金桥高中补习班数学归纳法与数列的极限(复习课)(教案)

金桥高中补习班数学归纳法与数列的极限(复习课)(教案)
金桥高中补习班数学归纳法与数列的极限(复习课)(教案)

§2 数学归纳法与数列的极限

一、基础知识点

1. 推理与证明

推理方法有:合情推理与演绎推理.

合情推理有:类比,不完全归纳,猜想等. 演绎推理:严格的逻辑证明.

2. 数学归纳法:是证明有关自然数的命题的一种方法,属于完全归纳法,其证明步骤如下: 第一步:验证当n 取第一个允许值0n 时命题成立;

第二步:假设当0()n k k n =≥时命题成立(归纳假设),证明当1n k =+时命题也成立.

完成以上两步,就能断言:对一切*

0,n N n n ∈≥,命题都成立.

3. 归纳猜想问题指的是给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作、变化过程,要求通过观察、分析、推理,探求其中所蕴涵的规律,进而归纳或猜想出一般性的结论,在解答过程中需要经历观察、归纳、猜想、试验、证明等数学活动,以加深学生对相关数学知识的理解 (1)学会探索与发现的规律方法:

演绎——从一般到一般(结论一定正确); 类比——从特殊到特殊(结论不一定正确); 归纳——从特殊到一般(结论不一定正确).

(2)归纳猜想得到的结论不一定正确,必须经过严格的逻辑证明,而与自然数有关的结论的证明,常用数学归纳法.

4. 数学归纳法证明过程中的两个步骤缺一不可. 第一步是归纳的基础,这是一个成立的实事;第二步是证明的关键,在归纳假设的前提下完成证明. 如果不用归纳假设而完成了证明过程,那不叫数学归纳法证明.

多米诺骨牌.

5. 数学归纳法的原理: (1)1234→→→→; (2)1357→→→→

(3)

324132????→??→???

→?????

?

6. 归纳猜想证明的一般步骤:

①计算命题取特殊值时的结论;

②对这些结果进行分析,探索数据的变化规律,并猜想命题的一般结论; ③证明所猜想的结论. 7. 数列极限

(1)定义:一般地,在n 无限增大的变化过程中,如果无穷数列{}n a 中的项n a 无限趋近于一个常数A ,那么A 叫做数列{}n a 的极限,或称作数列{}n a 收敛于A ,记作lim n n a A →∞

=.

数列极限存在的条件:①无限数列;②当n 趋向于无穷时,n a 无限趋近于某一常数. (2)数列极限的运算法则: 若lim ,lim n n n n a A b B →∞

→∞

==,则

①lim()n n n a b A B →∞

+=+; ②lim()n n n a b A B →∞

-=-;

③lim()n n n a b A B →∞

?=?; ④lim

(0)n n n

a A

B b B →∞=≠.

特别,若C 为常数,则lim()n n C a C A →∞

?=?.

(3)三个常用的极限:

①lim n C C →∞

=(C 为常数); ②1

lim

0n n

→∞=; ③0,

||1lim 1,1||1 1.n

n q q q q q →∞

=-?

时时不存在,或

(4) 无穷等比数列各项的和:

若无穷等比数列{}n a 的公比||1q <,则其各项的和为1

lim 1n n a S S q

→∞

==

-. 8. 关于数列极限概念的理解:

①极限是一种变化趋势,并不一定有n a =A ; ②“无穷大∞”的意思是要有多大就有多大; ③若lim n n a A →∞

=,则1lim lim n n n n a a A -→∞

→∞

==.

9. 常见数列极限类型:

①∞?∞、

型:极限不存在; ②00?、00-、0

∞型:极限均为0;

③∞-∞、∞∞、0

、0?∞型:极限不确定,有的存在,有的不存在.

④有理分式型:111011100,lim ,.k k k k m

m m n m m m m k a n a n a n a a m k b n b n

b n b b m k ---→∞-?>?

?+?++?+?==??+?++?+??

,,不存在,

二、基础自测

1. 一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( B )

A .一切正整数命题成立

B .一切正奇数命题成立

C .一切正偶数命题成立

D .以上都不对

2. 设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为f (k ),则f (k +1)与f (k )的关系是( C )

A .f (k +1)=f (k )+k +1

B .f (k +1)=f (k )+k -1

C .f (k +1)=f (k )+k

D .f (k +1)=f (k )+k +2

解析:当n =k +1时,任取其中1条直线,记为l ,则除l 外的其他k 条直线的交点的个数为f (k ),因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为已知任何三条直线不过同一点,所以上面的k 个交点两两不相同,且与平面内其他的f (k )个交点也两两不相同,从而平面内交点的个数是f (k )+k =f (k +1).

3. 已知某个关于自然数n 的命题()P n ,如果当*

()n k k N =∈时该命题成立,那么可得当1n k =+时命题也成立.

①写出当n =4时命题成立的所有充分条件: ; ②写出当n =4时命题成立的一个必要条件: ;

③现在已知当n =4时,该命题不成立,则下列说法正确的是 : A .当n =3时该命题不成立; B .当n =5时该命题不成立; C .当n =1时该命题可能成立;

D .当n =5时,该命题可能成立,如果n =5时命题成立,那么对于任意自然数5n ≥,该命题都成立. 解:①是找到推出“n =4”成立的条件;②是找到由“n =4”能推出什么;③可用等价于逆否命题来判断:“34n n =?=成立成立” ?“43n n =?=不成立不成立”. ①n =1成立、n =2成立、n =3成立; ②n =5或n =6或n =7… ③A 、D 均正确

4. 已知数列{a n }满足:a 1=1

3,且对任意正整数m 、n ,都有a m +n =a m a n ,若数列{a n }的前n 项和为

S n ,则lim n n S →∞

==( )

A.12

B.23

C.3

2

D .2 【解析】 a 1=13,a 2=13×13=19,a 3=13×19=127,a 4=1

81

∴{a n }是首项为13公比为1

3的等比数列

∴li m n →∞S n =131-13=1

2. 【答案】 A

5. 若lim n →∞

(a +2b )n 2+2n +1bn +3=1

2,则实数a +b 为( )

A .-2

B .2

C .-4

D .4

【解析】 极限值为1

2,分母是n 的一次式,分子是n 的二次式,

∴?????

a +2

b =0,2b =12.得b =4,a =-8,∴a +b =-4. 【答案】 C

6. 已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且

a 1=3,a 3=5,则

???? ??-++-+-+∞→n n n a a a a a a 12

3121

11lim 等于( ) A .2 B. 32 C .1 D. 1

2

【解析】 令b n =log 2(a n -1),则{b n }成等差数列,b 1=log 22=1,b 2=log 24=2, 可知数列b n =log 2(a n -1)=1+(n -1)×1=n , ∴a n =2n +1.

则a n +1-a n =2n +

1+1-(2n +1)=2n .

即求li m n →∞ ????12+122+…+1

2n =121-1

2=1. 【答案】 C

7. 135(21)

lim 123n n n

→∞++++-++++

=

2

.

8. n →∞

=

1

2

.

三、典例解析

【例1】用数学归纳法证明:

1+n 2≤1+12+13+…+12n ≤1

2

+n (n ∈N *).

证明:(1)当n =1时,左边=1+12,右边=12+1,∴32≤1+12≤3

2

,即命题成立.

(2)假设当n =k (k ∈N *)时命题成立,即1+k 2≤1+12+13+…+12k ≤1

2

+k ,

则当n =k +1时,

1+12+13+…+12k +12k +1+12k +2+…+12k +2k

>1+k 2+2k ·1

2k +2k =1+k +12.

又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1), 即n =k +1时,命题成立.

由(1)(2)可知,命题对所有n ∈N *都成立.

【例2】是否存在常数a 、b 、c 使等式

12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )

对于一切n ∈N *都成立,若存在,求出a 、b 、c 并证明;若不存在,试说明理由.

解析 假设存在a 、b 、c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *

都成立.

当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19.

解方程组解得????

?

a =13

,b =2,

c =1.

证明如下:

①当n =1时,由以上知存在常数a ,b ,c 使等式成立. ②假设n =k (k ∈N *)时等式成立,

即12+22+32+…+k 2+(k -1)2+…+22+12=1

3k (2k 2+1);

当n =k +1时,

12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12 =13k (2k 2+1)+(k +1)2+k 2=1

3k (2k 2+3k +1)+(k +1)2

=13k (2k +1)(k +1)+(k +1)2=1

3(k +1)(2k 2+4k +3)

=1

3(k +1)[2(k +1)2+1].

即n =k +1时,等式成立.

因此存在a =1

3,b =2,c =1使等式对一切n ∈N *都成立.

【例3】用数学归纳法证明42n +

1+3n

+2

能被13整除,其中n 为正整数.

证明:(1)当n =1时,42×1+

1+31+2=91能被13整除. (2)假设当n =k (k ∈N +)时,42k +

1+3k +2

能被13整除,

则当n =k +1时, 方法一 42(k

+1)+1

+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +

1·3

=42k +

1·13+3·(42k +

1+3k +

2), ∵42k +

1·13能被13整除,42k +

1+3k +2

能被13整除.

∴42(k

+1)+1+3k

+3

能被13整除.

方法二 因为[42(k

+1)+1

+3k +3]-3(42k +1+3k +

2)

=(42k +

1·42+3k +

2·3)-3(42k +

1+3k +

2) =42k +

1·13,

∵42k +1·13能被13整除, ∴[42(k

+1)+1+3k +3]-3(42k +1+3k +

2)能被13整除,因而42(k

+1)+1

+3k

+3

能被13整除,

∴当n =k +1时命题也成立,

由(1)(2)知,当n ∈N +时,42n +

1+3n

+2

能被13整除.

【例4】在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12???? ?

?

+n n a a 1. (1)求a 1,a 2,a 3;

(2)由(1)猜想数列{a n }的通项公式,并且用数学归纳法证明你的猜想.

解:(1)S 1=a 1=1

2????a 1+1a 1得a 21=1. ∵a n >0,∴a 1=1, 由S 2=a 1+a 2=1

2?

???a 2+1a 2,得a 22+2a 2-1=0,∴a 2=2-1. 又由S 3=a 1+a 2+a 3=1

2?

???a 3+1a 3 得a 23+22a 3-1=0,∴a 3=3- 2. (2)猜想a n =n -n -1 (n ∈N *)

证明:①当n =1时,a 1=1=1-0,猜想成立.

②假设当n =k (k ∈N *)时猜想成立,即a k =k -k -1,

则当n =k +1时,a k +1=S k +1-S k =12????a k +1+1a k +1-1

2????a k +1a k , 即a k +1=12????a k +1+1a k +1-12? ??

??k -k -1+1k -k -1

=1

2????a k +1+1a k +1-k , ∴a 2k +1+2ka k +1-1=0,∴a k +1=k +1-k .

即n =k +1时猜想成立.

由①②知,a n =n -n -1 (n ∈N *).

【例5】已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1

S n +2(n ≥2),计算S 1,S 2,S 3,S 4,

猜想S n 的表达式,并用数学归纳法加以证明.

解析:当n ≥2时,a n =S n -S n -1=S n +1S n +2. ∴S n =-1

S n -1+2(n ≥2).

则有S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-5

6.

由此猜想:S n =-n +1

n +2(n ∈N *).

用数学归纳法证明:

①当n =1时,S 1=-2

3

=a 1,猜想成立.

②假设n =k (k ∈N *)猜想成立,即S k =-k +1

k +2成立,

那么n =k +1时,S k +1=-

1S k +2=-1

-k +1k +2

+2=-k +2k +3=-(k +1)+1(k +1)+2

.

即n =k +1时猜想成立.

由①②可知,对任意自然数n ,猜想结论均成立.

【例6】(1)22221111lim(1)(1)(1)(1)234n n

→∞-

---= . 解:22221111

lim(1)(1)(1)(1)

234n n →∞----

111111lim(1)(1)(1)(1)(1)(1)223334112111lim(=lim .232322n n n n n

n n n n n n →∞→∞→∞=+-+-+-+-+=???????=)

(2)等差数列{}{}a b n n n 、的前项和分别为S T n n 和,若

S T n

n a b n n n n n

=+→∞231,lim 则等于( C )

A .1

B .

6

3

C .

23

D .

49

【例7】设数列{}a n 中,a 11=,它的前n 项和为S n ,且211a S S n n ,,+成等差数列. (1)求S S S 123,,,并猜想S n 的表达式,用数学归纳法证明;

(2)求lim n →∞

S n 。

解:(1)S S S S n n 1231

13274

212=-==-?? ?

??

-,,,猜想,证明略。

(2)lim n n S →∞

=2

【例8】设()f x x =-322,若数列{}a n 中,()()a a f a n n N n n 1122==≥∈-且,

(1)写出{}a n 的前四项,并猜想a n 的表达式,用数学归纳法证明;

(2)求lim n n n n

a →∞--2

1

23;

(3)()b a a n N n n

n n =+∈+31

,求{}b n 的前n 项之和S n 。

解:(1)a 12=,a a a a n n 23410288231==

==+,,,猜想,用数学归纳法证明略;

(2)lim lim n n n n n n →∞→∞

+--=?? ??

?-=-311231

2311;

(3)b n n

n

n =

++++3

313

1

1

(

)()

()

=

+-++-+=-++++33131

3131

1

2

331111n

n n n n n n

[)()

S n n n n =

+-+++-++++-+=+-++1

2313131313131

12

3122

3211

【例9】已知数列{}n a :∈-==-n a p a a n n (1||,110N* ),10,<

<<-

n a p

解:(Ⅰ)∵p p p p p a p p p a a +-+-=

-+--?=+-+-=+-=?=1)(111)(1,1)(1113

23220,…, 猜测p

p a n

n +-+-=1)(1,数学归纳法证明(略).

(Ⅱ)∵,0)

1()(11;0,1|)(|01

>+--=+<∴<-<+p p p p a a p n n n n

∴.01

,1<<-->n n a p

p a 得

【例10】设{}a n 是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项。 (1)写出数列的前3项;

(2)求数列{}a n 的通项公式(写出推证过程);

(3)令()()

b a a a a n N b b b n n n n n n n n =

+?? ?

?

?∈+++-++→∞121112,求 (i)

解:(1)当n a S S a =+==12

2

21111时,有,,

+==a a a 1112

2

22,解得,

当时,有

,,n a S S a a =+==+22

2

222212 将代入,整理得a a 1222216=-=().

由,解得当时,有,,

a a n a S S a a a 2233312306

32

2

2>==+==++

将,代入,整理得a a a 1232

26264==-=(), 由,解得a a 33010>= 故该数列的前3项为2,6,10。

(2)由(1)猜想数列{}a a n n n 的通项公式=-42。

下面用数学归纳法证明数列{}a n 的通项公式是a n n N n =-∈42()。

①当n =?-=14122时,因为,又在(1)中已求出a 12=,所以上述结论成立。

②假设n k =时结论成立,即有a k k =-42,由题意有

a S k k +=2

2

2 将a k k =-42代入上式,得2222k S S k k k ==,解得。

由题意有,

a S S S a S k k k k k k k +++++==+=111122

2

22,,将代入,得 ()

a a k

k k +++?? ???=+12

12

2222

整理得 a a k k k ++-+-=121244160 由a k +>10,解得a k k +=+124,所以 a k k k +=+=+-124412() 这就是说,当n k =+1时,上述结论成立。 根据①、②上述结论对任意n N ∈成立。

(3)令c b n n =-1,则

c a a a a n n n n n n n n n n n =+-?? ??

?

=+--??

???+-+-?? ?????

??

??=

--

+++122122121121211121121

1

1

四、巩固练习

(一)基础练习

1. 已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.

解析 本题规律:2=1+1;3=1+2=2+1; 4=1+3=2+2=3+1; 5=1+4=2+3=3+2=4+1; …;

一个整数n 所拥有数对为(n -1)对.

设1+2+3+…+(n -1)=60,∴(n -1)n

2=60,

∴n =11时还多5对数,且这5对数和都为12, 12=1+11=2+10=3+9=4+8=5+7, ∴第60个数对为(5,7).

2. 已知数列{}n a 的前n 项和)2(2

≥?=n a n S n n ,而11=a ,通过计算,,,432a a a 猜想=n a ( A )

A .

2

)1(2

+n

B .

)

1(2

+n n

C .

1

22

-n D .

1

22

-n

3. 等比数列{}a n 的首项a n S S S S n n n 1105131

32

=-=→∞,前项和,若,则lim 等于( A )

A .-

2

3

B .

23

C .-2

D .2

4. 已知数列{}a n 满足()S a a a a a n n n n =+++++→∞-1

4

113521,则…lim 的值是( )

A .

32

B .-

3

2

C .

23

D .1

解:由已知S a n n =+1

4

1先确定{}a n , 由S a S a n n n n =

+=+++1411

4

111,得 ∴()()S S a a a a a n n n n n n n ++++-=

-=-1111141

4

,即 得{}a a a n n +=-11

3

,故是公比为-13的等比数列

由S a a a a 111111411414

3

=

+=+=,即得

故数列a 1, a 3, a 5, …, a n 2143

-是首项为, 公比为-?? ?

??=13192

的等比数列。

∴()lim n n a a a a →∞

-++++=

-

=

135214

3119

3

2

…, 选A

5. 在数列{a n }中,a 1=1

3

且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.

解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=1

15

当n =3时,a 1+a 2+a 3=15a 3,

即a 3=114(a 1+a 2)=1

35

当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=127(a 1+a 2+a 3)=1

63.

∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=17×9

故猜想a n =1

(2n -1)(2n +1).

6. 设数列{}n a 的前n 项和为S n ,已知S n =2n -a n (n ∈N +),通过计算数列的前四项,猜想=n a

7. 若lim ()n n n n n n n x n →∞+-+-=

·323313

1,则实数x 的取值范围是 。

分析:将式子变形为

1

2331x n

n

-?? ?

??+-,若极限值为

132

3

1,则x -<,解得-<<15x 。

8. =??

??????? ??+-??? ??-

??? ?

?-∞

→211411311lim n n n . 解: n n 113114115112-??

???-??

???-??

??

?-

+??

??

?……

=++=

+∴=+=+=→∞→∞n n n n n n n n

n n ···……原式2334451222

22212

2

lim lim

(二)能力拓展

9. 已知数列{}n a 的各项为正数,其前n 项和为S n ,又n n S a 与满足关系式:

n n n S a S a S a S =++++++2

4242422

11 ,试求{}n a 的通项公式. 解:计算得,6,4,2321===a a a 猜测n a n 2=,用数学归纳法证明(证明略).

10. 已知数列{}n a 满足关系式∈≥+=

>=--n a a a a a a a n n n ,2(12),0(1

1

1N +)

, (Ⅰ)用a 表法a 2,a 3,a 4;

(Ⅱ)猜想a n 的表达式(用a 和n 表示),并证明你的结论.

解:(Ⅰ);7183141314212,31412112212,23342232a a a

a a a

a a a a a a a a a a a a a a a a +=+++?

=+=+=+++?

=+=+= (Ⅱ)( ,)12(12,)12(121

11001a

a

a a a a a -+=-+==) 猜想,)12(1211a a a n n n -+=--下面用数学归纳法证明:

1°.当n =1时,∴-+==,)12(12001a a

a a 当n =1结论正确;

2°.假设当n =k 时结论正确,即a

a

a k k k )12(121

1-+=--, ∴当n =k +1时 a a a

a a a k k k k k k 1112)12(1212--++-+=

+= =,)12(1222121a

a

a a a k

k k k -+=-?+-当n =k +1时结论也正确; 根据1°与2°命题对一切n ∈N*都正确.

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高中数学必修5《等差数列前n项和》教案及其分析

课题:等差数列的前n 项和 教材:人教版数学必修5 一、 教学目标 知识目标:掌握等差数列前n 项和公式,能较熟练应用等差数列前n 项和公式求和。 能力目标:通过对公式的推导提高学生研究问题、分析问题、解决问题的能力。 情感目标:通过公式的推导与简单应用,激发学生的求知欲,鼓励学生大胆尝试,培养学生敢于探索、创新的学习品质。 二、教学重点、难点 重点:等差数列的前n 项和公式 难点:获得等差数列的前n 项和公式推导的思路 三、教学方法与手段 启发引导、合作学习、多媒体辅助等多种手段相结合 四、教学过程 1、问题呈现 泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,奢靡之程度,可见一斑。 你知道这个图案一共花了多少宝石吗? 2、探索发现 1+2+3 +…+99+100 =(1+100) +(2+99)+ …+(50+51) =101 ×50 = 5050 问题1:图案中,第1层到第21层一共有多少颗宝石? 问题2:求1到n 的正整数之和。123(1)n s n n =+++ +-+即 问题3:{}?n n a n 如何求等差数列的前项和S 3、公式应用 例1、选用公式

例2、变用公式 等差数列-10,-6,-2,2,…的前多少项的和为54? 变式练习: {}120,54,999,.n n n a a a s n ===在等差数列中,求 例3、知三求二 {}120,37,629,.n n n a n s a a ===在等差数列中,已知d 求及 4、课堂小结 1()12 n n n a a S +=公式 1(1)22 n n n S na d -=+公式 5、作业布置 必做题:课本52页,练习1、2、3; 选做题:在等差数列中, 512156136,; 220,a a a a a +++==21611、已知求s 、已知求s

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高中数学 必修五 数列 全套教案(知识讲解+经典例题+巩固练习+答案)

数列的概念与简单表示法 【学习目标】 1.掌握数列的概念与简单表示方法,能处理简单的数列问题. 2.掌握数列及通项公式的概念,理解数列的表示方法与函数表示方法之间的关系. 3.了解数列的通项公式的意义并能根据通项公式写出数列的任一项. 4.理解数列的顺序性、感受数列是刻画自然规律的数学模型,体会数列之间的变量依赖关系. 【学习策略】 数列是自变量为正整数的一类特殊的离散函数,因此,学习数列,可类比函数来理解。关于数列的一些问题也常通过函数的相关知识和方法来解决. 【要点梳理】 要点一、数列的概念 数列概念: 按照一定顺序排列着的一列数称为数列. 要点诠释: ⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项: 数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项,第2项,…;排在第n 位的数称为这个数列的第n 项.其中数列的第1项也叫作首项. 要点诠释:数列的项与项数是两个不同的概念。数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号. 类比集合中元素的三要素,数列中的项也有相应的三个性质: (1)确定性:一个数是否数列中的项是确定的; (2)可重复性:数列中的数可以重复; (3)有序性:数列中的数的排列是有次序的. 数列的一般形式: 数列的一般形式可以写成: ,,,,,321n a a a a ,或简记为{}n a .其中n a 是数列的第n 项. 要点诠释:{}n a 与n a 的含义完全不同,{}n a 表示一个数列,n a 表示数列的第n 项. 要点二、数列的分类 根据数列项数的多少分: 有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,…是无穷数列 根据数列项的大小分: 递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 要点三、数列的通项公式与前n 项和 数列的通项公式 如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式()n a f n =来表示,那么这个公式就叫做这个数列的通项公式.

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高中数学等差数列教案()

课 题: 3.1 等差数列(一) 教学目的: 1.明确等差数列的定义,掌握等差数列的通项公式; 2.会解决知道n d a a n ,,,1中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 本节是等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么表示等差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看两点可以决定一条直线) 教学过程: 一、复习引入: 上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法和前n 项和公式..这些方法从不同的角度反映数列的特点下面我们看这样一些例子 1.小明觉得自己英语成绩很差,目前他的单词量只 yes,no,you,me,he 5个他 决定从今天起每天背记10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,…

(问:多少天后他的单词量达到3000?) 2.小芳觉得自己英语成绩很棒,她目前的单词量多达3000她打算从今天起不 再背单词了,结果不知不觉地每天忘掉5个单词,那么从今天开始,她的单词量逐日递减,依次为:3000,2995,2990,2985,… (问:多少天后她那3000个单词全部忘光?) 从上面两例中,我们分别得到两个数列 ① 5,15,25,35,… 和 ② 3000,2995,2990,2980,… 请同学们仔细观察一下,看看以上两个数列有什么共同特征?? ·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列 二、讲解新课: 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) ⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差 2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】 等差数列定义是由一数列相邻两项之间关系而得{}n a 的首项 是1a ,公差是d ,则据其定义可得: d a a =-12即:d a a +=12

高中数学等差数列教案3篇

高中数学等差数列教案3篇 教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是为大家收集等差数列教案,希望你们能喜欢。 等差数列教案一 【教学目标】 1. 知识与技能 (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列: (2)账务等差数列的通项公式及其推导过程: (3)会应用等差数列通项公式解决简单问题。 2.过程与方法 在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊

到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。 3.情感、态度与价值观 通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。 【教学重点】 ①等差数列的概念;②等差数列的通项公式 【教学难点】 ①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程. 【学情分析】 我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重

引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展. 【设计思路】 1.教法 ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性. ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性. ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点. 2.学法 引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法. 【教学过程】 一:创设情境,引入新课

专题06 数列与数学归纳法(原卷版)

1 专题6.数列与数学归纳法 数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合. 预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合 . 1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0, 11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能... 成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b = 2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +??????就是二阶等差数列,数列(1)2n n +?????? (N )n *∈ 的前3项和是________. 3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,111112 1,,()n n n n n n n b a b c c a a c c n b +++====-= ?∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d +++<+.*()n N ∈ 4.(2020·天津高考真题)已知{}n a 为等差数列,{}n b 为等比数列, ()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;

高中数学数列教学课件

高中数学数列教学课件 高中数学数列教学课件 一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 2、教学目标 根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入"数学建模"的思想方法并能运用。 b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 c在情感上:通过对等差数列的研究,培养学生主动探索、勇于

发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。 3、教学重点和难点 根据教学大纲的要求我确定本节课的教学重点为: ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。 由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对"数学建模"的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。 二、学情教法分析: 对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 三、学法指导: 在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

高中数学必修5高中数学必修5《等差数列复习》教案

等差数列复习 知识归纳 1. 等差数列这单元学习了哪些内容? 2. 等差数列的定义、用途及使用时需注意的问题: n ≥2,a n -a n -1=d (常数) 3. 等差数列的通项公式如何?结构有什么特点? a n =a 1+(n -1) d a n =An +B (d =A ∈R ) 4. 等差数列图象有什么特点?单调性如何确定? 5. 用什么方法推导等差数列前n 项和公式的?公式内容? 使用时需注意的问题? 前n 项和公式结构有什么特点? 2)1(2)(11d n n na a a n S n n -+=+= S n =An 2+Bn (A ∈R) 注意: d =2A ! 6. 你知道等差数列的哪些性质? 等差数列{a n }中,(m 、 n 、p 、q ∈N+): ①a n =a m +(n -m )d ; ②若 m +n =p +q ,则a m +a n =a p +a q ; 等差数列 d < 0d >0

③由项数成等差数列的项组成的数列仍是等差数列; ④每n项和S n, S2n-S n , S3n-S2n…组成的数列仍是等差数列. 知识运用 1.下列说法: (1)若{a n}为等差数列,则{a n2}也为等差数列 (2)若{a n} 为等差数列,则{a n+a n+1}也为等差数列 (3)若a n=1-3n,则{a n}为等差数列. (4)若{a n}的前n和S n=n2+2n+1, 则{a n}为等差数列. 其中正确的有( (2)(3) ) 2. 等差数列{a n}前三项分别为a-1,a+2, 2a+3, 则a n=3n-2 . 3.等差数列{an}中, a1+a4+a7=39, a2+a5+a8=33, 则a3+a6+a9=27 . 4.等差数列{a n}中, a5=10, a10=5, a15=0 . 5.等差数列{a n}, a1-a5+a9-a13+a17=10, a3+a15=20 . 6. 等差数列{a n}, S15=90, a8= 6 . 7.等差数列{an}, a1= -5, 前11项平均值为5, 从中抽去一项,余下的平均值为4, 则抽取的项为( A ) A. a11 B. a10 C. a9 D. a8 8.等差数列{a n}, Sn=3n-2n2, 则( B) A. na1<S n<na n B. na n<S n<na1 C. na n<na1<S n D. S n<na n<na1 能力提高 1. 等差数列{a n}中, S10=100, S100=10, 求S110. 2. 等差数列{a n}中, a1>0, S12>0, S13<0,S1、S2、…S12哪一个最大? 课后作业《习案》作业十九.

高考一轮复习之数列与数学归纳法

43 / 1843 / 18 第三章 数列及数学归纳法 知识结构 高考能力要求 1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2、理解等差数列的概念,掌握等差数列的通项公式及前n 项和的公式,并能解决简单的实际问题. 3、理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式,并能解决简单的实际问题. 4、理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 高考热点分析 纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列及函数、三角、解析几何、组合数的综合应用问题是命题热点. 从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的 “知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 高考复习建议 数列部分的复习分三个方面:① 重视函数及数列的联系,重视方程思想在数列中的应用.② 掌握等差数列、等比数列的基础知识以及可化为等差、等比数列的简单问题,同时要重视等差、等比数列性质的灵活运用.③ 要设计一些新颖题目,尤其是通过探索性题目,挖掘学生的潜能,培养学生的创新意识和创新精神,数列综合能力题涉及的问题背景新颖,解法灵活,解这类题时,要引导学生科学合理地思维,全面灵活地运用数学思想方法. 数列部分重点是等差、等比数列,而二者在内容上是完全平行的,因此,复习时应将它们对比起来复习;由于数列方面的题目的解法的灵活性和多样性,建议在复习这部分内容时,要启发学生从多角度思考问题,提倡一题多解,培养学生思维的广阔性,养成良好的思维品质. 3.1 数列的概念 知识要点 1.数列的概念 数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n }的函数f (n ).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项. 2.数列的通项公式 一个数列{a n }的 及 之间的函数关系,如果可用一个公式a n =f (n )来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 及通项a n 的关系为: = n a ?? ? ??≥==21n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列及等比数列采用首项及公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.

数列教案、考点、经典例题_练习

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高中数学 2.2等差数列说课教案 新人教A版必修5(1)

《等差数列》说课稿 各位领导、各位专家,你们好! 我说课的课题是《等差数列》。我将从以下五个方面来分析本课题: 一、教材分析 1.教材的地位和作用: 《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容,是学生在学习了数列的有关概念和学习了给出数列的两种方法——通项公式和递推公式的基础上,对数列知识的进一步深入和拓展。同时等差数列也为今后学习等比数列提供了学习对比的依据。另一方面,等差数列作为一种特殊的函数与函数思想密不可分,有着广泛的实际应用。 2.教学目标: a.在知识上,要求学生理解并掌握等差数列的概念,了解等差数列通项公式的推导及思想,初步引入“数学建模”的思想方法并能简单运用。 b.在能力上,注重培养学生观察、分析、归纳、推理的能力;在领会了函数与数列关系的前提下,把研究函数的方法迁移到研究数列上来,培养学生的知识、方法迁移能力,提高学生分析和解决问题的能力。 c.在情感上,通过对等差数列的研究,让学生体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 3.教学重、难点: 重点:①等差数列的概念。 ②等差数列通项公式的推导过程及应用。 难点:①等差数列的通项公式的推导。 ②用数学思想解决实际问题。 二、学情分析 对于高二的学生,知识经验已经比较丰富,他们的智力发展已经到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。 三、教法、学法分析 教法:本节课我采用启发式、讨论式以及讲练结合的教学方法,通过提问题激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析并解决问题。

学法:在引导学生分析问题时,留出学生思考的余地,让学生去联想、探索,鼓励学生大胆质疑,围绕等差数列这个中心各抒己见,把需要解决的问题弄清楚。 四、教学过程 我把本节课的教学过程分为六个环节: (一)创设情境,提出问题 问题情境(通过多媒体给出现实生活中的四个特殊的数列) 1.我们经常这样数数,从0开始,每隔5数一次,可以得到数列: 0, 5 , 10 , 15 , 20 ,……① 2.2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目共设置了7个级别,其中较轻的4个级别体重组成数列(单位:Kg): 48 ,53 ,58 , 63 ② 3.水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5,最低降至5.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 ③ 4.按照我国现行储蓄制度(单利),某人按活期存入10000元钱,5年内各年末的本利和(单位:元)组成了数列: 10072,10144,10216,10288,10360 ④[教师活动]引导学生观察以上数列,提出问题: 问题1.请说出这四个数列的后面一项是多少? 问题2.说出这四个数列有什么共同特点? (二)新课探究 [学生活动]对于问题1,学生容易给出答案。而问题2对学生来说较为抽象,不易回答准确。 [教师活动]为引导学生得出等差数列的概念,我对学生的表述进行归类,引导学生得出关键词“从第2项起”、“每一项与前一项的差”、“同一个常数”告诉他们把满足这些条件的数列叫做等差数列,之后由他们集体给出等差数列的概念以及其数学表达式。 同时为了配合概念的理解,用多媒体给出三个数列,由学生进行判断: 判断下面的数列是否为等差数列,是等差数列的找出公差 1. 1 ,2,3,4,5,6,……;(√,d = 1 ) 2. 0.9,0.7,0.5,0.3,0.1……;(√,d = -0.2)

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高中数学等比数列教案(完整版).doc

天津职业技术师范大学 人教A版数学必修5第48-52页 2.4等比数列 理学院数学0801 刘瑞平

等比数列教案 一、 课题:等比数列 二、 课型:新授课 三、 教材分析 等比数列的学习在本章中占很大的比重。在日常生活中,人们经常遇到的像存款利息等问题,都需要用有关等比数列的知识来解决。本节内容可以类比等差数列进行教学。 四、 学情分析 学生已经已经有了必要的数学知识储备和一定的数学思维能力,在学完等差数列的基础上,也已经具有了必要的与数列相关的知识。因此,可以通过生活中的例子引入等比数列的概念;然后,再类比等差通项的迭加思想引导学生用迭乘的思想推导等比数列的通项公式。这样,学生既学习了知识又培养了能力。 五、 教学目标: 1) 知识目标:使学生理解等比数列的概念;学会利用等比数列的定义判断一个 数列是否为等比数列;利用通向公式求项。 2) 能力目标:让学生感知数学与生活的普遍联系,培养学生类比的思想方法, 掌握迭乘的思想,调动学生积极观察思考。 3) 情感目标:使学生体验数学活动充满着探索,感受数学思维的严谨性,提高 学生数学思维的情趣。 4) 教学重点与教学难点 教学重点:等比数列的概念 教学难点:等比数列通项的推导,有关等比数列的证明。 六、 教学方法:讲授法,讨论法 七、 教学过程: 1、导入,设问激疑 设问激疑 引出课题 巩固定义 严谨思维 类比等差 推导通项 证明等比 揭示内涵 设问思考 积极探索 反思小结 培养能力

师:上课之前,先问大家一个问题:一张报纸(厚度大约为0.1mm ),将它对折50次会有多厚?如果拿它做云梯能到哪? (师生互动,一起来分析这道题目)报纸厚度为 初始 0.1mm 折叠1次 0.1?2 = 0.1?21 折叠2次 0.1?2?2 = 0.1?22 折叠3次 0.1?2?2?2 = 0.1?23 折叠4次 0.1?2?2?2?2 = 0.1?24 …… 可以猜想得出 ,折叠50次之后,报纸厚度为 0.1?250 。lg 250 ≈15.05 ,也就是说250 是一个15位整数,2 50 ?0.1mm=1000 10001 .0250??km ,这个数字我们不 知道他确切的值是多少,但可以知道它是一个八位数。而地球到月球的距离仅有 385400km (六位数)。(让学生感受事实与想象之间的差距) 2、新课引入 回过头来,再次分析报纸的折叠问题。将报纸每次折叠后的厚度,看成是一个数列。 初始 0.1mm 折叠1次 0.1?2 = 0.1?21 折叠2次 0.1?2?2 = 0.1?22 折叠3次 0.1?2?2?2 = 0.1?23 折叠4次 0.1?2?2?2?2 = 0.1?24 ……

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

相关文档
最新文档