆盖,全市中小河道基本消除黑臭,水域面积只增不减,水质

有效提升;到 2020 年,基本消除丧失使用功能(劣于Ⅴ类)水体,重要水功能区水质达标率提升到78%,河湖水面率达到 10.1% 的工

作目标。

与短期的河道治理相比,河道水质的长效管理持续时间更长,涉及

部门和行业更多,协调和管理难度更大,是河湖管理保护中的一个

难点。缺乏有效的河道水质长效监管解决方案,业已修复的河道也

容易被再次污染,黑臭反弹,产生不良的社会影响。

1.3地表水环境质量标准基本项目标准限值

《地表水环境质量标准 GB3838-2002》适用于全国领域内江河、湖泊、运河、渠道、水库等具有使用功能的地表水水域。

1.4水域功能和标准分类

依据地表水水域环境功能和保护目标,按功能高低依次划分为五类;Ⅰ类主要适用于源头水、国家自然保护区;水质很好。既无天然

缺陷又未受人为直接污染,不需要任何处理。

Ⅱ类主要适用于集中式生活饮用水地表水源地一级保护区、珍稀水

生生物栖息地、鱼虾类产卵场、仔稚幼鱼的索饵场等;

Ⅲ类主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾

类越冬场、洄游通道、水产养殖区等渔业水域及游泳区;

Ⅳ类主要适用于一般工业用水区及人体非直接接触的娱乐用水区;

Ⅴ类主要适用于农业用水区及一般景观要求水域。

优为Ⅰ类和Ⅱ类水质,良好为Ⅲ类水质,轻度污染为Ⅳ类水质,中

度污染为Ⅴ类水质,重度污染为劣Ⅴ类水质。

1.5地表水主要水质指标详解

溶解氧(DO):代表溶解于水中的分子态氧。水中溶解氧指标是反映水体质量的重要指标之一,含有有机物污染的地表水,在细菌的作用下有机污染物质分解时,会消耗水中的溶解氧,使水体发黑发臭,会造成鱼类、虾类等水生生物死亡。在流动性好(与空气交换好)的自然水体中,溶解氧饱和浓度与温度、气压有关,零度时水中饱和氧气含量可 14.6mg/L,25℃为 8.25mg/L。水体中藻类生长时由于光合作用产生氧气,会造成表层溶解氧异常升高而超过饱和值。

pH 值:表征水体酸碱性的指标,pH 值为 7 时表示为中性,小于 7 为酸性,大于 7 为碱性。天然地表水的 pH 值一般为 6~9 之间,水体中藻类生长时由于光合作用吸收二氧化碳,会造成表层 pH 值升高。

水温:水温指标是一个比较特殊的物理指标。实际上对人体的健康及安全等并无直接的危害,其环境效应主要体现在两个方面:一是水温变化对水生生物的生长和发育存在着加速或抑制作用,二是水温对其他水质指标的环境效应有协同作用,比如在其他水质指标含量不变的情况下,水温升高或降低,可能会导致某些环境灾害现象的发生。

浊度:浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉砂、微细有机物、无机物、浮游动物和其他微生物等悬浮物和胶体物都可使水样呈现浊度。浊度值对于了解水质状况和水质处理有重要的指导意义。

COD:在水样中加入已知量的重铬酸钾溶液,并在强酸介质下以银盐作催化剂,经沸腾回流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾由消耗的硫酸亚铁铵的量换算成消耗氧的质量浓度。重铬酸钾的氧化能力很强,能够较完全地氧化水中大部分有机物和无机性等还原性物质,适用于污染较严重的水样分析。

总氮:水中各种形态无机和有机氮的总量。包括 NO3、NO2 和 NH4 等无机氮和蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。常被用来表示水体受营养物质污染的程度。水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。地表水中氮、磷物质超标时,微生物大量繁殖,浮游生物生长旺盛,出现富营养化状态。

水中油:水中的油类物质主要来自于工业废水和生活污水的污染,各种油类漂浮在水体表面,影响空气与水体界面间的氧交换;分散于水体中的油类可被微生物氧化分解,从而消耗水中的溶解氧,使

水质恶化,红外分光光度法不受油品种的影响,能比较准确地反映

石油类的污染程度。

高锰酸盐指数:以高锰酸钾为氧化剂,处理地表水样时所消耗的量,以氧的 mg/L 来表示。在此条件下,水中的还原性无机物(亚铁盐、硫化物等)和有机污染物均可消耗高锰酸钾,常被作为地表水受有

机污染物污染程度的综合指标。也称为化学需氧量的高锰酸钾法,

以别于常作为废水排放监测的重铬酸钾法的化学需氧量(COD)。

氨氮:水中以游离氨 (NH3) 和铵离子 (NH4+ ) 形式存在的氮,也

称水合氨,也称非离子氨。非离子氨是引起水生生物毒害的主要因子。水中的氨氮受微生物作用,可分解成亚硝酸盐氮,继续分解,

最终成为硝酸盐氮,此过程消耗水中 DO,还会造成藻类大量繁殖,即水体富营养化,水体发臭,鱼类死亡等等

总磷:就是水体中磷元素的总含量,水样经消解后将各种形态的磷

转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。对于

引发水体富营养化而言,磷的作用远大于氮的作用,水体中磷的浓

度不很高时就可以引起水体的富营养化。

2、河长制水质监测系统解决方案

“河长制”河道水质监测系统解决方案为河长制的落实提供全方位

的产品支持、系统平台支持和技术支持。通过现场检测和实时在线

监测,配合信息化系统和应用终端,帮助河道管理部门及时、准确

地掌握河道水质信息,为预警预报重大流域性水质污染事故,监管

污染物排放,以及监督总量控制制度落实等提供帮助。该解决方案

主要包括感知层、网络层和应用层。感知层主要是水质分析解决方案,包括了水质监测中心、岸边站、水质监测浮标和便携式水质检

测箱,提供了多种获取河道水质信息的方法,可以依据河道监测需

求以进行选择。网络层主要是网络通讯以及水质数据库,存储河道

及水质数据。应用层以应用软件为主,包括电脑管理终端和移动管

理终端。

2.1水质监测中心

水质监测中心是固定永久性水质监测站,具有较大的内部空间,支

持安装复杂的水质监测设备并提供良好的测试环境。水质监测中心

一般由采水和配水单元、分析测试单元、系统控制单元和通讯单元

等组成,具备完善的供水、供电、防雷、防水、保暖、防冻、网络

通讯以及视频监控等功能。在监测站内,还加装化学试剂柜、实验

台等设施,放置实验室分析测试设备等,使其在在线水质监测功能

之外,同时具备实验室水质分析能力。水质监测中心具有很大的灵

活性,分析测试单元可根据不同的监测需求进行选择,即可用于重

点监控江河断面的水质监测,也可用于普通河道的水质监测。

监测指标

PH、ORP、电导率 /TDS、溶解氧、浊度、COD、高锰酸盐指数、氨氮、总磷、总氮等。

2.2岸边站

岸边站是半永久性水质监测站,一般采用彩钢或不锈钢材料建造,

表面做喷塑或烤漆处理。岸边站由采水和配水单元、分析测试单元、

系统控制单元和通讯单元等组成,具备完善的供水、供电、防雷、

防水、保暖、防冻、网络通讯以及视频监控等功能。

岸边站占地面积小,建设周期短,适用于土地资源紧缺,地形复杂,无法建设砖瓦结构站房的场景。岸边站可采用整体设计,在必要时

可进行整体迁移。

监测指标

PH、ORP、电导率 /TDS、溶解氧、浊度、COD、高锰酸盐指数、氨氮、总磷、总氮等。

2.3水质监测中心和岸边站的结构设计

采水单元

采水单元主要用于从河道抽取水样,通常由采样泵、采样浮筏和粗

隔离栅、压力流量监控及采水管道等组成。

配水单元和样品预处理单元

水单元采集的水样,通过配水单元分配给不同的分析测试设备,以

及自动留样器。配水单元同时也具备自动清洗功能,通过使用自来

水进行反向冲洗,可以排除管路和系统内的泥沙等杂质和污染物,

确保管路通常。

样品预处理单元负责水样的预处理及分配过程,保证水样满足各分

析仪器的进样要求。通常情况下,常规五参数(温度、pH、溶解氧、电导率、浊度)的测量不需要进行预处理,可以直接分析。其他分

析仪器,如氨氮等,通常需要经过多级过滤,进行预处理后,才可

进样测试。

2.4水质监测浮标

江河、湖泊、水库是重要的饮用水水源,也是水环境治理和监管的

重要环节。基于自动水质分析仪器的水质监测站具有强大的水质监

测能力,具有良好的测试准确性和可靠性。但在实际应用中,也面

临一些局限性,特别是:

● 占用岸边土地资源,选址难度大;

● 需要一定的供电供水等基础保障设施,在偏远的山区难以实现;

● 采样点比较固定,无法对特殊位置进行取样等。

水质检测浮标结合了现代传感器技术,自动控制技术和物联网技术,可以实时监测水体的化学和理变化,实现数据的远传和分析。通过

大数据建立水质污染指数模型和特征污染物预测数据库,可以对河

道水质变化进行预测,并对突发性污染事件进行预警。

主要监测指标

● 水质参数: pH、ORP、电导率、TDS、盐度、溶解氧、浊度、温度、氨氮、COD、TOC、叶绿素 a、蓝绿藻、硝氮等;

应用领域

● 水源地预警;

● 江河、湖泊、湿地、海洋等的生态监测;

● 蓝藻、赤潮的监测和预警;

● 富营养化状况监测和调查;

● 生态修复工程的效果评估和长效监管;

● 水产养殖水质环境监测;

● 突发性污染事件监测和预警。

水质监测浮标

主要特点

● 直接投放到河道中进行水质监测,使用简单灵活,不占用岸边土地;

● 浮标体采用不锈钢材质制作,抗撞击能力强,防生物附着性,耐腐蚀;

● 大浮力设计,有效载荷更高,可搭载更多水质监测设备和辅助设备,存放电池和电子设备的密封箱水密封性佳;

● 浮标具有自平衡能力,具有良好的抗风抗浪性能;

● 采用传感器进行水质监测,可根据测试需求配置不同传感器,测试过程绿色无污染;

● 支持蓄电池和太阳能双重供电,有效提高续航时间;

● 支持无电报警,提示运维周期;

● 支持单点标定、多点标定、动态标定功能;

● 支持双向通讯,可远程控制浮标,调整测量参数;

● 支持大容量的数据采集和存储;

● 支持数据无线传输,可设置测试和数据发送间隔;

● 支持传感器自清洗功能,减少日常维护量;

● 支持 GPS,支持全球定位;

● 支持离水报警和位置偏离报警,加强防盗功能;

● 具有警示灯标,有效提醒过往船只,防止碰撞;

● 具有固定及回收系统,可根据水下不同情况选择不同形式的锚和抛锚方式。

4.1.硬件方案

1 在线多参数传感器

- 标配5种参数

(溶解氧、电导率、PH、氨氮,

温度、浊度传感器)

- 信号输出:Rs485

(Modbus/RTU)

- 线缆长度可选

- 防护等级IP68

2 一体式荧光法溶氧传感器

- 荧光法电极

- 0-20mg/L, 0~200%饱和度

- 信号输出:Rs485

(Modbus/RTU)

- 线缆长度可选

- 防护等级IP68

3 在线PH传感器

- 标配工业PH电极

- 内置温度补偿

- 信号输出:Rs485

(Modbus/RTU)

- 线缆长度可选

- 防护等级IP68

4 数据采集仪

-基本接口:8路AI,8路DI,1

路RS485,6路RS232,2路继电

器输出

支持

GPRS/CDMA/ADSL/L

AN/PSTN拨号等多种通讯方式

软件方案

PC端上位机画面

通过有线/GPRS无线模块实时传输给PC的上位机软件,做到了远程监测而不必一直监控触摸屏,节省了人力物力。

移动端显示

通过有线/GPRS无线模块实时传输给移动设备上,做到了远程监测而不必一直监控触摸屏,节省了人力物力。

1.方案特点

◆智能化站点控制,具备设备运行状况实时监控、远程监控、

动态显示及数据管理功能

◆采水方案、数据传输多样化,根据实际需求可选

◆准确、稳定可靠的分析技术,独特的高度定量设计

◆系统集成度高、故障率低,维护量小,有效数据率大大提高

◆扩展性强,并兼容市场主流的各家仪表

◆以第三方运营为保障手段,确保系统和设备的有效运行

上塘河水质监测方案设计

文件编号: 版本: 发布日期: 发布人: 上 塘 河 水 质 检 测 方 案 作者徐金立 学号 201406660321 指导老师曾滔 2016年 10月

第一章背景调查与初步方案制定 (1) 1.1上塘河水质状况背景 (1) 1.1.1水体的水文、气候、地质、和地貌资料 (1) 1.1.2沿岸布局,污染源等情况 (1) 1.2监测断面设置,与采样点的布设 (2) 1.2.1河流监测断面设置 (2) 1.2.2河流采样点设置 (3) 1.2.3采样时间和采样频率的确定 (3) 1.2.4检测项目设定 (3) 1.3水样的采集,运输和保存 (3) 1.3.1水样的采集与运输 (3) 1.3.2水样的保存 (3) 第二章水样预处理与项目检测 (4) 2.1水样的消解 (4) 2.2水样的富集与分离 (4) 2.3采样及检测技术选择 (5) 第三章结果表达与质量保证 (6) 3.1结果表达 (6) 3.2质量控制 (7) 3.2.1采样时质量控制 (7) 3.2.2实验时的质量控制 (7)

第一章背景调查与初步方案制定 1.1上塘河水质状况背景 1.1.1水体的水文、气候、地质、和地貌资料 水文:上塘河位于杭州市区东北,源自施家桥,从杭州城区丁桥镇进入余杭境内,穿越星桥镇、临平镇,至施家堰进入海宁,经海宁盐官镇进入钱塘江。全长48公里。河面宽30-50米,最宽处70米,流域面积245 平方公里。上塘河多年年平均水位为2.9米。上塘河干流连接众多支流,相互沟通。互相贯通的支流有杭笕港、颜家漾、杨家村河等。杭州市年平均降水量在1100~1600毫米之间,年雨日130~160天。杭州市年平均蒸发量为1150~1400毫米。地域分布上南部大于北部。 气候:杭州市地处长江三角洲南翼,杭州湾西端,钱塘江下游,京杭大运河南端,属亚热带季风气候区。杭州市年平均气温15.3℃~17℃。地域分布上南部高于北部,平原高于山区。 地貌资料:杭州市杭州地处长江三角洲南沿和钱塘江流域,地形复杂多样。杭州市西部属浙西丘陵区,主干山脉有天目山等。东部属浙北平原,地势低平,河网密布,湖泊密布,物产丰富,具有典型的“江南水乡”特征。 水环境现状:随着上世纪70年代,城市建设和工业发展的加速,大量工业废水和生物污水排入上塘河干流和支流,导致上塘河水质急剧恶化,有机污染严重,常年处于V类和劣V类水。经过河道配水工程和五水共治项目,河道水有了环境性好转,但由于多年沉积在河流底部的污染物没有彻底清除,河流水质很不稳定。 1.1.2沿岸布局,污染源等情况 水体沿岸用地状况和河段污染概况:该河段沿岸为学生宿舍楼尚德园、梦溪村、新教科大楼和师生活动中心以及部分小区住所,人口分布密集,靠近德胜路处有一间工厂房。排污过多,污染源多在校园,主要有食堂污水、实验室废水、泳池废水、医疗污水、生

哈希水质在线监测系统方案

地表水/水源地水质自动监测站 建 设 方 案 二〇一一年六月 哈希水务科技(杭州)有限公司

目录 一、概述3 (一)水源地自动监测站概念 (3) (二)水源地自动监测站组成 (3) (三)水源地自动站建设步骤 (3) 二、站房建设及配套设施基本要求4 (一)确定站房位置 (4) (二)站房主体 (4) (三)站房基础及外环境 (4) (四)站房仪器间 (5) (五)配套设施 (5) (六)站房给排水要求 (5) (七)防雷及其他电器设计要求 (6) (八)防火和防盗设施 (7) (九)站房建设经费 (8) 三、分析仪器选项要求 9 (一)水质在线监测分析仪器主要监测的参数项 (9) (二)通常标准监测项目 (9) (三)自动监测仪器分析方法 (9) (四)在线监测仪器选型要求 (9) (1)水质五参数分析仪 (9) (2)高锰酸盐指数分析仪 (11) (3)氨氮分析仪 (11) (4)总磷/总氮分析仪 (12) (5)总有机碳分析仪TOC (12) (6)蓝绿藻分析仪 (13) 四、水质重金属在线监测方案14 (一)水质重金属在线分析仪种类: (14) (二)水质重金属在线分析仪性能介绍 (15) (1)在线总砷分析仪 (15) (2)在线总铅分析仪 (17) (3)在线总铬分析仪 (20) (4)在线总镉分析仪 (22) 五、水质自动监测系统建设说明 25 (一)系统构成及性能要求 (25) (1)系统构成 (25) (2)系统说明 (26) (3)系统主要功能 (26) (二)控制系统及中心软件 (28) (三)水质自动站监测系统主要参数要求 (30) (四)水样预处理系统 (35) (五)数据采集及通讯系统 (37) (六)质量控制与质量保证 (47)

水质监测解决方案的制定.doc

第三节水质监测方案的制定 一、地面水质监测方案的制订 (一)基础资料的收集 在制订监测方案之前,应尽可能完备地收集欲监测水体及所在区域的有关资料,主要有: (1)水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化;降雨量、蒸发量及历史上的水情;河流的宽度、深度、河床结构及地质状况;湖泊沉积物的特性、间温层分布、等深、线等。 (2)水体沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等。 (3)水体沿岸的资源现状和水资源的用途;饮用水源分布和重点水源保护区;水体流域土地功能及近期使用计划等。 (4)历年的水质资料等。 (二)监测断面和采样点的设置 在对调查研究结果和有关资料进行综合分析的基础上,根据监测目的和监测项目,并考虑人力、物力等因素确定监测断面和采样点。 1、监测断面的设置原则 在水域的下列位置应设置监测断面: (1)有大量废水排入河流的主要居民区、工业区的上游和下游。 (2)湖泊、水库、河口的主要入口和出口。 (3)饮用水源区、水资源集中的水域、主要风景游览区、水上娱乐区及重大水力设施所在地等功能区。 (4)较大支流汇合口上游和汇合后与干流充分混合处;入海河流的河口处;受潮汐影响的河段和严重水土流失区。 (5)国际河流出入国境线的出入口处。 (6)应尽可能与水文测量断面重合,并要求交通方便,有明显岸边标志. 2、河流 (1)监测断面的设置原则: ①在确定的调查范围的两端应布设断面, ②调查范围内重点保护水域重点保护对象附近水域应设断面, ③水文特征突然变化处(支流汇入处)水质急剧变化处(污水排入处)重点水工构建物(取水口桥梁涵洞)水文站附近应设断面. 对于江、河水系或某一河段,要求设置三种断面,即对照断面、控制断面和削减断面。 ①对照断面: 为了解流入监测河段前的水体水质状况而设置。这种断面应设在河流进入城市或工业区以前的地方,避开各种废水、污水流入或回流处。一个河段一般只设一个对照断面。有主要支流时可酌情增加。 ②控制断面: 为评价、监测河段两岸污染源对水体水质影响而设置。控制断 面的数目应根据城市的工业布局和排污口分布情况而定。断面的位置与废水排放口的距离应根据主要污染物的迁移转化规律,河水流量和河道水力学特征确定.一般设在排污口下游500-1000m处.

河长制湖长制信息管理系统建设技术指引-水利部

附件2 河长制湖长制管理信息系统建设 技术指南 水利部推进河长制工作领导小组办公室 水利部信息中心 2018年1月

目录 一、总则 (1) (一)编制目的 (1) (二)适用范围 (1) (三)编制依据与引用标准规范 (1) 二、总体架构 (2) (一)基本组成 (2) (二)基础设施 (4) (三)数据资源 (4) (四)应用支撑服务 (5) (五)业务应用 (5) (六)业务应用门户 (5) 三、河长制湖长制管理数据库 (5) (一)一般要求 (5) (二)基础数据库 (7) (三)动态数据库 (7) (四)属性数据库 (8) (五)空间数据库 (8) 四、河长制湖长制管理业务应用 (9) (一)一般要求 (9) (二)信息管理 (10)

(四)巡河管理 (11) (五)事件处理 (12) (六)抽查督导 (12) (七)考核评估 (12) (八)展示发布 (13) (九)移动服务 (14) 五、相关业务协同 (15) (一)一般要求 (15) (二)水文水资源 (16) (三)水政执法 (16) (四)工程管理 (16) (五)水事热线 (17) 六、信息安全 (17) (一)一般要求 (17) (二)物理安全 (18) (三)应用安全 (18) (四)主机安全 (19) (五)网络安全 (20) (六)数据安全 (20) (七)安全管理 (21) 七、其他要求 (22)

(二)河湖分级名录建设 (23) (三)数据更新 (24) (四)数据交换 (24)

一、总则 (一)编制目的 根据《中共中央办公厅国务院办公厅印发<关于全面推行河长制的意见>的通知》(厅字[2016]42号)精神,为全面推进和规范河长制湖长制管理信息系统建设,完善管理制度,提高管理水平,特制定本技术指南。 (二)适用范围 适用于全国各级河长制湖长制管理信息系统的设计、建设和运行管理等。 (三)编制依据与引用标准规范 《中共中央办公厅国务院办公厅印发<关于全面推行河长制的意见>的通知》(厅字〔2016〕42号); 《关于在湖泊实施湖长制的指导意见》(厅字〔2017〕51号); 水利部环境保护部关于印发贯彻落实《关于全面推行河长制的意见》实施方案的函(水建管函〔2016〕449号); 《国务院办公厅关于印发政务信息系统整合共享实施方案的通知》(国办发〔2017〕39号); 《关于积极推进“互联网+”行动的指导意见》(国发〔2015〕40号);

水质自动监测系统方案说明

水质自动监测系统

二零一三年六月

目录 第一章概述 (2) 第二章水质自动监测站 (3) 2.1组成单元 (3) 2.2主要功能 (4) 第三章水质分析单元 (6) 3.1五参数分析仪 (6) 3.2 COD分析仪 (7) 3.3总磷、氨氮分析仪 (7) 第四章水质在线监测管理软件 (9) 第五章工程量清单 (12)

第一章概述 水质自动监测系统是以在线自动分析仪器为核心,运用现代自动监测技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统。系统完全实现水样的自动采集和预处理,水质分析仪器的连续自动运行,对监测数据能自动采集和存储,能提供远程传输接口及控制接口。 水质自动监测系统能做到实时、连续监测和远程监控,能够及时掌握主要流域重点断面和水源水体水质状况,预警预报重大流域性水质污染事故,在发生重大水污染时掌控水源水质状况,做到防范、解决突发水污染事故的目的。同时还可以在发生源水水质污染时及时通报政府相关部门,启动相应应急预案,确保城市供水安全。

第二章水质自动监测站 水质自动监测站由取水单元、水样预处理及配水单元、分析监测单元、现场系统控 制单元、通信单元、辅助单元和监测中心管理系统组成。系统工作以在线自动监控仪表为核心,取水、预处理工程为辅助,数据采集传输和远程监控为最终目的 2.1组成单元 取水单元:负责完成水样采集和输送的功能,分别有浮船式、滑杆式、悬臂式等。 水样预处理及配水单元:负责完成水样的一级、二级预处理和将水或气导入到相应的管路,以达到水样输送和清洗的目的。水样预处理采用旋转式固液分离器和全自动自清洗型过滤器的方式,是江河瑞通公司专为在线水质自动监测站设计制造的,由旋转式固液分离器、过滤芯等组成,主要应用于含沙量比较大的地表水区域。目前,该产品在松辽流域、海河流域、淮河流域应用广泛,使用效果得到了用户的肯定。 分析监测单元:由监测分析仪表组成,完成系统水样监测分析任务。目前主要监测的参数有温度、电导率、溶解氧、pH浊度、总磷、总氮、氨氮、叶绿素a、蓝绿藻、有机物、重金属、综合毒性、微生物等。

地表水环境监测方案

地表水水质监测方案 ——广州大学内水质监测一、监测目的 (1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。 (2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。 (3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。 (4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。 二、基础资料的收集 本次监测选取了校园网主场至生化实验楼区域水域进行监测。根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下: 1.地形地貌 广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。小岛总体地形是东北高、西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,

有着树枝状般的水系。 2.气象 广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。 3.水文 广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。潮汐周期为半个月,即15天。每年的1~3月份平均潮位较低,6~9月份较高。各月均值之间差值一般只有0.2米左右,变化较小。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人

水质在线监测系统方案

水质在线监测系统

智易时代科技发展 联系人:莫珊珊工程师 手机: 2015年12月 目录 第一章公司简介 (1) 第二章项目介绍 (2) 2.1项目背景 (2) 2.2项目意义 (2) 2.3项目作用 (3) 2.4核心技术 (3) 2.5平台搭建 (3) 2.6功能概述 (4) 2.7基数数据保障 (4) 第三章产品信息 (5) 3.1 COD快速检测仪 (5) 3.2 NH3-N氨氮检测仪 (6) 3.3 PH检测仪 (8)

第四章系统说明 (9) 4.1实时数据显示 (9) 4.2水源质量综合指数数据 (11) 4.3历史数据查询 (11) 4.4预警设置 (12) 4.5功能设置 (12) 第五章联系我们 (13) 5.1加盟合作 (13) 5.2服务资质 (15)

智易时代科技发展是由南开大学博士团队创建的高科技软件研发与信息系统集成公司,注册于市滨海高新技术产业园区,公司主要从事软件开发、系统集成、互联网信息技术领域的软件研发和信息系统集成。 公司与南开大学软件学院、南开大学信息学院、大学信息学院始终保持着良好的合作。以南开大学为技术核心支撑,校企优势互补,促进科研成果转化。 我们开发的项目及案例:市科技型中小企业创新基金天使投资项目申报系统;中医一附属医院大型一卡通项目,包括食堂售饭,超市购物,职工门禁,职工自行车借用等子系统;互联网+智慧消防水源管理系统;安卓项目评审系统;市风险补偿金系统;在线二维码生成系统;中国创新创业大赛尽调系统;班车宝APP及云平台;第三方物流APP及云平台;配合实施北辰区环保监测网格化监测平台等; 智易时代科技发展以南开大学为技术的研发支撑,从而使公司的核心技术,如软件开发、建设、电子商务和信息自动化技术的都有强有力支持。同时,智易时代公司与南开大学软件学院、信息学院、大学信息学院始终保持着良好的合作关系,形成优势互补。 智易时代科技发展的核心团队,有多年的互联网开发,软件开发等积累了丰富的开发和运营经验,公司创始人是连续创业者,创办了多家公司,具有深厚的技术背景和公司运营经验。公司面向移动互联网,不断开拓创新,聘请今日头条的资深技术专家作为技术顾问,聘请出门问问的市场专家做为公司的营销顾问。面向市场,开拓进取,以客户需求为导向,给客户提供专业的移动互联网信息化解决方案,不断为客户创造价值。

河道治理河长制水质监测系统方法

精心整理河道治理河长制水质监测“水是生命之源、生产之要、生态之基。”江河湖泊具有重要的资源功能、生态功能和经济 功能,是最重要的水源,也是人类赖以生存的基础。日,经月12为 进一步加强河湖管理保护工作,落实属地责任,健全长效机制,11 次会议审议通过,中共中央办公厅、国务院办公中央全面深化改革领 导小组第28 厅印发了《关于全面推行河长制的意见》《意见》要求 建立由党政主要负责同志领导的省、市、县、乡“四级河长体系”确 认了六方面的主要任务:加强水资源保护、加强河湖水域岸线管理保 护、加强污染防治、加强水环境治理、加强水生态修复和加强执法监 管《意见》对河湖水质提出了更高的要求,在其指导下,北京、上海、 江苏、福建浙江等地纷纷推出了地方性“河长制”《实施细则》和《实 施办法》,打响了污防治、河道治理、建立河道管理保护长效机制的 攻坚战 1.河道治理与长效监管

河道治理是“河长制”的重要工作内容,上海市《关于本市全面推行河长制的实施方案》中,提出了2017年底,实现全市河湖河长制全覆盖,全市中小河道基本消除黑臭,水域面积只增不减,水质有效提升;到2020年,基本消除丧失使用功能(劣于Ⅴ类)水体,重要水功能区水质达标率提升到78%,河湖水面率达到10.1% 的工作目标。.精心整理 与短期的河道治理相比,河道水质的长效管理持续时间更长,涉及部门和行业更多,协调和管理难度更大,是河湖管理保护中的一个难点。缺乏有效的河道水质长效监管解决方案,业已修复的河道也容易被再次污染,黑臭反弹,产生不良的社会影响。 1.3地表水环境质量标准基本项目标准限值 《地表水环境质量标准GB3838-2002》适用于全国领域内江河、湖泊、运河、渠道、水库等具有使用功能的地表水水域。 1.4水域功能和标准分类 依据地表水水域环境功能和保护目标,按功能高低依次划分为五类 Ⅰ主要适用于源头水、国家自然保护区;水质很好。既无天然缺陷又未受人直接污染,不需要任何处理 Ⅱ类主要适用于集中式生活饮用水地表水源地一级保护区、珍稀水生生物栖息地鱼虾类产卵场、仔稚幼鱼的索饵场等 Ⅲ主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、洄通道、水产养殖区等渔业水域及游泳区 Ⅳ类主要适用于一般工业用水区及人体非直接接触的娱乐用水区

地表水水质监测的方案

地表水水质监测方案 一.明确监测目的 (1)对校园内教学区、生活区、实验区、食堂商业区、校园景观的用水及水质进行监测,掌握校园水质情况。 (2)进一步熟练掌握水质监测中的各项实验操作技术,掌握地表水中各中指标与污染物的测定方法。 (3)学会应用环境质量标准评价校园环境,并提出改善校园水质的意见和建议。 二.基础资料的收集 广州大学图书馆至生化楼实验区域的水域进行监测,该河段属于珠江水系广州段,根据《广州市水文地质分析》,该水域的有关资料如下: 1.地形地貌 广州市地处珠江三角洲的北部边缘,是三角洲平原与低山丘陵区的过渡带,地形总的特征是东北高,西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,海拔标高一般在300m 一下,地形高差250m左右,坡度15°~35°,水系呈树枝状,切割强烈。西部是由河流堆积组成的冲积平原,南部为微向南倾斜的珠江三角洲平原,标高5~7m,其中分布零星的残丘和苔地。 2.气象 广州市地处南亚热带,属海洋性季风气候,年平均气温为21.4℃~21.9℃,北部21.4℃,中部21.7℃,南部21.9℃。最热是7~8月,平均气温28.0℃~ 28.7℃,绝对最高气温是38.7℃。年平均降雨量172517mm,相对集中在4 ~9月的雨季,占全年的82.1%,兼受台风的袭扰,年平均蒸发量160315mm。 3.水文 珠江、东江和溪流河在本区交汇,经狮子洋入海,是区域地下水的最低排泄基准面。冲积平原和三角洲平原,地势低平,地表水系发达,水网密布,分布有大中小河流34条。根据水资源航空遥感调查,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011Km2,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位位0.72m,平均低潮水位为-0.88m,涨潮最大朝差2.56m,落潮最大潮差3.00m。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,宽约4.5m,水深约1.5m,流经生化实验楼和工程实验楼,水质受到这两次污染源的影响。监测河段在学校的位置示意图如下:

水环境监测方案

地面水质监测方案的制订 (一)基础资料的收集 (1)水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化,降雨量、蒸发量及历史上的水情,河流的宽度、深度、河床结构及地质状况,湖泊沉积物的特性、间温层分布、等深线等。 (2)水体沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等。 (3)水体沿岸的资源现状和水资源的用途,饮用水源分布和重点水源保护区:水体流域土地功能及近期使用计划等。 (4)历年的水质资料等 (二)监测断面和采样点的设置 ①监测断面的设置原则 ②河流监测断面的设置 ③采样点的确定 ④湖泊水库监测断面的设置 ⑤采样时间和采样频率 采样断面——﹥采样垂线——﹥采样点位 监测断面的设置原则: (1)有大量废水排入河流的主要居民区、工业区的上游和下游。 (2)湖泊、水库、河口的主要入口和出口。

(3)饮用水源区、水资源集中的水域、主要风景游览区、水上娱乐区及重大水力设施所在地等功能区。 (4)较大支流汇合口上游和汇合后与干流充分混合处,入海河流的河口处,受潮汐影响的河段和严重水土流失区。 (5)国际河流出入国境线的出入口处。 (6)应尽可能与水文测量断面重合;并要求交通方便,有明显岸边标志。

说明: (1)垂线布设应避开污染带,要测污染带应另加垂线 (2)确能证明该断面水质均匀时,可仅设中泓垂线 (3)凡在该断面要计算污染物通量时,必须按上述设垂线 说明: (1)上层指水面下0.5m处,水深不到0.5m时,在水深1/2处

(2)下层指河底以上0.5m处. 中层指水深 (3)封冻时在冰下0.5m处,水深不到0.5m时,在水深1/2处 (4)在该断面要计算污染物通量时,必须按上述设采样点 (三)湖泊、水库监测断面的设置 (1)在进出湖泊、水库的河流汇合处分别设置监测断面。 (2)以各功能区(如城市和工厂的排污口、饮用水源、风景游览区、排灌站等)为中心,在其辋射线上设置弧形监测断面。 (3)在湖库中心,深、浅水区,滞流区,不同鱼类的回游产卵区,水生生物经济区等设置监测断面。 (四)采样时间和采样频率的确定 ①较大水系干流和中、小河流:全年采样不少于6次,采样时间为丰水期、枯水期和平水期,每期采样两次。 ②流经城市工业区、污染较重的河流、游览水域、饮用水源地全重采样不少于12次,采样时间为每月一次或视具体情况选定。 ③底泥每年在枯水期采样一次。 ④潮汐河流:全年在丰、枯、平水期采样,每期采样两天,分别在大潮期和小潮期进行,每次应采集当天涨、退潮水样分别测定。 ⑤排污渠每年采样不少于三次。 ⑥设有专门监测站的湖、库,每月采样1次,全年不少于12次。其他湖泊、水库全年采样9次,枯、丰水期各1次。有废水排入、污染较重的湖、库,应酌情增加采样次数。

小型水文水质自动监测站技术方案范文

小型水文水质自动监测站技术方案 1. 概述 水文水质监测是为国家合理开发利用和保护水土资源提供系统水文水质资料的一项重要的基础工作,是水生态、水资源、水安全科学管理和保护的基础。水质监测的目的是及时、准确、全面地反映水环境质量现状及发展趋势,为水环境监测、管理、规划、污染防治、生态预警等提供科学依据。 水文水质在线自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术、GIS 技术以及相关的专用分析软件和通信网络所组成的一个综合性的在线自动监测系统。水质在线自动监测系统是一套把多项监测指标的分析仪表组合在一起,从采样、分析到记录、整理数据(包括远程数据)、中心遥测组成的系统,结合相应的监控及分析软件,实现实时在线自动监测,满足运行可靠稳定,维护量少的要求,并实现无人值守。 一套完整的大型大型水质在线自动监测系统,由于其系统复杂,建设成本高,建设周期长,运营维护成本高等原因。进行大面积的布点建设存在较大的困难。 随着国际上水质技术的发展,多参数高集成的设备已经得到了广泛的认可。利用国外先进的高集成的一体化多参数水质监测仪,配合我公司数据采集遥测系统及通用水环境水资源管理监控平台软件,可以非常方便的实现地表水、地下水、水源水、饮用水、排放口、海洋等不同水体的水质自动在线监测,有效的实时监测水质的变化情况,为水生态、水环境、水安全的有效管理提供可靠的分析和监控。 监测的指标主要包括包括水位、流量、水温、溶解氧、pH 、电导、盐度、浊度、蓝绿藻,氨氮离子等多种参数。所监测的各类指标可通过有线或无线传输方式传送到监控中心,也可在监测现场实时读取数据。 2. 技术方案 2.1 系统组成: 系统主要包括Nimbus 气泡水位计、SLD 超声波多普勒流量计、Hydrolab 多参数水质分析仪、数据采集遥测系统、供电系统、监控管理软件等几部分组成。

长沙望城区河长制水质监测方案

长沙市望城区河长制水质监测方案 第一条为进一步加强全区范围内“一江七河两湖库”等水域水质监测工作,根据《关于全面推行河长制的实施意见》(望办发〔2017〕21号),经区环保、水务和卫计等部门共同商定,特联合制定本方案。 第二条监测范围 1、江河湖库监测对象省管理河流湘江(望城段),市管河流沩水河、沙河,以及区级管河流老沩水河、石渚河、马桥河、八曲河、乔口撇洪河、团头湖、格塘水库。监测控制断面为区(县市)行政交界断面、主要支流入河口特征断面、水厂取水口断面和湖库控制断面。本方案暂设置19个监测控制断面(见附表1)。 2、生活饮用水监测对象为10个自来水厂(长沙市望城区自来水公司望城水厂、长沙市望城区洪家洲社区水厂、长沙市望城区铜官自来水公司、长沙市望城区桥驿镇雨潭岭移民安全饮水工程、长沙市望城区茶亭镇天泉自来水有限公司、长沙市望城区苏廖村水厂、长沙市望城区东城镇自来水有限公司、长沙市望城区靖港镇自来水厂、长沙市望城区乔口社区水厂和长沙市望城区井源自来水公司;见附表2)的出厂水和末梢水。 3、污水处理厂监测对象为城镇2个(长沙市望城区第一污水处理厂和长沙市望城区第二污水处理厂)乡镇12个(望城区东城污水处理厂、望城区茶亭污水处理厂、望城区桥驿污水处理厂、望城区杨桥污水处理厂、望城区乔口污水处理厂、望城区格

塘污水处理厂、望城区靖港古镇污水处理厂、望城区靖港新镇污水处理厂、望城区新康污水处理厂、望城区乌山污水处理厂、望城区白箬铺污水处理厂和望城区白箬铺镇友仁污水处理厂;见附表3)。 第三条监测指标 地表水监测标准按《地表水环境质量标准》(GB 3838-2002)执行。 生活饮用水监测标准按《生活用水卫生标准》(GB 5749-2006)执行。 污水处理厂监测标准按《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级标准B标准执行。 第四条监测频率 定期监测,每月一次。若发现水质异常,加密监测频率。 第五条监测实施 望城区水质监测工作由区环保局牵头,区水务局、区卫计局共同配合,按照相关监测标准、操作规范开展水质监测工作。 (一)2018年1月底前,由责任监测单位环保局、卫计局、水务局,按照据实需要、合理布局、共同确定原则布设采样点,由水务局设立永久性采样断面标志牌。 (二)每月由责任监测单位持证监测人员、监管人员组成采样组,按照《地表水和污水监测技术规范》(HJ/T 91-2002)、《生活饮用水标准检验方法》(GB 5750-2006)、《水和废水监测分析方法》要求,进行采样、拍照,确保样品加密流转。实验室按监测指标要求进行定量分析,并对监测断面水质变化情况、

地表水水质监测方案1

地表水水质监测方案 —大学城广州大学校园内水质监测 一.明确监测目的 (1)对校园内教学区、生活区、实验区、食堂商业区、校园景观的用水及水质进行监测,掌握校园水质情况。 (2)进一步熟练掌握水质监测中的各项实验操作技术,掌握地表水中各中指标与污染物的测定方法。 (3)学会应用环境质量标准评价校园环境,并提出改善校园水质的意见和建议。 二.基础资料的收集 广州大学图书馆至生化楼实验区域的水域进行监测,该河段属于珠江水系广州段,根据《广州市水文地质分析》,该水域的有关资料如下: 1.地形地貌 广州市地处珠江三角洲的北部边缘,是三角洲平原与低山丘陵区的过渡带,地形总的特征是东北高,西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,海拔标高一般在300m 一下,地形高差250m左右,坡度15°~35°,水系呈树枝状,切割强烈。西部是由河流堆积组成的冲积平原,南部为微向南倾斜的珠江三角洲平原,标高5~7m,其中分布零星的残丘和苔地。 2.气象 广州市地处南亚热带,属海洋性季风气候,年平均气温为21.4℃~21.9℃,北部21.4℃,中部21.7℃,南部21.9℃。最热是7~8月,平均气温28.0℃~ 28.7℃,绝对最高气温是38.7℃。年平均降雨量172517mm,相对集中在4 ~9月的雨季,占全年的82.1%,兼受台风的袭扰,年平均蒸发量160315mm。 3.水文 珠江、东江和溪流河在本区交汇,经狮子洋入海,是区域地下水的最低排泄基准面。冲积平原和三角洲平原,地势低平,地表水系发达,水网密布,分布有大中小河流34条。根据水资源航空遥感调查,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011Km2,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位位0.72m,平均低潮水位为-0.88m,涨潮最大朝差2.56m,落潮最大潮差3.00m。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,宽约4.5m,水深约1.5m,流经生化实验楼和工程实验楼,水质受到这两次污染源的影响。监测河段在学校的位置示意图如下:

河道治理河长制水质监测系统方案

河道治理河长制水质监测 “水是生命之源、生产之要、生态之基。”江河湖泊具有重要的 资源功能、生态功能和经济功能,是最重要的水源,也是人类赖以 生存的基础。 为进一步加强河湖管理保护工作,落实属地责任,健全长效机制,12 月 11 日,经中央全面深化改革领导小组第 28 次会议审议通过,中共中央办公厅、国务院办公厅印发了《关于全面推行河长制的意见》。 《意见》要求建立由党政主要负责同志领导的省、市、县、乡“四 级河长体系”,确认了六方面的主要任务:加强水资源保护、加强 河湖水域岸线管理保护、加强水污染防治、加强水环境治理、加强 水生态修复和加强执法监管。 《意见》对河湖水质提出了更高的要求,在其指导下,北京、上海、江苏、福建、浙江等地纷纷推出了地方性“河长制”《实施细则》 和《实施办法》,打响了污染防治、河道治理、建立河道管理保护 长效机制的攻坚战。 1.2河道治理与长效监管

河道治理是“河长制”的重要工作内容,上海市《关于本市全面推 行河长制的实施方案》中,提出了 2017 年底,实现全市河湖河长 制全覆盖,全市中小河道基本消除黑臭,水域面积只增不减,水质 有效提升;到 2020 年,基本消除丧失使用功能(劣于Ⅴ类)水体,重要水功能区水质达标率提升到78%,河湖水面率达到 10.1% 的工 作目标。 与短期的河道治理相比,河道水质的长效管理持续时间更长,涉及 部门和行业更多,协调和管理难度更大,是河湖管理保护中的一个 难点。缺乏有效的河道水质长效监管解决方案,业已修复的河道也 容易被再次污染,黑臭反弹,产生不良的社会影响。 1.3地表水环境质量标准基本项目标准限值 《地表水环境质量标准 GB3838-2002》适用于全国领域内江河、湖泊、运河、渠道、水库等具有使用功能的地表水水域。

水质监测方案word版

地面水质监测方案的制订 时间:2006-12-25 来源:作者: 取得具有代表性的水样是水质监测的关键环节。尽管分析方法标准化,操作程序规范化,但分析结果的准确性首先依赖于样品的采集和保存。因此,采样前需现场调查,收集资料以确定采样断面和采样点的设置,确定采样频率、采样方法及样品保存等因素。 基础资料的收集 在制订监测方案之前,近可能完备的收集欲监测水体及所在区域的有关资料,主要有四个方面. 监测断面的设置 在对调查研究结果和有关资料进行综合分析的基础上,根据监测目的和监测项目,并考虑人力、物力等因素确定监测断面和采样点。 监测断面的设置原则的确定,主要考虑水质变化较为明显或特定功能水域或有较大的参考意义的水体,具体来讲可概述为六个方面。 采样点的设置 一、河流监测断面的设置 对于江、河水系或某一河段,要求设置对照断面、控制断面和削减断面,我们来通过一个例子来理解这几个概念。 对照断面:为了解流入监测河段前的水体水质状况而设置。这种断面应设在河流进入城市或工业区以前的地方,避开各种废水、污水流入或回流处。一个河段——般只设一个对照断面。有主要支流时可酌情增加。

控制断面:为评价、监测河段两岸污染源对水体水质影响而设置。其数目应根据城市的工业布局和排污口分布情况而定。断面的位置与废水排放口的距离应根据主要污染物的迁移、转化规律,河水流量和河道水力学特征确定。 削减断面:是指河流受纳废水和污水后,经稀释扩散和自净作用,使污染物浓度显著下降,其左、中、右三点浓度差异较小的断面。通常设在城市或工业区最后一个排污口下游1500m的河段上。 采样点位的确定 在监测断面确定下来之后,新问题有出现了:对于一个宽达数十米乃至数百米、上千米,深达几米乃至几十米上百米河流,我们应该在哪个垂线处哪个深度取样呢? 通常来讲,可以参照下述方法。事实上,我们很多时候应根据待测河流的具体情况来具体分析的,只要把握好“样品的代表性”这一总原则。 河流采样断面上采样点的设置,应根据河流的宽度和深度而定。一般水面宽50米以下,只设一条中泓垂线;水面宽50-100米,设左、右两条垂线;水面宽在100-1000米时,应设左、中、右三条垂线,水面宽大于1500米时至少应设五条等距离的垂线。 一般采样点都设在水面下0.2—0.5米处。 对于较大较深的水体,由于水质情况与水的深度有关,如水的温度、溶解氧、藻类、微生物分布等等都随水深而变化。因此,采样点的布设除考虑平面位置外,还有必要在垂线上布点。通常可根据需要,在平面采样点的垂线上分别采集表层水样(水面下约0.5-1米),深层水样(距底质以上约0.5-1 米)以及中层水样(表层和深层采样点之间的中心位置处)。此外,按照一般经验,尽量要避免在水和河床的交界外,如紧靠河岸、河底、渠壁25厘米以内的位置上采集水样,因为这里的水样往往没有水的本体的代表性。 采样时间和采样频率

污染源在线监测系统建设方案

水污染源在线监测系统工程 建 设 方 案 贰零壹陆年肆月

目录 一.系统概述 1.1 项目概述 1.2 系统建设要求 1.3 系统构成 1.4 在线监测因子种类 1.5 仪器选型 1.6仪器简介 1.6.1 COD在线分析仪技术参数 1.6.2 氨氮在线分析仪技术参数 1.6.3 总磷在线分析仪技术参数 1.6.4 工业PH计技术参数 1.6.5 明渠流量计技术参数 1.6.6 数据采集仪技术参数 二.系统建设 2.1 系统建设时间表 2.2 站房建设方案 2.3 超声波明渠流量计堰槽建设 2.4采样系统建设方案 2.5数据采集传输系统建设方案 2.5.1数据采集仪 2.5.2数据传输 2.6 在线分析仪安装方案 2.6.1 操作员基本要求 2.6.2 现场机箱安装 2.6.3 现场管路材料及工具的配备 三.质量及服务承诺 3.1质量保证 3.2 售后服务 四.资金预算

编制说明 依照国家有关标准和关于水质在线自动监测系统建设的相关要求,在指定排水口安装水质在线监测仪器,对相关水质参数(化学需氧量、氨氮、总磷、重金属等)进行监测,以达到相关管理及监管部门对现场处理水质的实时监控和管理。 本方案将分析仪测量系统、采样系统以及数据传输系统进行集成,作为一体化水质在线自动监测系统进行详细的方案设计。 一、系统概述 1.1 项目概述 根据环保局对废水污染物排放进行总量控制、安装在线监测系统的要求,拟在的总排口安装污染源自动监控系统。本项目建设拟选用提供的COD、氨氮、总磷在线分析仪,PH,超声波明渠流量计,并负责安装、调试、运行、保修、快速反应服务及协助项目验收、技术支持、用户培训。 1.2 系统建设要求 该系统应达到以下要求: ①系统具有实用性、先进性、专业性、开放性、安全性、集成性和经济性。 ②总体结构的先进性、合理性、兼容性和可扩展性。 ③监测参数分析方法符合国家、行业有关技术标准和规范。 ④监测数据准确、可靠。 ⑤取样方式经济、合理,便于维护。

水质监测方案

水质监测方案 ——嘉陵江凤县段 一.监测目的 环境监测的目的是准确,及时,全面的反映环境质量现状和发展趋势,为环境管理,污染源控制和环境规划提供科学依据。具体归纳为: 1.对污染物作时间和空间上的追踪,掌握污染物得来源,扩散转移,反应,转化,了解污染物对环境质量的影响程度,并在此基础上,对环境污染物作出预测,预报和预防。 2.了解和评价环境质量的过去,现在和将来,掌握其变化规律。 3.收集环境背景数据,积累长期监测资料,为制定和修订各类环境标准,实施总量控制目标管理提供依据。 4.实施准确可靠的污染源的污染监测,为执法部门提供执法依据。 5.在深入广泛开展环境监测的同时,结合环境状况的改变和监测技术的发展,不断改革和更新监测方法和手段,为实现环境保护和可持续发展提供可靠的技术保障。 2).目标与要求 此次是针对嘉陵江凤县段的地标径流状况进行监测,从而了解嘉陵江源头水体状况,观察分析嘉陵江有害物质的分布,对水体质量进行评述并提出一定对策与建议来保护嘉陵江的水体环境,利用我们学过的知识来解决实际的问题。巩固和加深我们对水体监测的基本理论,同时加强布点,采样,分析,测定等步骤与方法,为毕业后尽快适应实际工作打下良好的基础。 二、基础资料的收集 本次监测选取了宝鸡市凤县段嘉陵江进行检测。根据相关的文档和网上搜寻的资料可知,嘉陵江是长江上游的一条支流,发源于秦岭北麓的宝鸡市凤县。水域的有关资料如下: 1. 地形地貌 凤县位于陕西省西南部,东经106°24′54″——107°7′30″,北纬33°34′57″——34°18′21″。因地连陕甘,又处入川孔道,北依秦岭主脊,南接紫柏山,古栈道贯通全境,故有“秦蜀咽喉,汉北锁钥”之称。县境海拔在915—2739米之间,县城所在地双石铺镇海拔960米,西北隅与甘肃省两当县交界处透马驹峰海拔2739米,为境内最高点。紫柏山、代王山等海拔在2500米以上。最低海拔915米,位于温江寺乡西部河谷。嘉陵江为境内最大河流,发源于境内代王山南侧,自东北向西南斜贯,在境内长76公里,在县境西南部形成凤州——双石铺宽谷构造盆地,小峪河、安河等为其主要支流,呈枝状分布。东部中曲河为褒河支流西河上源,南流出境,属汉江水系。 2.气象

在线监测系统运营建设方案

污染源在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、烟气自动监测(CEMS)、空气质量监测、以及视频监测等多种环境在线监测应用;系统以污染源在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境监理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门的环境监理与环境监测工作,满足不同层级用户的管理需求。 【部分正文预览】污染源在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、烟气自动监测(CEMS)、空气质量监测、以及视频监测等多种环境在线监测应用;系统以污染源在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境监理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门的环境监理与环境监测工作,满足不同层级用户的管理需求。 1. 污染源在线监测系统的构成 一套完整的污染源在线监测系统能连续、及时、准确地监测排污口各监测参数及其变化状况;中心控制室可随时取得各子站的实时监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行,停电保护、来电自动恢复功能;维护检修状态测试,便于例行维修和应急故障处理 污染源在线监测系统特点 ?整合污染源在线监测系统与视频监测系统,在全面监测企业污染物排放状况的同时,还可以将企业现场的实时画面传送到环保局,实现污染源可视化管理。 ?采用GPRS无线数据传输方式,彻底摆脱“有线”的束缚,适用范围广,运行成本低。 ?利用GPRS无线网络实时在线的特点,建立污染源在线监测系统(环境监理信息系统)的无线网络,及时准确地掌握各个企业污染物排放口的实际运行情况和污染物排放的发展趋势与动态。 ?人性化的报警和预警功能,可以提醒管理人员及时地关注和处理可能发生或已经发生的事件。 ?监测仪表的类型不受限制,只要在系统中进行相应的设置即可对任意仪表类型自动进行识别,从而扩大了系统的监测种类和应用范围。 ?涵盖在线监测的多种应用,包括水质在线监测、烟尘在线监测。 ?围绕污染源在线监测的核心,拓展了在环境监理方面的功能,使得本系统同时也是一套环境监理信息系统。 污染源在线监测系统功能

水质监测方案

水质监测方案 地点:中北大学至小店区汾河水段 组员: 一、监测目的 1. 对汾河太原段河水中污染物质进行监测,已掌握汾河水质现状及其变化趋势。 2. 了解汾河太原段两岸污染物排放量及其污染物浓度,评价是否符合排放标准,为污染源管理提供依据。 3. 为政府部门制定水环境保护标准、法规和规划提供有关数据和资料。 4. 对汾河水环境纠纷进行仲裁监测,为判断纠纷原因提供科学依据。 二、现状调查及基础资料 汾河是山西最大的河流,全长 710 公里,也是黄河的第二大支流。汾者,大也,汾河因此而得名。汾河在太原境内纵贯北南,全长一百公里,占到整个汾河的七分之一。发源于宁武县东寨镇管涔山脉楼山下的水母洞,周围的龙眼泉、 支锅奇石支流,流经东寨、三马营、宫家庄、二马营、头马营、化北屯、山寨、北屯、蒯通关、宁化、坝门口、南屯、子房庙、川湖屯等村庄出宁武后,流经六个地市,34 个县市、在河津市汇入黄河,全长 716 公里。流域面积 39741 平方公里,约占全省总面积的四分之一,养育了全省 41%的人民。汾河流域水系图如图1。 1961 年以来,汾河河道变为间断河流。除上游的汾河水库放水和降雨外,汾河太原段经常处于断流状态。目前太原市污水排放量达 4 3 4 3 7.0×10 m /d,经过一级处理或二级处理的污水不足 3.0×10 m /d,其余污水未经任何处理直接排入汾河。进入 70 年代,汾河成为纳污河道,经常黑水横流。从 1998 年以来,汾河太原城区段局部治理美化工程逐步得以实施。经过固化河道、减小糙率、整修堤防、提高过流能力、束河腾滩、建闸坝蓄水、使清、洪水分流,现状汾河太原城区局部段已成为集防洪排污、园林绿化、旅游观光为一体的生态治理河段。 汾河太原城区治理段从胜利桥至南内环桥全长约 6km,由于闸坝蓄水使市区常年拥 6 3 5 2 有 2.26×10 m 的蓄水量和南北长 4.7km、宽 160m,共计7.56×10 m 的水域。现状河道断面由西向东岸分成正常泄洪河道、正常蓄水河道和腾滩三部分。日常污水从设在两岸的暗渠下泄,同时接纳两岸进入的支流来水。汾河太原城区段虽然常年多数时间流量较小,但对半干旱地区的太原市来说具有举足轻重的地位,直接关系着经济发展和生活用水安全,由于丰水期短,环境容量有限,汾河未治理的河道污染相当严重,长期以来却缺少较深入水质分析。为了准确了解汾河太原城区段的水质现状,笔者对汾河太原城区段进行了系统调查,并对主要

相关文档
最新文档