旋光光谱和圆二色谱

圆二色光谱实验报告

圆二色光谱实验 一、实验目的 1、了解圆二色(CD)光谱的原理和使用方法。 2、学会用圆二色光谱检测蛋白质二级构象的基本原理和方法,并学会分析物质的手性。 3、了解圆二色光谱仪的基本构造,并学会使用。 二、实验原理 1.CD光谱的基本知识 圆二色性是研究分子立体结构和构象的有利手段。在一些物质的分子中,没有任意次旋转反映轴,不能与镜像相互重叠,具有光学活性。电矢量相互垂直,振幅相等,位相相差四分之一波长的左和右圆偏振光重叠而成的是平面圆偏振光。 平面圆偏振光通过光学活性分子时,这些物质对左、右圆偏振光的吸收不相同,产生的吸收差值,就是该物质的圆二色性。 圆二色性用摩尔系数系数差ΔεM来度量,且有关系式:ΔεM = εL –εR,其中,εL 和εR分别表示左和右偏振光的摩尔吸收系数。如果εL –εR >0,则ΔεM为“+”,有正的圆二色性,相应于正Cotton效应;如果εL –εR<0,则ΔεM为“-”,有负的圆二色性,相应于负Cotton效应。 由于这种吸收差的存在,造成了矢量的振幅差,因此从圆偏振光通过介质后变成了椭圆偏振光。圆二色性也可用椭圆度θ或摩尔椭圆度[θ]度量。[θ]和ΔεM之间的关系式:[θ]=3300*Δε 圆二色光谱表示的[θ]或ΔεM与波长之间的关系,可用圆二色谱仪测定。一般仪器直接测定的是椭圆度θ,可换算成[θ]和ΔεM:[θ] = 100θ/cl,ΔεM= θ/33cl 其中,c表示物质在溶液中的浓度,单位为mol/L;l为光程长度(液池的长),单位为cm。输入c和l的值,一般仪器能自动进行换算,给出所需要的关系。 2.定性分析原理 圆二色光谱仪需要将平面偏振调制成左、右圆偏振光,并用很高的频率交替通过样品,因而设备复杂,完成这种调制的是电致或压力致晶体双折射的圆偏振光发生器(也称Pocker池或应力调制器)。圆二色谱仪一般采用氙灯作光源,其辐射通过由两个棱镜组成的双单色器后,就成为两束振动方向相互垂直的偏振光,由单色器的出射狭缝排除一束非寻常光后,寻常光由CD调制器制成交变的左圆偏振光、

圆二色谱资料

圆二色光谱(简称CD)是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单、较准确的方法。它可以在溶液状态下测定,较接近其生理状态。而且测定方法快速简便,对构象变化灵敏,所以它是目前研究蛋白质二级结构的主要手段之一,并已广泛应用于蛋白质的构象研究中。 一.简介 圆二色谱是用于推断非对称分子的构型和构象的一种旋光光谱。光学活性物质对组成平面偏振光的左旋和右旋圆偏振光的吸收系数(ε)是不相等的,εL≠εR,即具有圆二色性。如果以不同波长的平面偏振光的波长λ为横坐标,以吸收系数之差Δε=εL-εR为纵坐标作图,得到的图谱即是圆二色光谱,简称CD。如果某手性化合物在紫外可见区域有吸收,就可以得到具有特征的圆二色光谱。由于εL≠εR,透射光不再是平面偏振光,而是椭圆偏振光,摩尔椭圆度[θ]与Δε的关系为:[θ]=3300Δε。圆二色谱也可以摩尔椭圆度为纵坐标,以波长为横坐标作图。由于△ε有正值和负值之分,所以圆二色谱也有呈峰的正性圆二色谱和呈谷的负性圆二色谱。在紫外可见光区域测定圆二色谱与旋光谱,其目的是推断有机化合物的构型和构象。 二.样品要求 1、样品必须保持一定的纯度不含光吸收的杂质,溶剂

必须在测定波长没有吸收干扰;样品能完全溶解在溶剂中, 形成均一透明的溶液。 2、氮气流量的控制 3、缓冲液、溶剂要求与池子选择:缓冲液和溶剂在配制溶液前要做单独的检查,看是否在测定波长范围内有吸收干扰,看是否形成沉淀和胶状;在蛋白质测量中,经常选择透明性极好的磷酸盐作为缓冲体系。 4样品浓度与池子选择 样品不同,测定的圆二色光谱范围不同,对池子大小(光径)的选择和浓度的要求也不一样。蛋白质CD光谱测量一般在相对较稀的溶液中进行。 三.谱带宽度 选为1 nm。对于高分辨率测量,要用较窄的狭缝宽度,此时光电倍增管的电压较高,谱的信噪比差。虽然对于正常测量最佳谱带宽度是1~2 nm,但是在下列情况下要牺牲分辨率而需要较宽的狭缝宽度。当样品的吸光度很高但CD信号很弱时,一方面要尽量保证测定CD峰所需要的足够浓度,另一方面要设置较宽的狭缝。不过此时要特别小心,因为样品在吸光度过高(A>2)的情况下可能存在荧光或杂散光引起的某些假象。另外,在固体CD光谱测试时也需要较大的狭缝宽度(一般要求> 2 nm)。 (2)椭圆率和摩尔椭圆率都依赖于测量条件。因此,温度、

生物分析 圆二色光谱

圆二色光谱分析法 引言 五十年代初,生物学研究从宏观领域深入到微观领域,开创了分子生物学的新时代。随着研究的不断深入和发展,生物学已发展成最活跃的学科之一。 手性(Chirality)是物质结构中的重要特征.即具有不能重叠的三维镜像对映异构体,它们的分子式完全相同,但其中原子或原子基团在空间的配置不同,互为镜像。凡手性分子都具有光学活性,即可使偏振光的振动面发生旋转。生物基础分子一般都具有手性,也都具有光学活性。在自然界中,氨基酸有L型和D型两种对映异构体,组成蛋白质的20种氨基酸,除最简单的甘氨酸不具有手性外,其余都是L型的[1]。 手性分子都具有光学活性。当单色左旋与右旋的圆偏振光通过某一种手性样品时,该样品对左、右旋圆偏振光的吸收不同,这叫做圆二色性(Circular Dichroism)。其差值△A=△A L-△A R称为圆二色值,按波长扫描就得到了圆二色谱(CD谱)。CD谱是特殊的吸收谱,它比一般的吸收谱弱几个量级,但由于它对分子结构 十分敏感,因此近十几年来,CD已成为研究分子构型(象)和分子间相互作用的最重要的光谱实验之一。利用CD研究生物大分子和药物分子,具有重要的科学意义和实用价值[2,3]。 一、蛋白质的圆二色性 蛋白质是由氨基酸通过肽键连接而成的具有特定结构的生物大分子。蛋白质一般有一级结构、二级结构、超二级结构、结构域、三级结构和四级结构几个结构层次[4-6]。在蛋白质或多肽中,主要的光活性基团是肽链骨架中的肽键、芳香氨基酸残基及二硫桥键。当平面圆偏振光通过这些光活性的生色基团时,光活性中心对平面圆偏振光中的左、右圆偏振光的吸收不相同,产生的吸收差值,由于这种吸收差的存在,造成了偏振光矢量的振幅差,圆偏振光变成了椭圆偏振光,这就是蛋白质的圆二色性。圆二色性的大小常用摩尔消光系数差△ (M-1 ·cm-1 )来度量。蛋白质的CD光谱一般分为两个波长范围,即178—250 nm为远紫外区CD

圆二色光谱分析小结

3.3.9圆二色性(Circular dichroic,CD)测定 1%(w/w)的蛋清溶液调节到pH 4.0,6.0,10.0,在85oC加热不同时间,离心,取上清液,然后稀释至100~200μg/mL溶液。对照组为天然蛋清样品。用Jasco J-715光度计测定样品的CD谱。测定条件设定:测定波长范围190~250 nm,25oC,比色皿光径1 mm,分辨率0.2 nm,扫描速率100 nm/min,扫描5次。使用Jasco SSE软件确定样品的二级结构百分含量。 3.4.6蛋白质的二级结构对DH的影响 蛋白酶的水解反应还受到蛋白质的结构的影响,一般结构紧密的蛋白质提供的酶切位点少于结构松散的蛋白质。因此有必要研究蛋白质结构对DH的影响。蛋白质的热处理可能引起二级、三级和四级结构的变化。从二级结构看,α-螺旋结构表现蛋白质分子的有序性,而其结构如β-折叠、β-转角、无规卷曲等反映了蛋白质分子的松散性[26]。蛋白质分子的有序性差,越有利于蛋白酶的水解。目前,研究蛋白质构象最好的方法是x-射线衍射,但对结构复杂、柔性的生物大分子蛋白质来说,制备蛋白质单晶较为困难。二维、多维核磁共振技术能测出溶液状态下蛋白质分子的构象,可是对分子量较大的蛋白质的计算处理非常复杂。相比之下圆二色性是研究稀溶液中蛋白质分子构象的一种快速、简单、较准确的方法。圆二色性在紫外区段(190~240 nm),主要生色团是肽链,这一波长范围的CD谱包含着生物大分子主链构象的信息。在一般情况下,实验中得到的CD谱线是α-螺旋、β-折叠和无规卷曲构象的CD 谱的线性迭加[27]。图3-7显示天然蛋清的CD谱线a在222 nm处和208 nm处呈负峰,在190 nm附近有一正峰,这是存在部分α-螺旋构象的特征。谱线b、c、d、e在221 nm处的负谱带减弱,意味着α-螺旋的百分比减小。谱线b、c、d、e向短波长方向移动,即发生蓝移。由于发色团吸收光谱发生位移主要取决于它的微环境更加亲水或疏水的结果[28],因此谱线b、c、d、e蓝移的发生说明体系的亲水性降低,即疏水性增加。表3.3列出了天然蛋清和热处理蛋清的α-螺旋、β-折叠、β-转角和无规卷曲构象所占的比例。从表中可以看出,通过热处理,天然蛋清的α-螺旋比例下降,而β-折叠和无规卷曲的比例增加,说明蛋清蛋白分子结构的有序性降低,形成了以β-折叠和无规卷曲为主的二级结构。 图3-7天然和热处理的蛋清的CD光谱 a-天然蛋清;b-pH4,85oC加热36 min蛋清;c-pH6,85oC加热36 min蛋清;d-pH10,85oC 加热30 min蛋清;e-pH10,85oC加热60 min蛋清。 4.19圆二色谱分析动态超高压微射流均质对卵清蛋白二级结构的影晌

(完整word版)圆二色光谱仪操作规程

MOS-450 圆二色光谱扫描操作规程 1.测量波长小于210nm,需要对仪器进行氮气吹扫处理。打开氮气,调整流量 计流速为16.6L/min,通氮气几分钟。确认ALX-250的电源线插在氙灯的位置,并且氙灯已对准光路,具体操作见光源的选择操作说明。然后打开ALX-250光源开关,将氮气流量计流速设为6.6L/min,预热15分钟后,查看ALX-250面板显示,微调旋钮,将功率确定在150W,光源准备完毕。 2.测量波长大于210nm如果无需氮气吹扫,直接打开ALX-250电源,等待功 率稳定在150W后进行下一步操作。 3.打开ALX-250的同时,打开MM-450和PMS-450电源,一起预热15分钟。 4.将装有待测样品空白溶液(如水或缓冲盐)的石英池放入样品仓,盖上盖子, (所用的石英池必须经过仔细的清洗)。 5.点击电脑桌面上的图标,进入BioKine软件操作主界面。 6.点击图1主界面的Device/Scanning Spectrometer,进入光谱扫描界面,如图2。 图1 图2 7. 在要测量波长的范围内取一个波长数值,输入到图2下方的Ex处,点击Enter 键。这时确认按钮变为,然后点击,自动调整HV电压,然 后再点击按钮,锁定此电压值。 8. 点击主界面上方的按钮,选择光谱测量方法,如图3。

图3 Acquisition mode:选择测量模式CD。 Begin(nm):扫描初始波长 End(nm):扫描结束波长 Scan Repeat :扫描次数 Acquisition duration:每个nm的测量持续时间,范围0.05s-20s。圆二色扫描 推荐值20s,建议最小大于1 s。 ShutterAutomatic mode:选择Always open,挡板处于始终打开的状态。 PM gain*10:当在非常低的信号测量,可选择此项,进行信号的增益。 CD parameters:CD的灵敏度,根据信号的振幅设置,有四个不同的选项,1000、 300、100和30 mdeg。 其他选项根据需要可以选择。 以上参数都设置好后,点击OK按钮,参数设置完成,回到主界面。 9. 空白的测量 点击图2主界面Blank spectum区域的Record按钮,记录第一步添加的空白样品谱图,空白谱图显示在主界面中。测量后选择Subtract复选框,将在随后的样品光谱的测量中扣除空白值。 10. 样品的测量 再点击按钮,关闭挡板,取出样品池,将空白样品换成被测样品,然后再放回到样品支架上,盖好样品仓盖。这时再点击,打开挡板。点

圆二色光谱在研究蛋白结构中的应用.

圆二色光谱在蛋白质结构研究中的应用 摘要:圆二色光谱(CD)是研究手性分子结构的重要工具,近年来圆二色光谱在蛋白结构分析中应用越来越广泛。本文综述了圆二色产生原理及与蛋白质结构关系并简单阐述了圆二色光谱在研究蛋白结构中的应用案例。 关键词:圆二色光谱;蛋白质;构象; 由于光学活性分子对左、右圆偏振光的吸收不同, 使得左、右圆偏振光透过后变成椭圆偏振光, 这种现象就是圆二色性(circular Dichroism,简称 CD)。历史上,圆二色性又称为光学活性,巴斯德在19世纪就发现并研究了柠檬酸的光学活性。传统的圆二色谱是指波长在200~400 nm 之间的吸收谱, 20世纪70年代, 由于“八区律”、“激子手性法”[1]等方法的发现和发展, 圆二色谱得到了广泛应用。圆二色光谱是一种差光谱, 是样品在左右旋偏振光照射下的吸收光谱差值。由于生物大分子基本都含有手性的基团和结构,圆二色光谱可以帮助测量和观察生物大分子的结构和构象变化,也可应用于研究DNA/RNA 反应、酶动力学、光学活性物质纯度测量、药物定量分析;天然有机化学与立体有机化学、物理化学、生物化学与宏观大分子、金属络合物、聚合物化学等相关的科学研究。 蛋白质是由氨基酸通过肽键连接而成的具有特定结构的生物大分子, 它并不是以长链分子的状态存在,而是折叠成特定的三维结构。因此可以用圆二色技术测定蛋白质分子结构。 目前,测定蛋白质分子构象的方法还有X-射线衍射,核磁共振技术及冷冻电子显微技术[2]等。在专门存储蛋白质和核酸分子结构的蛋白质数据库中,接近90%的蛋白质结构是用X射线晶体学的方法测定的。大约9%的已知蛋白结构是通过核磁共振技术来测定的。此外冷冻电子显微技术是近年来兴起的一种获得低分辨率(低于5埃)蛋白质结构的方法。但是X-射线衍射技术对于分析结构复杂、柔性的生物大分子蛋白质,适合的单晶培养限制了它的应用。二维、多维核磁共振技术适用于较小分子量蛋白质构相分析且数据处理过程繁琐。冷冻电子显微技术只能用于形成二维晶体的体系,且需要专门的冷冻平台。相比而言,圆二色光谱是研究稀溶液中蛋白质构相的一种快速简便的方法。此外,圆二色对构象变化敏感,

圆二色谱 张诗群..

高级物理化学实验 实验项目名称:圆二色光谱原理、实验技术及应用 姓名: 张诗群学号:130420123 指导教师:吴舒婷老师成绩评定:评阅教师: 日期:2014 年7 月10 日 一、实验目的: 1 圆二色性; 2 圆二色谱的原理及应用; 3 圆二色谱的相关拓展知识; 4 圆二色谱的实验技术及操作; 二、实验原理: 圆二色性是手性分子在光学上表现的一种特性。光可视为振动方向与传播方向垂直的电磁横波。当光波的电矢量方向以一个固定的角速度以传播方向为轴心匀速旋转时,称之为圆偏振光。根据圆偏振光电矢量旋转方向的不同,可以将其区分为左圆偏振光和右圆偏振光。一束平面偏振光可以看成是由两个振幅和速度相同而螺旋前进方向相反的圆偏振光叠加而成(图1)。两圆偏振光彼此对映,互为镜像。当手性物质在偏振光的波长范围内存在吸收的时候,其对左右圆偏振光的吸收程度,也就是摩尔吸光系数,是不同的。此时不但偏振光的偏振平面将被旋转,构成该偏振光的左右圆偏振光的振幅也将不再相等。组成出射光的左右圆偏振光的电矢量和将沿一个椭圆轨迹移动,此时的出射光就是椭圆偏振光(图2)。这种光学现象就称为手性物质所具有的圆二色性。对于纯手性物质,其椭圆偏振光的椭圆度θ在特定溶剂、浓度、温度和光程下,在特定波长处为定值。同时,在特定波长处的椭圆度θ与在该波长处对左右圆偏振光的摩尔吸光系数之差(Δε)成正比。将θ或Δε对波长作图,即得到圆二色光谱。

图1 右圆偏振光(a)、左圆偏振光(b)及平面偏振光示意图,水平箭头表示光的传播方向。 图2 (a) 平面偏振光的圆组分;(b) 平面偏振光的旋转与圆组分;(c) 椭圆偏振光的旋转与圆组分被吸收的情况。其中,OB与OC分别表示右、左圆偏振光被吸收后的振幅,OD表示OB与OC的矢量和,θ表示椭圆偏振光的椭圆率角,tanθ= OE/OA″≈θ。 圆二色光谱的英文名称为Circular Dichroism,简称CD光谱。其光谱仪的基本测试原理是——通过入射圆偏振光的波长变化,测定手性样品的左圆偏振光和右圆偏振光摩尔消光系数之差Δε。由于CD光谱反映了光和分子间的能量交换,因而只能在有最大能量交换的共振波长范围内测。CD光谱可用于分析一般电子光谱所不能体现出来的能级跃迁的细节,是讨论手性化合物电子跃迁性质的重要表征手段。当测试条件严格一致时,一对对映异构体的CD光谱呈镜像对称。通 常采用光学纯的样品(即仅含单一对映体)进行CD光谱的测定,可由实验值θ

圆二色谱实验报告

圆二色谱应用技术 一、实验目的 1、了解圆二色(CD)光谱的工作原理。 2、学会运用圆二色谱测氨基酸,蛋白质,DNA。 二、实验原理 对R和L两种圆偏振光吸收程度不同的现象。这种吸收程度的不同与波长的关系称圆二色谱,是一种测定分子不对称结构的光谱法。圆二色光谱是一种差光谱,样品在左旋偏振光照射下的吸收光谱与其在右旋吸收光谱照射下的偏振光之差。物质的吸收光谱决定物质的颜色。如果一个物质对左旋偏振光和对右旋偏振光的吸收不同,那么称该物质具有圆二色性(circulardi2chroism,简称CD)。同样,如果一个物质对于不同方向的线偏振光的吸收不同,那么该物质具有线二色性。很多各向异性的晶体具有线二色性;而很多生物大分子和有机分子具有圆二色性在分子生物学领域中主要用于测定蛋白质的立体结构,也可用来测定核酸和多糖的立体结构。 圆二色谱仪由光源、单色器、起偏器、圆偏振发生器、试样室和光电倍增管组成。 三、实验步骤 1.通高纯氮气45min后,开机

2.点亮氙灯:打开主机电源INSTRUMENTPOWER;打开氙灯电源XENONLMAPPOWER;等待LMAPready 灯亮;按红色IGNITELMAP 按钮 3.打开主板电源INSTRUMENTPOWER 4.打开Thermocubechiller(开关在冷却器左边) 5.打开软件,设置参数,选择数据保存设置;选择保存位置;开始实验,保存数据 6关软件TerminateCDSProgram 中关闭 7关氙灯电源XENONLMAPPOWER 8关闭Thermocubechiller 9等待10min 后关闭高纯氮气(可先行下述步骤) 10清洗比色皿、注射泵及其他附件 11光盘刻录数据 12关闭主机电源INSTRUMENTPOWER 四、试验结果和数据处 180200220240260280300-250 -200 -150-100 -50 050D e s c r i p t i o n Wavelength(nm)a 180200220240260280300 -10-5 51015 20 D e s c r i p t i o n Wanelength(nm)b

圆二色光谱仪原理应用

圆二色性光谱及其应用 (Circular Dichroism,CD) 光学活性分子对左、右圆偏光的吸收率的差值 1、自然光 光具有波、粒二象性,是横电磁波。只有横波才有偏振现象: 光矢量的振动方向与光的传播方向垂直, 在垂直于光传播方向的平面内, 有不同的振动方向。 电场矢量E和磁场矢量H互相垂直、位相相同。 由于感光作用都是E 引起的,因而,将E 作为光矢量。 振动面:E 与光传播方向组成的平面。

从统计规律上说,自然光的光振动: 在垂直于光速的平面上遍布所有方向, 沿各方向振动的光矢量呈对称分布, 相应光矢量的振幅(光强度)相等。 超高压短弧氙灯: 在高压纯净氙气中放电发光。 (1)高亮度的点光源; (2)日光色。色温接近6000K; (3)在可见光区连续光谱; (4)高显色性,显色指数>95; (5)在整个寿命期内维持光色特性; (6)高电弧稳定性; (7)热重启能力; (8)启动后即能达到接近最大光输出; (9)电弧光斑小、易聚光。

2、光的偏振 双折射现象: 一束光射入各向异性晶体后有两束折射光。 尼科耳棱镜。 在生物样品中,肌肉纤维、骨骼和牙齿等具有各向异性,淀粉粒、染色体和纺锤体等具有双折射性,因此被用于组织细胞的化学研究。

o光和e光:频率相同、振动方向相互垂直、平面偏振光 光的吸收和圆二色性(circular dichroism, CD) 化合物在正常情况下,处于低能的基态,电子占据所有的成键轨道(σ、π、n轨道)。如果电子吸收了外界的能量,它就从基态跃迁到激发态能 级。 如果所有的跃迁仅在基态的最低振动能级和第一激发态之间,吸收光谱将是很狭窄而不连续的谱线。 由于分子的价电子跃迁总伴随着振动和转动能级的跃迁,所以,紫外分光光度计测定物质的吸收光谱,虽然有一最大吸收峰值,但都是具有一定 波长宽度并相对平滑的曲线。

圆二色谱

用于推断非对称分子的构型和构象的一种旋光光谱。光学活性物质对组成平面偏振光的左旋和右旋圆偏振光的吸收系数(ε)是不相等的,εL≠εR,即具有圆二色性。如果以不同波长的平面偏振光的波长λ为横坐标,以吸收系数之差Δε=εL-εR为纵坐标作图,得到的图谱即是圆二色光谱,简称CD。如果某手性化合物在紫外可见区域有吸收,就可以得到具有特征的圆二色光谱。由于εL≠εR,透射光不再是平面偏振光,而是椭圆偏振光,摩尔椭圆度[θ]与Δε的关系为:[θ]=3300Δε。圆二色谱也可以摩尔椭圆度为纵坐标,以波长为横坐标作图。由于△ε有正值和负值之分,所以圆二色谱也有呈峰的正性圆二色谱和呈谷的负性圆二色谱。在紫外可见光区域测定圆二色谱与旋光谱,其目的是推断有机化合物的构型和构象 分子对接(molecular docking)使依据配体与受体作用的“锁-钥原理”(lock and key principle),模拟小分子配体与受体生物大分子相互作用。配体与受体相互作用是分子识别的过程,主要包括静电作用、氢键作用、疏水作用、范德华作用等。通过计算,可以预测两者间的结合模式和亲和力,从而进行药物的虚拟筛选[2] 。 分子对接首先产生一个填充受体分子表面的口袋或凹槽的球集,然后生成一系列假定的结合位点。依据受体表面的这些结合点与配体分子的距离匹配原则,将配体分子投映到受体分子表面,来计算其结合的模式和亲和力,并对计算结果进行打分,评判配体与受体的结合程度。 3 分子对接的种类 分子对接的种类主要包括: (1)刚体对接:指在对接过程中,研究体系(受体和配体)的构象不发生变化。适合考察比较大的体系,如蛋白质和蛋白质间以及蛋白质和核酸之间的对接。

圆二色光谱实验报告

实验四—圆二色光谱实验

圆二色光谱实验 一、实验目的 1、了解圆二色(CD)光谱的原理和使用方法。 2、学会用圆二色光谱检测蛋白质二级构象的基本原理和方法,并学会分析物质的手性。 3、了解圆二色光谱仪的基本构造,并学会使用。 二、实验原理 1.CD光谱的基本知识 圆二色性是研究分子立体结构和构象的有利手段。在一些物质的分子中,没有任意次旋转反映轴,不能与镜像相互重叠,具有光学活性。电矢量相互垂直,振幅相等,位相相差四分之一波长的左和右圆偏振光重叠而成的是平面圆偏振光。 平面圆偏振光通过光学活性分子时,这些物质对左、右圆偏振光的吸收不相同,产生的吸收差值,就是该物质的圆二色性。 圆二色性用摩尔系数系数差ΔεM来度量,且有关系式:ΔεM = εL –εR,其中,εL 和εR分别表示左和右偏振光的摩尔吸收系数。如果εL –εR >0,则ΔεM为“+”,有正的圆二色性,相应于正Cotton效应;如果εL –εR<0,则ΔεM为“-”,有负的圆二色性,相应于负Cotton效应。 由于这种吸收差的存在,造成了矢量的振幅差,因此从圆偏振光通过介质后变成了椭圆偏振光。圆二色性也可用椭圆度θ或摩尔椭圆度[θ]度量。[θ]和ΔεM之间的关系式:[θ]=3300*Δε 圆二色光谱表示的[θ]或ΔεM与波长之间的关系,可用圆二色谱仪测定。一般仪器直接测定的是椭圆度θ,可换算成[θ]和ΔεM:[θ] = 100θ/cl,ΔεM= θ/33cl 其中,c表示物质在溶液中的浓度,单位为mol/L;l为光程长度(液池的长),单位为cm。输入c和l的值,一般仪器能自动进行换算,给出所需要的关系。 2.定性分析原理 圆二色光谱仪需要将平面偏振调制成左、右圆偏振光,并用很高的频率交替通过样品,因而设备复杂,完成这种调制的是电致或压力致晶体双折射的圆偏振光发生器(也称Pocker池或应力调制器)。圆二色谱仪一般采用氙灯作光源,其辐射通过由两个棱镜组成的双单色器后,就成为两束振动方向相互垂直的偏振光,由单色器的出射狭缝排除一束非寻常光后,寻常光由CD调制器制成交变的左圆偏振光、

用圆二色光谱研究蛋白质与小分子作用后的构象变化

用圆二色光谱研究蛋白质与小分子作用后的构象变化 一.实验目的 1.了解圆二色(CD)光谱研究蛋白质二级构象的基本原理和方法。 2.能设计实验用CD光谱检测蛋白质与小分子作用后的构象变化,能用简单方法计算二级结构 中螺旋的含量。 二.实验原理 1.CD光谱的基本知识 圆二色性是研究分子立体结构和构象的有力手段。在一些物质的分子中,没有任意次旋转反映轴,不能与镜像相互重叠,具有光学活性。电矢量相互垂直,振幅相等,位相相差四分之一波长的左和右圆偏振光重叠而成的是平面圆偏振光。平面圆偏振光通过光学活性分子时,这些物质对左、右圆偏振光的吸收不相同,产生的吸收差值,就是该物质的圆二色性。圆二色性用摩尔系数系数差ΔεM来度量,且有关系式:ΔεM = εL –εR,其中,εL和εR分别表示左和右偏振光的摩尔吸收系数。如果εL –εR >0,则ΔεM为“+”,有正的圆二色性,相应于正Cotton效应;如果εL –εR <0,则ΔεM为“-”,有负的圆二色性,相应于负Cotton效应。 由于这种吸收差的存在,造成了矢量的振幅差,因此从圆偏振光通过介质后变成了椭圆偏振光。圆二色性也可用椭圆度θ或摩尔椭圆度[θ]度量。[θ]和ΔεM之间的关系式: [θ]=3300*ΔεM 圆二色光谱表示的[θ]或ΔεM与波长之间的关系,可用圆二色谱仪测定。一般仪器直接测定的是椭圆度θ,可换算成[θ]和ΔεM: [θ] = 100θ/cl ΔεM = θ/33cl 其中,c表示物质在溶液中的浓度,单位为mol/L;l为光程长度(液池的长),单位为cm。输入c和l的值,一般仪器能自动进行换算,给出所需要的关系。 圆二色光谱仪需要将平面偏振调制成左、右圆偏振光,并用很高的频率交替通过样品,因而设备复杂,完成这种调制的是电致或压力致晶体双折射的圆偏振光发生器(也称Pocker池或应力调制器)。圆二色谱仪一般采用氙灯作光源,其辐射通过由两个棱镜组成的双单色器后,就成为两束振动方向相互垂直的偏振光,由单色器的出射狭缝排除一束非寻常光后,寻常光由CD调制器制成交变的左圆偏振光、右圆偏振光,这两束圆偏振光通过样品产生的吸收差由光电倍增管接受检测。 测试时要通入氮气赶走管路中的水蒸气和光源产生的臭氧(臭氧会腐蚀反射镜)。 2.CD测蛋白质二级结构的基本原理 蛋白质是由氨基酸通过肽链组成的具有特定结构的生物大分子。蛋白质中氨基酸残基的排列次序是蛋白质的一级结构,而肽链中局部肽段骨架形成的构象称为二级结构,二级结构是靠台联股价中的烫机上的氧原子和亚胺基上的氢之间的氢键来维系的,根据肽链的旋转方向

圆二色谱

圆二色谱 圆二色性(circular dichroism ) 对R和L两种圆偏振光吸收程度不同的现象。这种吸收程度的不同与波长的关系称圆二色谱,是一种测定分子不对称结构的光谱法。在分子生物学领域中主要用于测定蛋白质的立体结构,也可用来测定核酸和多糖的立体结构。 光是一种电磁波。假如用电矢量来表示,光的前进就是由矢量端点在一特定的平面里沿正弦波运动的轨迹。对于自然光讲,正弦波振动的平面是随机的。如有一束光,它所有的电矢量的振动平面都是相互平行的,这种光称为平面偏振光。有一种特殊的情况,光前进的过程中电矢量绕前进轴转动,若电矢量的绝对值不变,则运动轨迹的投影是一个圆,这时就变成圆偏振。面对光前进的方向看去,电矢量端点的圆运动可以是顺时针方向的,也可以是逆时针方向的,因此圆偏振有R与L两种。 假如 L与 R两束圆偏振光在一起辐射,强度、速度、频率和位相都相同,它们就会叠合成一束平面偏振光。如波长λ的L光和R光的光强度相等,在光学各向异性物质中传播某一距离后,它们的综合光将变成椭圆偏振光,椭圆的长轴处于两个圆偏振的电矢量相叠合的地方。假如两个圆偏振的传播速度也不相同,而所经的途径与上述相同,则叠合的椭圆偏振光的长轴与上面所述的椭圆偏振光的长轴相夹θ角(图1)。

由不对称分子组成的物质是光学各向异性的,即L与R两束圆偏振光在这类物质中的传播速度不相等。假如光学各向异性物质在某一波长λ有吸收,那将在该时对L光和R光有不同的吸收,如该物质的吸光率是A,而对L光和R光的吸光率是AL和AR,AL和AR的差ΔA=AL-AR,称为圆二色性。 从(图2)可看出,因光吸收不同而产生的椭圆的形状与ΔA有直接的关系。θ称为椭圆值,也是一种定量描述圆二色性的单位。在条件相同的情况下,θ=3300ΔA。 在蛋白质分子中,肽链的不同部分可分别形成α-螺旋、β-折叠、β-转角等特定的立体结构。这些立体结构都是不对称的。蛋白质的肽键在紫外185~240纳米处有光吸收,因此它在这一波长范围内有圆二色性。几种不同的蛋白质立体结构所表现的椭圆值波长的变化曲线──圆二色谱是不同的。如(图3)所示,α-螺旋的谱是双负峰形的,β-折叠是单负峰形的,无规卷曲在波长很短的地方出单峰。蛋白质的圆二色谱是它们所含各种立体结构组分的圆二色谱的代数加和曲线。因此用这一波长范围的圆二色谱可研究蛋白质中各种立体结构的含量。

相关文档
最新文档