种子乳液聚合的研究进展

种子乳液聚合的研究进展
种子乳液聚合的研究进展

种子乳液聚合的研究进展

邵谦1,2*,王成国1,郑衡2,王建明2

(11山东大学材料液态结构及其遗传性教育部重点实验室,济南250061;

21山东科技大学化学与环境工程学院,青岛266510)

摘要:种子乳液聚合法因具有乳液稳定性更好、粒径分布窄、易控制等优点,在乳胶粒子设计及制备各种功能性胶乳方面具有重要作用,是制备高固含量乳液及具有核壳结构乳液的最常见最简便的方法。本文综述了

近年来种子乳液的聚合工艺、聚合机理,包括接枝机理、互穿聚合物网络机理、聚合物沉积机理、种子表面聚合

机理和离子键合机理等,以及种子乳液聚合在乳胶粒子设计方面的应用研究进展,并讨论了影响种子乳液聚合

的各种因素。

关键词:种子乳液;乳液聚合;粒子设计

传统的乳液聚合制得的聚合物乳胶粒粒径一般较小,且粒径分布较宽,不能满足特殊需要。20世纪70年代,Williams[1]根据苯乙烯种子乳液聚合动力学和溶胀等数据首先提出了核壳理论。80年代日本神户大学的Okubo[2]教授提出了/粒子设计0的新概念,在不改变乳液单体组成的前提下改变了乳胶粒子的结构。

与其它方法制备的乳液相比,种子乳液聚合法制备的乳液具有稳定性更好、粒径分布窄、易控制等优点。利用种子乳液聚合技术可以容易地制得不同结构的胶乳,是制备高固含量乳液最常见最简便的方法,也是实用化的制备各种功能性胶乳的重要方法之一[3,4]。本文就近年来种子乳液聚合的工艺、机理研究及在乳胶粒子设计方面的应用进行了综述,并讨论了影响种子乳液聚合的各种因素。

1种子乳液聚合工艺

种子乳液聚合法是核壳型乳液的典型制备方法,形成的高聚物一般是均聚物或共聚物,所以制备方法和通常的乳液聚合工艺基本相同[5]。根据壳层单体的加入方式,可以分为间歇法、溶胀法、半连续法、连续法。间歇法是按配方一次性将种子乳液、水、引发剂、乳化剂、壳层单体加入到反应器中,升温至反应温度进行聚合。溶胀法是将壳层单体加入到种子乳液中,在一定温度下溶胀一段时间,然后再升温至反应温度后加入引发剂进行聚合。Ugelstad[6]介绍了一种制备单分散性胶乳的两步溶胀法,制备出新型的核壳粒子。半连续法是将水、乳化剂和种子乳液加入到反应器中,升温至反应温度后加入引发剂,然后再将壳层单体以一定速度滴加进行聚合。连续法是在搅拌下将单体、引发剂加入到种子乳液中,然后将所得的混合液连续地滴加到溶有乳化剂的水中进行聚合。工业上普遍采用半连续种子乳液聚合法。

种子乳液聚合过程中易产生新胶粒,不利于乳液的稳定及最后的性能。为了避免新胶粒的产生,可以采用如下三种方法:

(1)进行胶粒增长反应实验,严格控制反应体系的加料速度,维持聚合体系的单体转化率始终处于较高水平,使聚合体系处于/饥饿0状态;

(2)在合成时尽量少用乳化剂,第一步的胶粒增长反应过程中可采用无皂乳液聚合;

(3)采用加入油溶性引发剂的方法予以避免。

作者简介:邵谦(1964-),女,博士研究生,主要从事高分子材料合成方面的研究;

*通讯联系人,Email:gss620818@1631com.

2种子乳液聚合机理

种子乳液聚合中的种子分为外加型和自生成型。目前常用的是自生成种子法,首先用乳液聚合法将成核单体合成种子乳液,然后按一定的方式将第二单体加入到种子乳液中聚合制得。其基本原理如下图所示:

图1种子乳液聚合的基本原理

Figure1The basic principle of seeded emulsion polymerization

壳层单体与种子乳液聚合成乳胶粒的生成机理主要有以下五种:

(1)接枝机理该机理认为在核与壳之间存在一过渡层,它是由第二单体接枝到种子聚合物上形成的,这个过渡层降低了核与壳聚合物间的界面能,从而使复合粒子得以稳定。Pedro等[7]用种子乳液聚合法,把DMAEMA(甲基丙烯酸二甲氨基乙酯)成功地接枝到天然橡胶上,通过NMR证实了分枝的存在。王郁翔等[8]采用预乳化种子乳液聚合法,通过甲基丙烯酸甲酯与丙烯酸丁酯接枝共聚反应,制得了抗冲击改性剂乳液。叶志斌等[9]通过正交实验,考察了各个单体的用量及其它因素对丙烯酸酯接枝天然橡胶胶乳的转化率和接枝率的影响,得到了转化率高且稳定的乳液,可以用于压敏胶胶乳的制备。

(2)互穿聚合物网络(IPN)机理在核壳乳液聚合反应体系中加入交联剂,使核层、壳层中一者或两者发生交联,聚合物分子链相互贯穿并以化学键的方式各自交联而形成网络结构,生成互穿聚合物网络乳液[10]。晏欣等[11]利用种子乳液聚合和双丙酮丙烯酰胺与己二酰肼的交联反应合成了自交联乳胶IP N,该乳胶为微观层次互穿,互穿几率大,协同效应好,具有优异的阻尼性能,可以方便地以水基涂料的形式应用。严伟才等[12]采用原位聚合和互穿网络的方法,以氟树脂乳液作为种子乳液,合成了聚丙烯酸酯和氟树脂胶乳型互穿网络聚合物,所合成的乳液稳定性良好。

(3)聚合物沉积机理在种子乳液聚合的反应初期,水相中的第二单体浓度高达极限时,有一部分单体沉积下来形成基本粒子,这种基本粒子来不及长大就被种子粒子所吸附,从而在种子表面形成壳层,第二单体的聚合反应就在这些粒子中进行。对于水溶性大的单体或以连续法进行的种子乳液聚合,核壳结构的形成基本遵循该机理。

(4)种子表面聚合机理多数种子乳液聚合用的是水溶性引发剂,所产生的自由基有较好的亲水性,易附在粒子的表面。该机理认为乳液粒子中不仅自由基的分布不均匀,而且单体也呈梯度分布,形成单体富集的壳层,因而聚合反应也主要发生在壳层,从而生成核壳聚合物粒子。Chern等[13]经过研究证实了该理论。

(5)离子键合机理若核层聚合物和壳层聚合物之间分别带有相反电荷的离子,它们靠离子键结合形成核壳结构的乳胶粒子,这种机理称为离子键合机理[14]。研究表明[15],采用含有离子键的共聚单体制得的复合聚合物乳液,由于不同分子链上异性离子的引入抑制了相分离,从而能控制非均相结构的生成。

3影响种子乳液聚合的因素

利用种子乳液聚合可以得到形态各异的乳胶粒子,聚合过程中,种子乳液用量及壳层单体、加料方式、乳化剂、引发剂等都对乳液聚合有较大的影响。其它如反应体系的pH值、反应温度、搅拌速度等对乳液聚合也有一定的影响。

311种子乳液用量及壳层单体的影响

种子乳液的用量及亲水性都对乳胶粒的大小有直接的影响,进而影响乳液的稳定性和性能。目前,种子乳液的用量还没有一个理论的方法来计算,只能根据实验和经验来确定。壳层单体多为功能性单

体,聚合过程加入功能性单体后,反应稳定性增加,粒径降低,粒径分布变窄。随着其用量的增加,聚合稳定性增加,当超过一定量时,聚合反应稳定性有下降趋势,且粒径增加。张静等[16]用半连续种子乳液聚合法合成了核壳型丙烯酸酯类反应性微凝胶乳液,研究了反应条件对乳胶粒粒径及分布的影响,并用FTIR,TEM和流变仪测定了乳液结构和性能,发现壳层单体中加入功能性单体甲基丙烯酸,乳胶粒粒径减小,粒径分布初期变窄,但随着甲基丙烯酸用量的增加粒径分布变宽,甲基丙烯酸用量以3%~4%为佳。312加料方式的影响

种子乳液聚合属于多单体的共聚,每种单体的反应活泼性和水溶性相差很大。若采用一次投料法,水溶性单体首先在水相中均聚产生水溶性聚合物,油性单体聚合后,粒子表面缺少亲水基团的保护,易聚并沉淀,不利于乳液的稳定。若采用半连续滴加法,整个反应过程始终处于/饥饿态0,竞聚率和水溶性不同的单体可以共聚,亲水基团均匀地分散在粒子表面,提高了聚合物的稳定性。Sajjadi等[17]研究了不同的加料方式对苯乙烯种子乳液聚合的影响。经TE M分析,一次加料得到的乳胶粒子的半径大于半连续滴加法得到的乳胶粒子半径,但因有液滴成核,其半径均大于传统的乳液聚合。半连续法聚合得到的乳液体系比较稳定,而且乳胶粒的粒径容易控制。

313乳化剂的影响

种子乳液聚合过程中,乳化剂用量过少,反应不稳定,易产生凝聚物,乳液光泽性差。随着乳化剂用量增加,反应体系稳定性提高,凝聚物大量减少,粘度增大。当乳化剂增加到一定程度时,虽然其对聚合反应速率及单体转化率没有明显的影响,但是胶膜的吸水率增加,耐水性下降。因此,乳化剂用量应根据反应的情况进行选取。单一乳化剂不能达到良好的乳化效果,一般将阴离子型和非离子型乳化剂复合使用,产生协同效应,同时用量可以减少。乳化剂的配比对反应也有重要的影响,当配比恰当时,乳化剂的性能可以很好地互补,达到最好的效果。孟勇等[18]采用种子乳液半连续法合成了具有高有机硅含量的复合乳液,研究了乳化剂的种类、复配比例对乳液性能与乳胶粒径、分布和结构的影响。结果表明,用阴离子型乳化剂十二烷基硫酸钠(SDS)、十二烷基磺酸钠、十二烷基苯磺酸钠所合成的乳胶粒子粒径依次增大,SDS与OP-10复配使用时,随OP-10质量分数的增加,聚合速率和转化速率降低,乳液化学稳定性增加,乳胶粒子粒径增大,分布变宽,复合乳化剂的最佳配比SDS P OP-10为5B1。廖水姣等[19]利用种子乳液聚合法以十二烷基硫酸钠和壬基聚十五氧乙烯复合乳化剂制备了固含量高达6514%左右的丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸共聚物乳液,并对其性能进行了测试,结果表明乳液性能良好,固含量高于一般的乳液。

314单体亲水性的影响

单体亲水性对种子乳液聚合有很大的影响。如果以疏水性单体为核层单体,亲水性单体为壳层单体进行种子乳液聚合,可以形成正常结构的乳胶粒。反之,可以形成非正常的乳胶粒[20]。李福等[21]利用离子型小分子亲水单体和非离子型大分子亲水单体与两性单体进行无皂乳液共聚合,制备了高固含量、稳定的苯-丙乳液,并讨论了各功能性单体对乳液性能的影响,结果表明亲水性单体总量在014%~018%时,亲水性单体NaSS(离子型单体苯乙烯磺酸钠)B HE MA(两亲性单体甲基丙烯酸B羟乙酯)=3B1时,少量的非离子型大分子亲水单体H TP(非离子型聚氧乙烯大单体)的加入都能显著提高乳液的性能。

315引发剂的影响

种子乳液聚合过程中,种子生成阶段加入的引发剂量将决定成核速率的快慢,影响乳胶粒粒径和分布。其它条件不变时,引发剂的浓度对第二阶段的反应速率影响相对较小,此时引发剂产生的自由基足够补充聚合过程中被中止的活性中心。刘杰凤等[22]研究了引发剂对种子乳液聚合过程的影响,在种子聚合阶段,加入引发剂总量的1/3~1/2,剩余引发剂溶液加少量水稀释随单体加入聚合体系,得到均匀的乳胶粒子,乳液稳定性增加。

其它如反应体系的pH值、搅拌速度、反应温度及聚合场所的粘度对种子乳液聚合均有影响。pH值和反应温度直接影响引发剂的分解[23],搅拌速度对乳液分散性及反应速度有影响,温度对分子链运动有影响。

4种子乳液聚合在乳胶粒子设计方面的应用

种子乳液聚合技术在乳胶粒子设计方面具有其独到之处,通过调整聚合参数,可以制备不同形态的乳胶粒,得到期望性能的乳液,在防震、增韧和阻尼材料、涂料、电子、生物技术和医药载体方面具有重要作用。

首先,种子乳液聚合法可以制备多孔乳胶粒,可作为一种新型的功能材料广泛用作催化剂载体、吸附剂、气相色谱的固定相及生物医学材料等。Vanderhoff等[24]利用种子乳液聚合法制备了以亲水性聚合物为核、疏水性聚合物为壳的复合乳胶粒,然后经烘干得到多孔颜料所需的中空粒子。Okubo等[25]研究发现,S-t B A(丙烯酸丁酯)-MAA(甲基丙烯酸)三元共聚乳液经碱P酸分段处理后可得到多孔性乳胶粒。阚成友等[26]也曾报道通过种子乳液聚合技术制得含有羧基的共聚物乳液,然后经过碱P酸分步处理,制得具有多孔结构的乳胶粒。Kang等[28]还采用无皂种子乳液聚合制备了多孔乳胶粒,并讨论了乳胶粒中空结构的形成机理。

其次,种子乳液聚合可以制备大粒径乳胶粒。李凤岭等[27]用种子半连续乳液聚合法,用油溶性氧化剂和水溶性还原剂引发剂体系,辅以水相阻聚剂合成了粒径大于018L m的单分散聚苯乙烯乳胶粒。Smulder等[29]利用种子乳液聚合技术进行聚合,得到了平均分子量为20000的P(MMA-BA)核壳聚合物。Dziomkina等[30]采用无皂种子乳液聚合,得到了聚合物的粒径在200~500nm的阳离子型胶粒,乳胶粒的直径随着单体浓度的增加而有了明显的增加。

再者,种子乳液聚合可以制备多层核壳结构。Kaga wa等[31]在水性环境下,用二步种子乳液聚合成功地把甲级丙烯酸丁酯和苯乙烯合成了亚微细尺寸的乳液。该乳液具有不同于一般常规乳液聚合的多层核壳结构。Lee[32]经过无皂种子乳液多步聚合,合成了甲级丙烯酸甲酯和苯乙烯的聚合物乳液,并研究了聚合物的形态,结果表明乳胶粒有明显的多层核壳结构。

5结束语

虽然种子乳液聚合的研究已经趋于成熟,应用范围也越来越广泛,但在某些方面仍有待进一步地探索。

(1)辐射引发种子乳液聚合[33],利用高能辐射引发单体进行种子乳液聚合,易控制,易工艺自动化,但目前设备昂贵,能量利用率低,实用性不大,有待更进一步地研究;

(2)反相种子乳液聚合和完全亲水性种子乳液聚合可以使乳胶粒的结构和组成多元化,但此方面的研究报道很少,有待深入研究;

(3)聚合物P无机纳米粒子复合材料可将无机材料的刚性、尺寸稳定性、电磁性和热稳定性与聚合物材料的韧性、可加工性及介电性完美地结合起来[34,35],而成为当前材料研究的热点之一。本研究小组利用有机物改性的无机纳米粒子与聚合物乳液复合,制得了性能优异的无机纳米粒子改性复合乳液[36]。如何利用种子乳液聚合技术制备以无机纳米粒子为核的复合乳液,以期进一步提高复合乳液性能是值得研究的课题;

(4)种子乳液聚合过程中经常含有大量的乳化剂,乳化剂的存在将影响最终乳液产品的性能。寻找新型、高效的乳化剂是十分重要的课题。反应型乳化剂,高分子乳化剂及特殊结构的乳化剂将是今后研究的重点方向之一。

参考文献:

[1]Williams D J.J Pol ym Sci,1970,8(10):2657.

[2]Okubo M,Yamada A,M ats umoto T.J Polym Sci:PartA:Polym Che m,1980,16(2):3219.

[3]艾照全,周奇龙.高分子通报,2004,3:43.

[4]Ito F,Ma G H,Nagai M,et al.Colloids Surf A,2003,216(13):109.

[5]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社,2004,360.

[6]Ugels tad J.J Polym Sci Polym Symp,1985,72:225.

[7]Pedro C,Oliveira.Polymer,2005,46:1105.

[8]王郁翔,吴国旭,林志勇,等.弹性体,2004,14(2):43.

[9]叶志斌,石永生.粘接,2006,27(3):9.

[10]Masukawa T,Ozaki I,Hattori M,et al.Prepri nts of international symposium on advanced technol ogy of fine particles.Yokoha ma,Japan,1997:

125.

[11]晏欣,孙卫红.高分子材料科学与工程,2006,22(2):216.

[12]严伟才,陈莉.南京工业大学学报,2004,26(2):39.

[13]Chern C S,Poehlei n G W.J Pol ym Sci:PartA:Polym Chem,1987,25:617.

[14]马千里,顾利霞.离子的交换与吸附,2000,16(1):88.

[15]Lagass R,Wayne D.J Colloid Interface Sci,2003,267(1):65.

[16]张静,涂伟萍.华南理工大学学报(自然科学版),2006,34(3):72.

[17]Sajj adi S,Jahanz ad F.Eur Polym J,2003,39:785.

[18]黄勇,翁志学,单国荣,等.化工学报,2005,56(9):140.

[19]廖水姣,艾照全,李建宗.高分子材料科学与工程,2000,16(4):144.

[20]Okubo M,Fujiwara T.Short Commun,1998,276:186.

[21]李福,方治齐.高分子材料科学与工程,2005,21(6):63.

[22]刘杰凤,农兰平.科学实验,2004,2:15.

[23]Ito F,Ma G H,Nagai M,et al.Coll oids Surf A,2002,201(13):131.

[24]Vanderhoff J W.Polym Mater Sci,1991,64:345.

[25]Okubo M,Ichikawa K,Fuji mura M.Colloid Pol ym Sci,1994,272(8):933.

[26]阚成友,袁青,孔祥正.高分子材料科学与工程,1997,13(1):117.

[27]李凤岭,常旭升.高分子材料科学与工程,1999,15(3):21.

[28]Kang K,Kan C Y,Du Y,et al.J Colloid Interface Sci,2006,297:505.

[29]Smulder W,Michael,Montei ro J.Macromolecules,2004,37(12):4474.

[30]Dziomkina N V,Hempenius M A,G.Vancs o J.Eur Polym J,2006,42:81.

[31]Kaga wa Y,M inami H,Okubo M,et al.Polymer,2005,46(4):1045.

[32]Lee C F.Coll oid Polym Sci,2002,280:116.

[33]Wang T,Wang M Z.M ater Lett,2006,60(20):2544.

[34]Hsi ue G H,Kuo W J,Huang Y P,et al.Polymer,2000,41(8):2813.

[35]Castelvetro V,Vi ta C D.Adv Colloid Interface Sci,2004,108-109:167.

[36]邵谦,王成国,朱云峰,等.功能材料,2006,37(4):1341

Development of Seeded Emulsion Polymerization

SHAO Qian1,2*,W ANG C heng-guo1,Z HE NG Heng2,WANG Jian-ming2

(11Key Laboratory o f liquid Structure and H eredity of Materials Ministry o f Education,

Shandon g University,Jinan250061,Chian;21Colle ge of Chemical and En viron mental En gineering,

Shandong University of Science and Technology,Qingdao266510,China)

Abstract:The seeded emulsion polymerization plays an important role in particle design and functional latex preparation because of the stability of latex,narro w distribution of latex particle size,easy to c ontrol and so on.It is the most simple and convenient method of preparing high solid content and core shell struc ture latex.The research progress in its techniques,mechanism such as grafting mechanism,interpenetrating polymer network mechanism, polymer deposition mechanism,seed surface polymerization mechanism and electrovalent bond mec hanism etc.,and the applica tions in particle design of seeded emulsion polymerization are reviewed.The effects of various factors on seeded e mulsion polymerization are discussed especially.

Key words:Seed latex;E mulsion polymerization;Particle design

乳液聚合技术

乳液聚合新技术的研究进展 摘要:乳液聚合方法具有广泛的应用范围,近期几年备受关注。本文首先介绍了乳液聚合的基本情况,并着重介绍了一些新的乳液聚合方法和研究成果。 关键词:乳液聚合;进展 前言: 乳液聚合技术的开发始于本世纪20年代末期,当时就已有和目前生产配方类似的乳液聚合的专利出现。30年代初,乳液聚合已见于工业生产。随着时问的推移,乳液聚合过程对商品聚合物的生产具有越来越大的重要性,在许多聚合物如合成橡胶、合成树脂涂料、粘合剂、絮凝剂、抗冲击共聚物等的生产中,乳液聚合已经成为主要的生产方法之一,每年通过该方法制作的聚合物数以千万吨计。【1】1.乳液聚合基本情况 乳液聚合定义 生产聚合物的方法有四种:本体聚合、溶液聚合、悬浮聚合及乳液聚合。乳液聚合是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要由单体、介质(水)、乳化剂及溶于介质(水)的引发剂四种基本组分组成。目前的工业生产中,乳液聚合几乎都是自由基加成聚合,所用的单体几乎都是烯烃及其衍生物,所用的介质大多是水,故有人认为乳液聚合是指在水乳液中按照胶柬机理形成比较独立的乳胶粒中,进行烯烃单体自由基加成聚合来生产高聚物的一种技术。但随着聚合理论的逐步完善,对乳液聚合比较完整的定义应该为:乳液聚合是在水或其他液体作介质的乳液中,按照胶束理论或低聚合物机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合或离子加成聚合来生产高聚物的一种聚合方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的%~%,引发剂为单体的%~%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的特点 聚合反应发生在分散在水相内的乳胶粒中,尽管在乳胶粒内部粘度很高,但由于连续相是水,使得整个体系粘度并不高,并且在反应

阳离子乳液聚合及其应用研究进展

阳离子乳液聚合及其应用研究进展 化工与材料学院 材化081—18 程如清

阳离子乳液聚合及其应用研究进展 程如清 (大连工业大学化工与材料学院,辽宁大连 116034) 摘要:本文简单的介绍几种比较主流的阳离子乳液的聚合方法,并且介绍了阳离子聚合物乳液在 造纸工业和纺织工业以及在建筑业的应用,并对阳离子聚合物乳液在生活生产中应用和发展作了 展望。 关键词:阳离子乳液聚合阳离子聚合物乳液应用研究进展 1. 引言 阳离子聚合物乳液对正负电荷具有良好的平衡性能, 用于纸张上浆剂[1, 2]、粘合剂[3,4]以及染印、钻井、化妆品、生物医学等领域[5- 7]。阳离子聚合物乳液的基本特征是乳胶粒表面或聚合物本身带正电荷,早在60 年代阳离子乳液就引起人们的关注, 目前已有很多人从事这方面的研究, 在理论和应用方面取得了显著的成果。要赋予乳胶粒或聚合物正电荷, 可以根据需要采用不同的聚合方法。 2. 阳离子聚合物乳液的制备方法 2.1 常规乳液聚合法 用乙烯基单体、阳离子型乳化剂或高分子乳化剂, 在自由基引发剂或阳离子型引发剂作用下, 按常规乳液聚合法可以合成阳离子乳液。如sheetz[8]用十二烷基氯化铵作乳化剂, 在H2O 2- F3+e , pH= 2 中制得了稳定的阳离子聚合物乳液; Sarota 等[9]用十二烷基吡啶氯化铵作乳化剂, 加入少量的甲基丙烯酸二甲胺基乙酯, 合成了稳定性良好的PSt 阳离子胶乳; 李效玉等[10]研究了利用不同的表面活性剂如聚乙烯醇,N ,N - 二甲基,N - 十二烷基,N - 苄基氯化铵,N - 甲基,N - 十六烷基吗啉硫酸甲酯季铵盐(CMM ) 等对合成的阳离子乳液的稳定性、聚合转化率的影响, 结果发现: CMM 作乳化剂, 聚合转化率最高, 乳液的稳定性最好。 2.2 转换法 转换法是用阳离子型表面活性剂或两性、非离子型表面活性剂对某些阴离子胶乳进行转换而制备阳离子胶乳。如Heinz 等[11]采用两性表面活性剂和阳离子表面活性剂对阴离子聚苯乙烯、丁二烯胶乳进行转换, 得到了阳离子胶乳;B low [12,13]在研究天然胶乳与阴离子合成胶乳时, 考察了阳离子表面活性剂对胶乳稳定性和胶粒表面电荷的影响, 发现加入阳离子乳化剂使胶乳的稳定性降低, 但是在搅拌下把稀胶乳加到过量的阳离子表面活化剂中, 非常成功地转换成阳离子胶乳; 恩知钢太郎[14]采用烷基取代胺与环氧乙烷的加成物为阳离子乳化剂, 对用转换法生产阳离子丁苯胶乳进行系统研究, 所用的乳化剂除具有同阴离子乳化剂混溶性好的特点外, 还可与胶乳微粒进行交联, 在该转换中, 乳化剂用量占胶乳中聚合物的3- 5% (重量) , 并且边搅拌边向阴离子胶乳(pH 为9- 12) 中定量加入浓度为30% 的阳离子表面活性剂, 然后将pH 值调到8 以下, 从而完成转换过程。 2.3 微乳液聚合法 微乳液聚合法是一种特殊的乳液聚合法, 合成的聚合物具有分子量分布窄、胶乳粒径小等特点, 通常利用可交联的功能单体作共聚单体, 以防止粘度增加

细乳液聚合最新研究进展

第49卷第8期2019年8月 涂料工业 PAINT&COATINGS INDUSTRY Vol.49 No.8 Aug.2019细乳液聚合最新研究进展 钟瑞英,付长清%申亮 (1.江西科技师范大学化学化工学院涂料与高分子系,南昌330013; 2.江西省水性涂料工程实验室,南昌330013) 摘要:随着高分子合成技术的迅速发展,乳液聚合法的发展创新趋势较为明显,其聚合过程对 商品聚合物的生产至关重要,所制备出的聚合物乳液可直接用作水性涂料和胶粘剂等。文中具体介 绍了细乳液聚合体系的设计方法、聚合过程及稳定机理,重点综述了近年来细乳液聚合在高固含量 细乳液制备、纳米复合材料制备(荧光聚合物纳米粒子、有机/无机纳米复合材料)及聚合物空心球或 微球制备等方面的研究进展。 关键词:细乳液聚合;应用;制备;进展 中图分类号:TQ630. 6 文献标识码:A文章编号:0253-4312(2019)08-0081-07 doi:10. 12020/j.issn.0253-4312. 2019. 8.81 Recent Progress in Mini-Emulsion Polymerization Zhong Ruiying,Fu Changqing,Shen Liang (1.Department of P olymer and Coating ^Jiangxi Science& Technology Normal University, Nanehang330013, China;2.Jiangxi Waterborne Coatings Engineering Laboratory,Nanchang330013, China) Abstract:With the rapid development of polymer synthesis technology,the development trend of emulsion polymerization is more obvious.Now its polymerization process is more important for the production of commercial available polymers.The emulsion can be directly used for waterborne coatings and adhesives,etc.The preparation technique,polymerization process and stabilization mechanism of mini-emulsion polymerization system were introduced in this paper,focusing on the recent progress of minie—emulsion polymerization in the preparation of high solid content polymer mini-emulsion,nanocomposite(fluorescent polymer nanoparticles,organic/inorganic nanocomposites)and hollow or microspheres polymer was reviewed in this paper. Key words :minie-mulsion polymerization;application;preparation;development 20世纪70年代初,美国Lehigh大学的Ugelstad 等学者发现m,在乳液聚合中乳胶粒生成的主要方式 可以为珠滴成核,但单体珠滴必须分散得足够细。在乳化剂十二烷基硫酸钠(SDS)和助稳定剂十六醇 (CA)/十六烷(HD)的共同作用下,通过强力的均化作 用,可以把单体分散成单体珠滴直径为亚微米(50?*500 nm)级的细乳液,并提出了新的粒子成核机理—在亚微单体液滴中引发成核'开发了细乳液聚 合技术。 与常规乳液聚合相比,细乳液聚合在体系中引 进了助乳化剂,并采用了微乳化工艺(简称MP),这样 使得原本较大的单体液滴(直径1 〇〇〇?5 000 nm)被 [基金项目]江西科技师范大学拔尖人才项目(2016QNBJRC007);国家自然科学基金(51563011) *通信联系人

乳液聚合方法在材料制备上的应用

聚合方法在材料制备上的应用及发展 材料的合成与制备首先是单体通过聚合反应合成聚合物,然后通过相应的加工工艺制备成所需的材料或产品。聚合反应常需要通过一定的聚合方法来实施,根据聚合物的性能指标以及应用环境条件等要求,常用的聚合方法有本体聚合、溶液聚合、悬浮聚合、乳液聚合以及固相聚合、熔融聚合、界面聚合等等,不同的聚合反方法有不同的工艺及设备要求,所得的聚合物产物在纯度、分子量、物态及性能等方面也各有差异。如本体聚合体系中仅有单体和引发剂组成,产物纯净后处理简单,可直接用模板模具成型,如有机玻璃的制备;溶液聚合是将单体和引发剂均溶于适当的溶剂中的聚合方法,体系得粘度较低,具有传热散热快、反应条件容易控制,可避免局部过热,减少凝胶效应等特点适应于聚合物溶液直接使用的场合,如涂料、胶粘剂等;悬浮聚合是单体以小液滴状悬浮在水中进行的聚合方法,,其特点是以水作为反应介质,为了让非水溶性的单体能在水中很好地分散需要使用分散剂,所以悬浮聚合体系一般由单体、油溶性引发剂、分散剂以及水组成,悬浮聚合的产物一般以直径为0.05~2mm的颗粒沉淀出来,后处理简单方便生产成本低,但产物中常带有少量分散剂残留物;乳液聚合是在乳化剂的作用下,单体分散在水中形成乳液状态的聚合方法,体系由单体、水溶性引发剂、乳化剂和水组成,由于是以水为介质,具有环保安全、乳胶粘度低、便于传热、管道输送和连续生产等特点,同时聚合速度快,可在较低的温度下进行聚合,且产物分子量高,所得乳胶可直接用于涂料,粘结剂,以及纸张、织物、皮革的处理剂等众多领域,乳液聚合因其生产过程中安全、环保等特点深受人们的广泛重视,下面主要以乳液聚合为例就聚合方法在材料制备上的应用及进展进行

聚合物研究进展

驱油用耐温抗盐聚合物进展 随着高分子化学的发展,最近开发了许多新的聚合物,尤其是出现了不少新的合成水溶性聚合物。水溶性高分子化合物所具有的亲水性和其它许多宝贵的性能如粘合性、成膜性、润滑性、成胶性、鳌合性、分散性、絮凝性、减磨性、增稠性、流变性、加溶、增泡稳泡、浊点升高、保湿、营养等,正得到愈来愈广泛的应用。同时它的应用范围不断地扩大,已从原用于食品、粘接剂、涂料、凝聚剂、胶片、土木建筑、造纸、染色、词料等方面,向化妆品、药品、油墨、颜料、电子等高附加价值的精细聚合物领域扩展。 水溶性聚合物研究进展 水溶性聚合物又称水溶性树脂或水溶性高分子,是一种亲水性的高分子材料,在水中能溶解或溶胀而形成溶液和分散液。水溶性聚合物被作为一类物质研究至今仅30多年历史,它具有特殊的亲水性能。这是因为其分子中含有亲水基团,最常见的亲水基团是羧基、羟基、酰胺基、胺基、醚基等。由于它的分子量可以控制,高到数千万,低到几百,其亲水基团的强弱和数量可以按要求加以调节。而其亲水基团等活性官能团还可以进行再反应,生成具有新官能团的化合物,这类聚合物均含有亲水基与疏水基组份,所以具有两性性质。可用作增稠剂、胶凝剂、稳定剂、絮凝剂、涂料、粘合剂、乳化剂等。广泛应用于造纸、水净化、国防、石油、采矿、冶金、化纤、纺织、印染、食品、化工、农业、医药等行业及部门。水溶性聚合物研究进展 水溶性聚合物研究进展 这类聚合物总体上又可细分为水溶性聚合物、水溶性功能聚合物、水溶性聚合物树脂和高聚物水凝胶、智能性高聚物水凝胶。按照目前世界两类聚合物的技术开发以及消费状况看,仍以丙烯酰胺及其衍生物的均聚物和共聚物,丙烯酸及其衍生物的均聚物和共聚物以及磺化苯乙烯类为主的多元共聚物为主导市场。 水溶性聚合物研究进展 水溶性聚合物的分类 水溶性高分子化合物可以分为四大类:有机天然水溶性高分子化合物,有机半合成水溶性高分子化合物、有机合成水溶性高分子化合物和无机水溶性高分子化合物。 通常说来,一般聚合物的制备方法也适用于水溶性聚合物的制备,但水溶性聚合物的制备也有其特殊性,水溶性聚合物制备主要以自由基方式进行均聚、共聚或接枝等获得。聚合方法按介质分类主要有水溶液聚合,有机溶剂聚合,常规乳液聚合,悬浮聚合以及80年代以来研究尤其活跃的反相微乳液聚合、反相悬浮聚合、接枝共聚、互穿/半互穿聚合物网络技术,大分子组合化学。引发方式主要有化学引发中的氧化-还原引发和非氧化-还原引发、辐射引发、光化学引发等单元型或多元复合型引发方式. 操作条件 1、苛刻条件--高温、高浓度氧化剂 (wet air oxidation简称WAO) 2、温和条件--常温、低浓度氧化剂

种子乳液聚合的研究进展

种子乳液聚合的研究进展 邵谦1,2*,王成国1,郑衡2,王建明2 (11山东大学材料液态结构及其遗传性教育部重点实验室,济南250061; 21山东科技大学化学与环境工程学院,青岛266510) 摘要:种子乳液聚合法因具有乳液稳定性更好、粒径分布窄、易控制等优点,在乳胶粒子设计及制备各种功能性胶乳方面具有重要作用,是制备高固含量乳液及具有核壳结构乳液的最常见最简便的方法。本文综述了 近年来种子乳液的聚合工艺、聚合机理,包括接枝机理、互穿聚合物网络机理、聚合物沉积机理、种子表面聚合 机理和离子键合机理等,以及种子乳液聚合在乳胶粒子设计方面的应用研究进展,并讨论了影响种子乳液聚合 的各种因素。 关键词:种子乳液;乳液聚合;粒子设计 传统的乳液聚合制得的聚合物乳胶粒粒径一般较小,且粒径分布较宽,不能满足特殊需要。20世纪70年代,Williams[1]根据苯乙烯种子乳液聚合动力学和溶胀等数据首先提出了核壳理论。80年代日本神户大学的Okubo[2]教授提出了/粒子设计0的新概念,在不改变乳液单体组成的前提下改变了乳胶粒子的结构。 与其它方法制备的乳液相比,种子乳液聚合法制备的乳液具有稳定性更好、粒径分布窄、易控制等优点。利用种子乳液聚合技术可以容易地制得不同结构的胶乳,是制备高固含量乳液最常见最简便的方法,也是实用化的制备各种功能性胶乳的重要方法之一[3,4]。本文就近年来种子乳液聚合的工艺、机理研究及在乳胶粒子设计方面的应用进行了综述,并讨论了影响种子乳液聚合的各种因素。 1种子乳液聚合工艺 种子乳液聚合法是核壳型乳液的典型制备方法,形成的高聚物一般是均聚物或共聚物,所以制备方法和通常的乳液聚合工艺基本相同[5]。根据壳层单体的加入方式,可以分为间歇法、溶胀法、半连续法、连续法。间歇法是按配方一次性将种子乳液、水、引发剂、乳化剂、壳层单体加入到反应器中,升温至反应温度进行聚合。溶胀法是将壳层单体加入到种子乳液中,在一定温度下溶胀一段时间,然后再升温至反应温度后加入引发剂进行聚合。Ugelstad[6]介绍了一种制备单分散性胶乳的两步溶胀法,制备出新型的核壳粒子。半连续法是将水、乳化剂和种子乳液加入到反应器中,升温至反应温度后加入引发剂,然后再将壳层单体以一定速度滴加进行聚合。连续法是在搅拌下将单体、引发剂加入到种子乳液中,然后将所得的混合液连续地滴加到溶有乳化剂的水中进行聚合。工业上普遍采用半连续种子乳液聚合法。 种子乳液聚合过程中易产生新胶粒,不利于乳液的稳定及最后的性能。为了避免新胶粒的产生,可以采用如下三种方法: (1)进行胶粒增长反应实验,严格控制反应体系的加料速度,维持聚合体系的单体转化率始终处于较高水平,使聚合体系处于/饥饿0状态; (2)在合成时尽量少用乳化剂,第一步的胶粒增长反应过程中可采用无皂乳液聚合; (3)采用加入油溶性引发剂的方法予以避免。 作者简介:邵谦(1964-),女,博士研究生,主要从事高分子材料合成方面的研究; *通讯联系人,Email:gss620818@1631com.

乳液聚合发展概况

乳液聚合发展概况 摘要:乳液聚合(emulsion polymerization)是高分子合成过程中常用的一种合成方法,因为它以水作溶剂,对环境十分有利。它是一种在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。由于乳液聚合最近发展迅猛,相关研究进行的如火如荼,因此,本文将简要介绍乳液聚合的聚合机理,并着重介绍它的技术进展。 关键词:乳液聚合聚合机理技术进展 1 乳液聚合的定义 生产聚合物的方法主要有四种,即本体聚合、溶液聚合、悬浮聚合及乳液聚合。本体聚合是单体本身或单体再加入少量引发剂(或催化剂)的聚合过程;溶液聚合是在单体和引发剂溶于某种溶剂,在溶液中所进行的聚合过程;悬浮聚合是发生在悬浮于水中的单体液滴中的聚合过程,体系主要组成是单体、水、溶于单体的引发剂及分散介质;乳液聚合则是由单体和水在乳化剂作用下配制成乳状液,在乳液中进行的聚合过程,体系主要由单体、水、乳化剂及溶于水的引发剂四种基本组分组成1。 乳液聚合具有许多优点:体系粘度低、易散热;具有高的反应速率,能得到较高分子量的聚合物;以水作分散介质成本低、环境污染小;所用设备工艺简单、操作方便灵活;所制备的聚合物乳液可直接用作水性涂料、粘合剂、皮革、纸张、织物的处理剂和涂饰剂、水泥添加剂等。但同时,它也存在诸如后处理复杂,乳化剂难以除尽,成本较高等缺点。因此,当今的乳液聚合技术仍旧在不断发展中。 2 乳液聚合机理 2.1聚合前乳液聚合体系中的三相 聚合前体系中存在三相:水相、胶束和油相。 2.1.1 水相 引发剂分子溶于水中,少量的乳化剂溶于水中,极少量的单体(溶解度约为0.02%)溶于水中,构成水相。 2.1.2 胶束 大部分的乳化剂分子形成胶束,

丙烯酰胺聚合物的微乳液制备研究进展_徐俊英

丙烯酰胺(AM)的反相微乳液聚合由法国科学家Fra-ncoise Caudau[1]首次提出,他采用反相微乳液聚合法得到了体系稳定、相对分子质量高且分布窄的聚丙烯酰胺(PAM)微乳胶和AM与丙烯酸钠(NaAA)共聚的微乳胶,自此之后,国内外学者对AM反相微乳液聚合进行了大量的研究。 1AM反相微乳液聚合体系的组成 一般来讲,AM反相微乳液聚合体系是由AM 及其共聚单体水溶液,连续相介质(油),乳化剂及引发剂等构成,有时为了反应需要还可以添加电解质,链转移剂等组分。 1.1单体水溶液 AM单体均聚可得到非离子PAM反相微乳液,它与阳离子单体及阴离子单体之间共聚,可制备离子型PAM反相微乳液。聚合中常用的单体有非离子型的丙烯酰胺(AM)和甲基丙烯酰胺(MAM),阴离子型的丙烯酸(AA)、甲基丙烯酸(MAA)和2-丙烯酰氨基-2-甲基丙磺酸(AMPS),阳离子型的甲基丙烯酰氧乙基三甲基氯化铵(DMC)、二甲基二烯丙基氯化铵(DMDAAC)、(2-甲基丙烯酰氧乙基)三甲基氯化铵(MADQUAT)、烯酰氧乙基苄基二甲基氯化铵(DBC)、二烯丙基二甲基氯化铵(DADMAC)等。1.2连续相介质(油) 常用的连续相可选用烃类,如甲苯,己烷,煤油,白油,Isopar M等。油的种类对乳液的稳定性极为重要。白油为含有多支链的环烷烃,环烷烃含量约在50%左右,并以一环环烷烃居多,它不仅沸点高,冻融点低,相对密度较大,溶度参数也大,因此选取它较易形成稳定的反相微乳液。 1.3乳化剂 在微乳液的制备和微乳液聚合时,乳化剂的选择是否得当是关键性的工作。常用的乳化剂是一些非离子型表面活性剂,如司盘和吐温系列。也有人采用嵌段乳化剂和自制的反应型表面活性剂进行AM的反相微乳液聚合,稳定效果较好。 1.4引发剂 水溶性引发剂和油溶性引发剂都能够引发AM 反相微乳液的聚合,而实际应用中,由于水溶性引发剂对于低温引发和加快反应速度较为有利,故而成为较理想的选择。 1.5其他组分 适量电解质的加入可以改善微乳液的稳定性;EDTA等螯合剂可以有效掩蔽AM水溶液中的金属离子阻聚剂,显著提高聚合物的转化率和相对分子质量;链转移剂的使用可以有效抑制PAM的支链和交联的形成,利于得到线形高分子聚合物。 2PAM反相微乳胶的制备 自由基聚合可以合成数千万相对分子质量的PAM,但AM的均聚物是非离子型聚合物,使得它的应用受到了一些限制。通过AM与各种非离子单体以及离子单体的共聚合既可以合成高相对分子质量的共聚物,又可以拓宽PAM的适用范围,这类聚合物一直是水溶性高分子领域的研究和开发热点。 第25卷第4期2011年7月 天津化工 Tianjin Chemical Industry Vol.25No.4 July.2011 ·专论与综述· 丙烯酰胺聚合物的微乳液制备研究进展 徐俊英,丁秋炜,滕大勇 (中海油天津化工研究设计院,天津300131) 摘要:本文对丙烯酰胺反相微乳液聚合体系的组成做了简单介绍,重点总结了不同离子类型的聚丙烯酰胺微乳液的制备方法,并提出了今后AM反相微乳液聚合研究的发展方向。 关键词:反相微乳液;聚丙烯酰胺;组成;制备 doi:10.3969/j.issn.1008-1267.2011.04.001 中图分类号:TQ326.3文章编号:1008-1267(2011)04-0001-03 文献标志码:A 收稿日期:2011-02-18

无皂乳液聚合理论及应用研究进展

无皂乳液聚合理论及应用研究进展 无皂乳液聚合是在传统乳液聚合的基础上发展起来的一项聚合反应新技术,相比传统乳液聚合具有很多优点,因此广受关注。介绍了无皂乳液聚合的反应机理(包括成核机理、稳定机理)和反应动力学,无皂乳液的制备方法,并对无皂乳液聚合的应用和发展前景做了展望。 标签:无皂乳液;机理;稳定性;应用 乳液聚合是高分子合成过程中常用的一种合成方法,它以水作分散剂,在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。由于传统的乳液聚合中会使用乳化剂,反应后乳化剂会对产品性能有一定影响,而且乳化剂价格昂贵,对环境造成一定污染。因此,人们开始致力于无皂乳液聚合技术。 无皂乳液聚合是指不含乳化剂或仅含少量乳化剂(其浓度小于临界胶束浓度CMC)的乳液聚合,但少量乳化剂所起的作用与传统的乳液聚合完全不同。最早的无皂型乳液聚合是Gee,Davis和Melvile于1939年进行的丁二烯乳液聚合。由于无皂乳液聚合环保,并且可以赋予乳液诸多优异的性能而备受关注,成为近年迅速发展的一项聚合反应新技术[1]。与传统乳液聚合方法相比无皂乳液聚合具有以下突出优点:(1)传统乳液聚合中的乳化剂会被带入到最终产品中去,其纯化工艺非常复杂,因此无皂乳液可以免去去除乳化剂的后处理,产品可以直接应用;(2)无皂乳液聚合由于不含乳化剂,所制备的乳胶粒子表面比较洁净,从而避免了乳化剂对聚合物产品光学性、电性能、耐水性及成膜性等的不良影响;(3)无乳化剂乳液聚合所制备的聚合物微球具有单分散性,微球尺寸较常规乳液聚合的大,还可得到具有一定表面化学性质的功能性颗粒。 1 无皂乳液聚合机理 1.1 无皂乳液聚合的成核机理 无皂乳液聚合体系的粒子密度、粒径大小与成核机理密切相关。自1965年Matsumoto和Ochi在完全不含乳化剂的条件下,合成了具有单分散性乳胶粒粒径乳液以来,人们便对无乳化剂乳液聚合的机理进行了大量广泛深入的研究[2],提出了多种无皂乳液聚合成核机理,普遍为人们所接受的为“均相凝聚成核机理”和“齐聚物胶束成核机理”,但是现有的任何一种成核机理均难以描述所有单体粒子成核的机理。 1.1.1 均相凝聚成核机理 一般认为均相凝聚成核机理适用于极性单体对于非极性单体的成核机理,目前争议较多。均相凝聚成核机理是1969年由Fitch等人首先提出的,而后Goodwin Hansen和Vgelstad以及Feeny等人对这一机理进行了完善和充实。该机理认为

微乳液的研究及应用进展

第26卷第6期 山 西 化 工 Vol.26 No.6 2006年12月 SHANXI CHEMICAL INDUSTR Y Dec.2006 收稿日期:2006208231 作者简介:秦承宽,男,1982年出生,山东师范大学化学学院化工与材料科学学院物理化学专业2005级硕士研究生。研究方向:表面与界面物理化学。  综述与论坛 微乳液的研究及应用进展 秦承宽, 柴金岭, 陈景飞 (山东师范大学化学化工与材料科学学院,山东 济南 250014) 摘要:介绍了微乳液的概念、制备、形成理论及助表面活性剂在微乳液中的作用。综述了微乳液自从被发现以来,由于其特殊的物理化学性质,即超低的界面张力、大的界面面积、热力学稳定性和增溶能力而得到广泛应用,并在基础研究和工业领域方面也取得了越来越多有意义的成果。关键词:微乳液;表面活性剂;助表面活性剂;研究;应用;进展 中图分类号:TQ423 文献标识码:A 文章编号:100427050(2006)0620021205 微乳液(microemulsion )是一种由适当比例的表 面活性剂、助表面活性剂、水和油自发形成的各向同性、外观透明或半透明、热力学稳定的分散体系[1~4]。微乳液的结构由Hoar 和Schulman [5]于1943年首次发现。在相当长的时间内,O/W 型的体系被称为亲水的油胶团,W/O 型的体系被称为亲油的水胶团,亦称为溶胀的胶团或增溶的胶团[6]。直至1959年,Schulman 等[7]才首次将上述体系称为“微乳状液”或“微乳液”。自从微乳液这一概念被提出以来,就极大地吸引了科学工作者的研究兴趣,人们不仅从理论上研究它的微观结构、形成条件、稳定理论及制备,而且还从实践上研究它在三次采油、日用化学、食品、农药、环境保护等工业上的实际应用以及作为反应介质用于物质的分析测定、材料合成、微乳聚合、生化反应等方面。我国的微乳液研究始于20世纪80年代初期,在理论和应用研究方面也已取得相当的成果[8~11]。 和普通乳状液相似,微乳液的主要类型是水包油型(O/W )和油包水型(W/O ),此外还有一种双连续相类型(中相微乳液),在双连续相微乳液中水和油都是连续的。虽然微乳液与普通乳状液在成分和 结构上有许多相似之处,但它们又有本质的区别。第一,外观上,微乳液不同于普通乳状液呈透明或近乎透明状;第二,分散相质点的差异,微乳液的分散相液珠小而均匀,一般在10nm ~100nm ,而普通乳状液的液珠大于100nm ,且分布不均匀;第三,普通乳状液的形成一般需要外界提供能量,如经过搅拌、超声粉碎和胶体磨处理等才能形成,而微乳液的形成是自发的,不需要外界提供能量;第四,普通乳状液是热力学不稳定体系,离心后分层,而微乳液却是热力学稳定体系,可长期放置且离心不分层,界面张力可以达到超低值;第五,微乳液所需表面活性剂质量分数约为5%~30%,远高于普通乳状液,形成微乳液一般需要加助表面活性剂,而普通乳状液一般不需助表面活性剂;第六,微乳液不像普通乳状液那样随类型不同而只能与油或水混溶,而微乳液在一定范围内可以同时增溶油和水,在一定组成范围内微乳液可以呈连续相形式存在。 1 微乳液的制备 微乳液的形成不需要外加功,它是在体系内各种成分达到匹配时自发形成。目前采用HLB 法、盐度扫描法、相转换温度(PIT )[12]、粘附能比(CER )和表面活性剂分配法等来寻找这种匹配关系。下面主要介绍HLB 法和盐度扫描法。1.1 HLB 法

乳液聚合技术现状的研究

乳液聚合技术现状的研究 专业:材料科学与工程 年级: 14级 姓名:李静瑶

乳液聚合技术现状的研究 摘要 乳液聚合方法具有各方面的优点和广泛的应用范围,因此,受到人们的广泛关注。本文介绍了乳液聚合的优缺点,并着重介绍了一些新的乳液聚合方及其原理、特点、应用以及中外最新的一些研究成果。 关键词:乳液聚合方法;应用;成果 Abstract The emulsion polymerization has various aspects of the merits and the widespread application scope, therefore it is widespread concerned. In this article the advantages and disadvantages of the emulsion poly -merization are introduced. In this paper, some new emulsion polymerizations and their principle, characteristics,application as well as some Chinese and foreign latest research achievements are emphatically introduced. Key words: emulsion polymerization;application;achievements 1.1 乳液聚合的发展和现状 乳液聚合是在用水或其他液体作介质的乳液中,按胶束机理或低聚物机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合或离子加成聚合来生产高聚物的一种聚合方法。乳液聚合技术的开发起始于上世纪早期,上世纪20 年代末期就已有和目前生产配方类似的乳液聚合方法的专利出现。上世纪30 年代初,乳液聚合方法已见于工业生产。现在,乳液聚合过程对商品聚合物的生产具有越来越大的重要性,在许多聚合物如合成橡胶、合成塑料、合成树脂涂料、粘合剂、絮凝剂、抗冲击共聚物的生产中,乳液聚合已成为主要的方法之一。 乳液聚合体系粘度低、易散热;具有高的反应速率和高的分子量;以水作介质成本低、环境污染小;所用设备工艺简单、操作方便灵活;所制备的聚合物乳液可直接用作水性涂料、粘合剂、皮革、纸张、织物的处理剂和涂饰剂、水泥添加剂等;这些特点赋予乳液聚合技术以强大的生命力 随着乳液聚合理论的发展,乳液聚合技术也在不断地发展创新,在传统乳液聚合工艺的基础上,目前国内外已开发出核-壳乳液聚合、无皂乳液聚合、有机-无机复合乳液聚合、基团转移聚合、互穿网络聚合和微乳液聚合等新的聚合工艺。新的聚合工艺和技术已在乳液生产中得到了广泛应用。 1.2聚合方法 1.反相微乳液聚合 反相乳胶的粒径分布很宽且容易凝聚,所以研究者把目光从常规反相乳液聚合转向了反相微乳液聚合,通过反相微乳液聚合得到的高相对分子质量聚合物微胶乳(Microlatex)不仅固含量高、溶解快、粒径小且均一、并且高度稳定。反相微乳液聚合的成核场所存在多种方式,既有液滴成核,也有均相和胶束成核的存在,只是在不同的体系中成核方式的主导地位不同。蔡英明等对反相微乳液聚

反相微乳液聚合的研究现状及进展

反相微乳液聚合的研究现状及进展 杨开吉苏文强 东北林业大学材料科学与工程学院 生物质材料科学与技术教育部重点实验室 哈尔滨 (150040) 摘要:反相微乳液聚合一种新型聚合方法,受到人们的高度重视;本文介绍了其聚合机理和应用进展,并对其发展前景进行了展望。 关键词:反相微乳液聚合;机理;发展前景 反相微乳液聚合发展起始于上世纪80年代;当时,由于在多次采油中对高分子量水溶性聚合物的需求以及水溶性聚合物在水处理、造纸工业和采矿业中的应用[1],而在通过常规反相乳液聚合生成这类聚合物的尝试中遇到困难,如反相乳胶的粒径分布很宽且容易凝聚[2~3],所以研究者把目光从常规反相乳液聚合转向了反相微乳液聚合,通过反相微乳液聚合得到的高分子量聚合物微胶乳(Microlatex),不仅固含量高、溶解快、粒径小且均一,并且高度稳定。从而引起科研工作者的广泛关注。 1.反相微乳液聚合的机理 探讨反相微乳液聚合机理一直是人们关注的焦点,研究内容主要是聚合场所、成核机理、聚合过程以及一些重要的特征。其聚合过程如图1所示[4]: 图1反相微乳液聚合机理示意图 反相微乳液具有以下一些主要特点: ①分散相(水相)比较均匀,大小在5-200nm之间; ②液滴小,呈透明或半透明状;③具有很低的界面张力,能发生自动乳化;④处于热力学稳定状态,离心沉降不分层;⑤在一定范围内,可与水或有机溶剂互溶。 1.1成核场所 反相微乳液聚合成核场所存在着多种方式,既会有液滴成核,也会有均相和胶束成核的存在,只是在不同的体系中成核方式的主导地位不同。现在,人们对微乳液成核的共识是: 成核的场所主要在单体液滴中;也可以通过均相成核;在微乳聚合的反应后期,胶束也是成核的重要场所。Candau等[5]提出聚合物粒子与含单体的胶束相互碰撞融合而获得单体进一步 - 1 -

乳液聚合技术进展 2

乳液聚合技术进展 10级高材2班王君 1002020220 【摘要】乳液聚合方法具有广泛的应用范围。本文主要介绍一些新的乳液聚合方法和研究成果。 【关键词】乳液聚合;进展 乳液聚合是在用水或其他液体作为介质的乳液中,按胶束机理或低聚物机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合或离子加成聚合来生产高聚物的一种聚合方法。体系主要由单体、水、乳化剂及溶于水的引发剂四种基本组分组成。 乳液聚合的优点是体系粘度低、易散热;具有高的反应速率和高的分子量;以水作介质成本低、环境污染小;所用设备工艺简单、操作方便灵活;聚合物乳液可直接用作水性涂料、粘合剂、皮革、纸张、织物的处理剂和涂饰剂、水泥添加剂等。同时乳液聚合也有一定的缺点,如需得到聚合物固体,须破乳,洗涤,脱水,干燥等多步手续,生产成本高;产品中乳化剂等杂质不易除尽,影响电性能等。 按乳液特性和聚合特点来分有常规乳液聚合、细乳液聚合、微乳液聚合、无皂乳液聚合、核-壳型复合乳液聚合等。1.含氟乳液聚合技术进展 1)常规氟乳液研究进展 含氟聚合物乳液由于其涂膜具有的优异表面性能,包括耐水耐油性、耐候性和化学稳定性,在许多方面具有广阔的使用前景。乳液聚合制备的水性含氟制品亦具有一些非常突出的性质,例如技术先进、工艺清洁、低能耗、低排放、安全无害、自洁抗污、耐紫外辐射、耐候性良好等。含氟聚合物乳液可直接用作水性涂料、粘合剂、皮革、纸张、织物的处理剂和涂饰剂、水泥添加剂等,这些特点赋予氟乳液聚合技术以强大的生命力。环境保护又推进了水性液乳胶的发展,这又给含氟高分子的乳液聚合注入了新的活力。 然而,氟乳液聚合存在一些问题。由于氟单体在水相中的溶解度太小,不易从单体液滴向胶束迁移。采用经典的乳液聚合方法要得到稳定的含氟丙烯酸酯乳液比较困难。工业上常加入大量的

相关文档
最新文档