蛋白质组学及其主要研究方法

蛋白质组学及其主要研究方法
蛋白质组学及其主要研究方法

蛋白质组学及其主要研究方法

摘要:蛋白质组学是对机体、组织或细胞的全部蛋白质的表达和功能模式进行研究。蛋白质组是动态的,随内外界刺激而变化,对蛋白质组的研究可以使我们更容易接近对生命过程的认识。本文就蛋白质组学研究所使用的主要技术如二维凝胶电泳、质谱、酵母双杂交系统、生物信息学等进行了相关综述。

关键词:蛋白质组学;双向凝胶电泳;质谱;酵母双杂交;生物信息学

Proteomics and its main research techniques

Abstract:Proteomics aims at the analysis and identification of entire proteins present in the cell tissue or the organism, and of the functions and the linkage of these proteins.the proteome of an organism is dynamic.It changes with the intro and outer stimulus.The study on proteomics can make us easily know how the vital progress goes. The article will introduce these tech-niques of proteomics such as two-dimensional gel electrophoresis、mass spectrometry、two-hybrid system and bioinformatics etc.

Key words: Proteomics;Two-dimensional gel electrophoresis;Mass spectrometry;Two-hybrid system; Bioinformatics

众所周知,始于20世纪90年代初的庞大的人类基因组计划业已取得了巨大的成就,人类基因组序列草图已经绘制完成[1]。但是,由于基因的主要功能是通过其表达产物——蛋白质来实现的,因此要揭示整个生命活动的规律,就必须对蛋白质进行研究。蛋白质在合成之后具有相对独立的修饰、转运和相互间作用能力,同时还具有对外界因素发生反应的能力。因此,只有从蛋白质组学的角度对生物体整体水平上的蛋白质进行研究,才能更好地帮助人们了解生命的本质,各器官的分子结构、功能及其行使该功能的机制等。

蛋白质组学的发展是伴随着蛋白质研究技术,尤其是双向凝胶电泳和新型质谱技术以及生物信息学的发展而发展的,本文将对蛋白质组学的主要研究技术作一概述。

1.蛋白质组学产生背景、概念及内容

1.1蛋白质组学研究的兴起

在后基因组时代,研究的重点已从揭示遗传信息转移到功能基因组学上来。但是,由于生物功能主要体现者是蛋白质,而蛋白质有其自身特有的活动规律。如蛋白质修饰加工、转运定位、结构变化、蛋白质与蛋白质间、蛋白质与其他生物大分子的相互作用等,均无法在基因组水平上获得。因为基因组学有这样的局限性,促使人们从整体水平上探讨细胞蛋白质的组成及其活动规律[2]。

1.2蛋白质组学概念的提出

蛋白质组被定义为细胞,器官或组织型的蛋白质成分的总称[3];而蛋白质组学是研究这些成分在指定的时间或特定的环境条件下的表达,具体说它是对不同时间和空间上发挥功能性特定蛋白质群组进行研究,即在蛋白质水平上探索其作用模式、功能机理、调节调控,以及蛋白质群组内相互作用。其目的是从整体的角度分析细胞内动态变化的蛋白质组成、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律。因为蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。

1.3蛋白质组学的研究内容

蛋白质组学从其研究内容方面可分为表达蛋白质组学,结构蛋白质组学和功能蛋白质组学[4]。表达蛋白质组学主要研究细胞或组织在不同条件如药物或疾病状态下蛋白质的表达和功能,这将有助于识别疾病特异蛋白、药物作用靶点、药物功效和毒性标记等;结构蛋白质

组学的目标是识别蛋白质的结构并研究蛋白质间的相互作用。蛋白质之间的相互作用与控制细胞生长、复制等的代谢和信号通路有关,蛋白质之间相互作用的改变可能引起人类疾病;功能蛋白质组学是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质组研究之间的层次。从理论的角度讲,因此,对“全部蛋白质”的研究是非常困难的,而功能蛋白质组学则注重于从局部入手,把目标定位在蛋白质群体上。这样的群体可大可小,取决于要研究的功能特点和所用的研究手段。功能蛋白质组学研究可只注重那些可能涉及到特定功能机理的蛋白质群体。

2.蛋白质组学研究技术

典型的蛋白质组学分析是在蛋白提取后,先凝胶的或非凝胶的方法分离蛋白质,然后以不同的质谱分析方法进行蛋白分析、鉴定,接着以生物信息学辅助获取和深入分析全面的信息,并可以指导更深层的功能蛋白质学研究[5]。

2.1蛋白样品的制备

通常可采用细胞或组织中的全蛋白质组分进行蛋白质组分析。也可以进行样品预分级即采用各种方法将细胞或组织中的全体蛋白质分成几部分分别进行蛋白质组研究。样品预分级的主要方法包括根据蛋白质溶解性和蛋白质在细胞中不同的细胞器定位进行分级,如专门分离出细胞核、线粒体或高尔基体等细胞器的蛋白质成分。样品预分级不仅可以提高低丰度蛋白质的上样量和检测,还可以针对某一细胞器的蛋白质组进行研究。

2.2色谱技术

色谱技术的原理是溶于流动相中的各组分经过固定相时,与固定相发生相互作用(吸附、分配、离子吸引、排阻、亲和等),由于作用的大小、强弱等不同,各组分在固定相中滞留的时间不同,由此从固定相中流出的先后也不同,最终使不同组成成分得到分离。色谱法根据分离原理分类,有吸附色谱、分配色谱、离子交换色谱、排阻色谱、凝胶渗透色谱及亲和色谱等。按操作形式可分为纸色谱法、薄层色谱法、柱色谱法等[6]。根据流动相的物理状态不同可分为:气相色谱法和液相色谱法。

高效液相色谱法(HPLC)是以液体作为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。它是在传统液相色谱的基础上,辅以高效固定相、高压泵和高灵敏度检测器及计算机技术的应用,从而实现了液相色谱分析的高效、高速、高灵敏和自动化操作,因此被称为HPLC。它对样品的适用性广,不受分析对象挥发性和热稳定性的限制,适于分离分析沸点高、热稳定性差、分子量大的许多有机物和一些无机物,但是HPLC的固定相的分离效率、检测器的检测范围以及灵敏度等。

2.3双向凝胶电泳

双向凝胶电泳(Two-dimensional gel electrophoresis,2DE)仍是蛋白质组学研究的核心技术。其基本原理:第一项基于蛋白质的等电点不同在pH梯度胶内等电聚焦;第二项则根据分子量的不同大小进行SDS-PAGE分离,把复杂蛋白质混合物中的蛋白质在二维平面上分开。根据第一项等电聚焦条件和方式的不同,可将双相电泳分为三种系统[7]。第一种是在聚丙烯酰胺管中进行,载体两性电解质在外加电场作用下形成pH梯度,它的最大缺点是不稳定,易发生阴极漂移,重复性差。第二种系统主要是采用丙烯酰胺和不同的pH值的固定化电解质共聚所形成的具有pH梯度的胶,此种胶条的形成需要一些能与丙烯酰胺单体结合的分子,每个含有一种酸性或碱性缓冲基团。第三种系统是非平衡pH梯度电泳,常常被用来分离碱性蛋白质。由于双向电泳利用了蛋白质两个彼此不相关的重要性质分离,其分辨率非常高。

蛋白质被分离以后用考马斯亮蓝染色、银染、荧光染色或放射性标记等方法显示。其中银染比考马斯亮蓝染色灵敏度高,蛋白质分辨率可以达ng级[8]。但是银染的线性效果并不是很好,并且对质谱分析干扰大;考马斯亮蓝染色线性、均一性较高,对质谱干扰较小,但

其敏感性较低;较理想的是荧光染色,但其成本较高。

2.4质谱技术

2.4.1质谱技术的原理

质谱(mass spectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。现在多通过质谱仪对蛋白样品进行质谱分析。

质谱分析的基本原理是,用于分析的样品分子(或原子)在离子源中离子化成具有不同质量的单电荷分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后编转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱[9]。通过质谱分析,可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。

2.4.2蛋白质组学研究中主要运用的质谱技术

蛋白质组学研究中应用的质谱技术有:①电喷雾质谱:是喷射过程中以连续离子化方式使多肽样品电离;②基质辅助激光解吸质谱:是利用基质吸收激光的能量使得固相的多肽样品离子化,它常与飞行时间质谱联用,称为基质辅助激光解吸电离飞行时间质谱。另外还有快原子轰击质谱和同位素质谱等。③表面加强激光解析电离飞行时间质谱(SELDI-TOF-MS):是一种新的蛋白质检测技术,操作简单、灵敏度高,检测所需样品量少。④串联质谱(MS/MS):在这种情况下,经质谱分析的肽段进一步断裂并再次进行质谱分析,这样可得到肽序列的部分信息[10]。

应用于较普遍的是蛋白质芯片飞行时间质谱仪。原理是利用经过特殊处理的固相支持物或芯片基质表面,制成蛋白质芯片,根据蛋白质生化特性不同,选择性地从待测生物样品中捕获配体,将其结合在芯片的固相基质表面上,用激光脉冲辐射使芯片表面的分析物解析成带电离子,质荷比不同离子在电场中飞行时间不同,据此绘制出质谱图。检测结果经过软件处理后可直接显示样品中各种蛋白质的分子量、含量等信息,可检测分子量在500kD以下的化合物。测定过程迅速、敏捷大大提高了蛋白质鉴定能力,可用于生物标志物发现、鉴定与蛋白质谱分析。

2.4.3质谱技术的评价

质谱技术能清楚地鉴定蛋白质并能准确地测量肽和蛋白质的相对分子质量、氨基酸序列及翻译后的修饰。目前MS/MS是唯一能够迅速测序N-端封闭或共价修饰肽段的方法。质谱技术很灵活,能与多种蛋白分离、捕获技术联用,对普通的缓冲液成分相对耐受,能快速鉴定大量蛋白质点,而且很灵敏,但它只能分离气体状态的带电分子,而且一次只能分析带正电或带负电的分析物。质谱分析很难区分两种同源性极高的蛋白。由于质谱分析只是描述蛋白的少量多肽,因此可能把删节的蛋白当成是原来的蛋白。通常只用于象酵母等基因组序列已知的个体。

2.5酵母双杂交系统

酵母双杂交系统的建立得益于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。转录激活因子在结构上是组件式,即这些因子往往由两个或两个以上相互独立的结构域构成,其中DNA结合域(简称为DB)和转录激活结构域(简称为AD)是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合,但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。DB和AD分别能与多肽X和Y结合,由DB和AD形成的融合蛋白现在一般分别称之为“诱

饵”和“猎物”或“靶蛋白”[11]。如果在X和Y之间存在相互作用,那么分别位于这两个融合蛋白上的DB和AD就能形成有活性的转录激活因子,从而激活相应基因的转录与表达。这个被激活的、能显示“诱饵”和“猎物”的两个蛋白质之间相互作用的基因称之为报道基因。通过对报道基因表达产物的检测,反过来可判别作为“诱饵”和“猎物”的两个蛋白质之间是否存在相互作用。

酵母双杂交系统不仅可用于验证两个已知蛋白间的相互作用或找寻它们相互作用的结构域,还可以用来从cDNA文库中筛选与已知蛋白作用的蛋白基因。由酵母双杂交系统衍生的酵母单杂交系统、酵母三杂交系统和反向双杂交系统等使这一技术得到了更广泛的应用。大规模酵母双杂交系统如酵母双杂交系统芯片的建立为蛋白质组学研究提供了支持[12]。

酵母双杂交系统已经成为分析蛋白质相互作用的强有力的方法,但是它只能反映蛋白质间可能发生作用,还必须结合其它试验才能确认,尤其是要与生理功能研究相结合。因此该方法仍在不断的完善中,如今它不但可用来在体内检验蛋白质间、蛋白质与小分子肽、蛋白质与DNA、蛋白质与RNA间的相互作用,而且还能用来发现新的功能蛋白质和研究蛋白质的功能,而且在对蛋白质组中特定的代谢途径中的蛋白质相互作用关系网络的认识上发挥着重要的作用[13]。

2.6生物信息学

生物信息学是把核酸、蛋白质等生物大分子数据库作为主要研究对象,用数学、统计、计算机科学等为主要研究手段,对大量生物学原始试验数据进行存储、整理、管理、注释、加工,使之成为具有明确生物学意义的生物信息[14]。通过对生物信息的查询、搜索、比较、分析,从中获取基因编码、基因调控、核酸和蛋白质结构功能及其相互关系等知识,从而探索未知世界。

2.6.1生物信息学与蛋白质分析

在蛋白质组分析过程中,生物信息学的作用不仅仅体现在数据库的查阅和资料的整合中,生物信息学软件在蛋白质组研究领域的作用更是至关重要的。蛋白质分析软件应用主要集中在蛋白质组研究中的分离技术和鉴定技术,对有价值的未知蛋白进行分析和预测。应用生物信息学,可以对蛋白质进行以下4个方面的分析预测。

2.6.1.1蛋白质的物理性质预测

从蛋白质序列出发,预测蛋白质的许多物理性质,包括等电点、分子量、酶切特性、疏

水性、电荷分布等。相关工具有Compute pI/MW(等电点和分子量工具);PeptideMass(酶切特性工具);TGREASE(疏水性工具);SAPS(电荷分布工具)等[15]。

2.6.1.2蛋白质一级结构分析

根据20种氨基酸的理化性质可以分析电泳等实验中的未知蛋白质,同样也可以分析已知蛋白质的物化性质。ExPASy是一个由Swiss-Prot;TrEMBL;EMBL等多个数据库的集合,主要专注的领域是蛋白质分子和蛋白质组学,可以利用数据库中提供的一系列相应程序对蛋白质进行分析。

2.6.1.3蛋白质二级结构预测

蛋白质二级结构预测的基本依据是每一段相邻的氨基酸残基具有形成一定二级结构的倾向。因此进行二级结构预测需要通过统计和分析发现这些倾向或者规律。蛋白质二级结构预测的方法有3种[16]。一是由已知结构统计各种氨基酸残基形成二级结构的构象趋势,其中最常用的是Chou和Fasman法;二是基于氨基酸的物理化学性质,包括堆积性、疏水性、电荷性、氢键形成能力等;三是通过序列比对,由已知三维结构的同源蛋白推断未知蛋白的二级结构。各种方法预测的准确率随蛋白质类型的不同而变化。一般对于α螺旋预测精度较好,对β折叠差些,而对除α螺旋和β折叠等之外的无规则二级结构则效果很差。

2.6.1.4蛋白质的三维结构

蛋白质三维结构是预测时最复杂和最困难的预测技术。序列差异较大的蛋白质序列也可能折叠成类似的三维构象。由于蛋白质的折叠过程并不十分清晰,从理论上解决蛋白质折叠的问题还有待进一步的科学发展,但也有了一些有一定作用的三维结构预测方法。即与已知结构的序列比较,同源模建,threading算法和折叠识别方法[17]。

2.6.2生物信息学与蛋白质功能

生物信息学发展到今天,不仅可以对蛋白质组数据进行分析和预测,而且可以对已知或者未知的基因产物进行功能上全面的分析和预测。生物信息学最常用的分析方法是模式识别。主要是利用存在于蛋白质序列结构中的某些特殊的特征模体来识别相关蛋白质性质。换而言之,就是从新的蛋白序列中发现标志性的序列或者结构,以此建立模式,然后在已经建立好的已知蛋白质数据库中,搜集与此相似的模式,来确定未知蛋白质的归属,从而预测它的功能[18]。

许多基因是在特定时期和条件下被激活,才能表达出来,在正常人工模拟的环境下根本无法表达。类似于这样的未知蛋白质也需要通过生物信息学的方法计算分析预测,以获得它的功能信息。

3.结束语

蛋白质组学为直接在蛋白质水平上大规模研究基因功能提供了有力工具。利用质谱技术研究凝胶分离的蛋白质对蛋白质功能研究具有重要作用。蛋白质鉴定将在高通量、高灵敏度、完整性等方面进一步完善[19];分析手段将向自动化、微量化、平行化方向发展。21世纪将是一个整体细胞生物学的时代,DNA和RNA的信息加上相应的蛋白质信息的补充和提高,将构成完整的细胞分子生物学的研究[20]。

参考文献:

[1]Wilkina MR,Ppasquali C, Appel RS,et al.Fom proteins to proteomes:large-scale protein identification by two-dimensional electrophoresis and aminoaci danalysis[J].Biotechology,1996,14(1):61-65

[2]欧阳学剑.蛋白质组学技术的研究[J].中国中医药现代远程教育,2008,6(11):1439-1440

[3]冯昌银,郑智勇,余英豪.蛋白组学技术及其在器官移植中的应用[J].医学综述,2008,14(8):1147-1150

[4]李煌,李松,徐芸,等.蛋白质组学技术在细胞信号传递机制研究中的应用[J].国外医学(口腔医学分册),2005,32(5): 344-346

[5]邹清华,张建中.蛋白质组学的相关技术及应用[J].生物技术通讯,2003,14(3):210-213.

[6]张宏一.蛋白质组学研究技术及其进展[J]. 生物技术通报,2005,6(4):31-34.

[7]Cordwell SJ,Basseal DJ,Bjellqvist B,et al. Electrophoresis,1997,18(8):1393~1398.

[8]卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展[J].生物学杂志,2002,19(4):20-22.

[9]李明,周宗灿.蛋白质芯片[J].生命的化学,2001,21(2):156-157·

[10]李佰良.功能蛋白质组学[J].生命的化学. 1998,18 (6) ;1-3.

[11]StephenK,Burley.An overview of structural genomics[J].Nature StructrueBiolNovember 2000,supplement, 7:932-934·

[12]Emmett MR, Caprioli RM. Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins[J]. J. Am. Soc. Mass Spectrom, 1994, 5:605–613.

[13]赵宏伟,田秀珠,王波.差异蛋白质组学研究与应用进展[J].医学与哲学:临床决策论坛版,2006,27(4): 45-47.

[14]明亮,刘杰.蛋白质组学及其在医学研究中的应用[J].南通大学学报(医学版),2006,26(2): 151-153.

[15]成海平,钱小红.蛋白质组研究的技术体系及其进展[J].生物化学与生物物理进展,2000,27(6):584-588.

[16]McDonald WH, Yates JR 3rd. Shotgun proteomics: integrating technologies to answer biological questions[J]. Curr. Opin. Mol. Ther, 2003, 5:302–309.

[17]Tanaka K. The origin of macromolecule ionization by laser irradiation (Nobel lecture) [J]. Angew. Chem. Int. Ed. Engl, 2003, 42:3860–3870.

[18]Diane G. Mass spectrometry: gainingmass appeal in proteomics[J]. Nature Methods, 2005, 2(6): 465-471

[19]马静,葛熙,昌增益.蛋白质功能研究:历史、现状和将来[J].生命科学,2007,19(3): 294-300.

[20]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome[J]. Nature, 2001,409:860–921.

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

果实蛋白质组学研究的实验方法

植物学报Chinese Bulletin of Botany 2009, 44 (1): 107?116, w w https://www.360docs.net/doc/f014223028.html, 收稿日期: 2008-04-22; 接受日期: 2008-05-10 基金项目: 国家自然科学基金(No. 30671473, U0631004) * 通讯作者。E-mail: tsp@ibcas.ac.c n .技术方法. 果实蛋白质组学研究的实验方法 王清1, 2, 产祝龙1, 秦国政1, 田世平1* 1中国科学院植物研究所, 光合作用与环境分子生理学重点实验室, 北京 100093; 2中国科学院研究生院, 北京 100039 摘要 双向电泳技术是蛋白质组学研究的基本方法之一。果实由于富含糖、多酚、单宁和有机酸等物质,蛋白质的提取比其它植物组织更加困难。本文主要介绍不同果实蛋白质的提取、等电聚焦系统和凝胶染色技术,并建立了一套适用于桃、樱桃、苹果、芒果和冬枣等多种果实蛋白质组学的研究方法。结果表明,采用匀浆法和酚抽提法提取果实的蛋白质,裂解缓冲液2溶解蛋白质,并用固相pH 梯度进行等电聚焦,可以获得背景清晰和分辨率高的凝胶图谱,具有较好的重复性,可用于果实蛋白质组学的研究。我们的研究结果显示,固相干胶条与IEF 管胶相比,具有更加明显的优势。而不同的染色方法,对结果影响不大。 关键词 果实, 凝胶染色, 等电聚焦, 裂解缓冲液, 蛋白质提取 王清, 产祝龙, 秦国政, 田世平 (2009). 果实蛋白质组学研究的实验方法. 植物学报 44, 107?116. 果实生长发育阶段的生理代谢变化, 以及采后处理 对果实品质的影响一直受到人们的关注。在过去的研 究中, 我们发现生物和非生物因子处理果实可以激发抗 氧化酶类和防御基因的表达(Chan and Tian, 2006; Tian et al., 2007)。为了进一步研究果实应答生物因子和非 生物因子过程中参与表达的蛋白及其功能, 利用蛋白质 组学的研究方法来揭示果实抗性应答的机理是十分重要 的手段。 蛋白质组学技术包括蛋白质的高分辨率电泳分离、 胶内酶解、质谱鉴定以及数据库搜索等。如今, 蛋白 质组学技术已经被广泛地应用于动物和微生物领域的研 究(Antelmann et al., 1997; Qin et al., 2007), 在植物 生物学方面也有广泛的应用(Dominguez-Puigjaner et al., 1992; Chang et al., 2000)。植物细胞中包含许多 次生代谢物质, 可能会干扰蛋白的提取、分离及纯化 (Granier, 1988; Meyer et al., 1988)。而从果实组织 中提取蛋白质更加困难, 可能是由于果实中蛋白质含量 相对较低, 并且含有大量干扰性物质, 如色素、淀粉、 多酚、多聚糖、单宁和有机酸类等(C l e m e n t s ,1970)。因此, 建立蛋白质提取的有效方法和标准化技术体系对于果实蛋白质组学研究十分必要。本文在借鉴模式植物蛋白质提取方法的基础上, 建立了一整套适用于多种果实,如甜樱桃(P r u n u s a v i vu m )、桃(P r u n u s p e r s i c a )、苹果(Ma l u s domestica )、芒果(Mangifera indica )和冬枣(Ziziphus jujub a )的蛋白质组学研究方法, 包括蛋白质的抽提、蛋白质裂解液的优化、双向凝胶电泳以及凝胶染色方法等。1 材料与方法1.1 实验材料桃(Prunus persica L. Batsch)采于北京市平谷的试验果园, 甜樱桃(Prunus avivum L. ‘Hongdeng ’) 采于中国科学院植物研究所的试验果园, 苹果(Malus domestica Borkh ‘Fuji ’ ) 采于中国农业科学院林果所果园, 芒果(Mangifera indica L. ‘Zill ’)和冬枣(Ziziphus jujub a Mill. ‘Dongzao ’)分别采自四川省攀枝花市和山东省滨

蛋白质组学研究的完整解决方案

蛋白质组学研究的完整解决方案 人体内真正发挥作用的是蛋白质,蛋白质扮演着构筑生命大厦的“砖块”角色,随着破译生命密码的人类基因组计划进入尾声,一个以蛋白质和药物基因学为研究重点的后基因组时代已经拉开序幕,蛋白质将是今后的重点研究方向之一。然而,蛋白质的分离和鉴定非常费时,目前测定蛋白质的技术远远落后于破译基因组的工具,最好的实验室每天只能分离和识别出100种蛋白质。据估计,人体内可能有几十万种蛋白质,这大概需要10年时间进行识别。 为了加快蛋白质组学研究进程,以专业生产蛋白质组学研究设备而著称的美国Genomic Solution Inc.公司开发了完整的蛋白质组学解决方案,由一系列机械手臂与软件,并结合了二维电泳实验设备与质谱仪,可以进行高效、自动化且具重复性的试验分析。在Genomic solution值得信赖的技术平台上,你的研究工作将更富成效,重复性更好。在这一整套Investigator平台上,各仪器之间配合无隙,由于它的整合性及标准性,使得研究进程大大加快,原来需要9—12个月才能获得数据结果发表的时间减少到9—12周。这套完整的系统具备蛋白质组研究所需的众多功能:2-D电泳、图像获取、2-D胶分析、蛋白样品切割、蛋白消化、MALDI样品准备、消化及点样、数据分析整合,再加上制备好的胶、试剂及附件,使研究工作可以立即展开。此套设备为进行蛋白质组学研究的利器,大大加速了蛋白质分离和鉴定的速度。该系统主要由以下几部分组成: 一、2-D电泳系统(Investigator? 2-D Electophoresis System) 该系统主要进行2D PAGE第一向等电聚焦凝胶电泳和第二向SDS-PAGE电泳,设备包括2-D电泳系统所需的各种设备,如pHaser?(IPG胶条电泳)、管状制胶设备、二维电泳装置、电源设备、半导体冷却器及各种相关的蛋白纯化试剂盒。 产品特征: * 提供2D PAGE电泳所需的各种设备,使电泳更加简便,大大节约研究时间 * 高分辨率:有效的第一向等电聚焦凝胶电泳和23cm X 23cm第二向SDS-PAGE大面积板胶提供清晰的电泳图像,有效提高单体、磷酸化和糖基化蛋白的分离 * 大容量:可同时容纳15块1mm一维管状胶,或8块2-3mm管状胶;10块IPG胶条和10块二维电泳板胶 * 灵活性:该系统用于管状胶、IPG 胶条、预制胶、自制胶和SDS PAGE胶使用 * 恒温:高效的半导体制冷装置保证电泳体系温度恒定,温度变化< 0.5℃ * 专门为高分辨率2D PAGE而设计的电源系统 * 提供超纯的相关化学试剂和药品

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.360docs.net/doc/f014223028.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

质谱技术在蛋白质组学研究中的应用

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) Journa l o fN anji n g Forestry Un i v ersity (Natural Sc ience Ed ition) V o.l 35,N o .1Jan .,2011 htt p ://www.n l dxb .com [do :i 10.3969/.j issn .1000-2006.2011.01.024] 收稿日期:2009-12-31 修回日期:2010-10-26 基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10KJ B220002) 作者简介:甄艳(1976)),副教授,博士。*施季森(通信作者),教授。E-m ai:l js h @i n jfu .edu .cn 。 引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 Application of m ass spectro m etry i n proteo m ics studies Z HEN Yan ,SH I Jisen * (K ey Labo ra t o ry o f F orest G eneti cs and B i o techno l ogy M i n istry o f Educati on , N an ji ng Forestry U n i versity ,N an ji ng 210037,Chi na) Abstrac t :W ith the rap i d develop m ent o f pro teo m i cs ,m ass spec trom etry i s m aturi ng to be a po w erfu l too l and core tech -nology fo r proteo m ics st udies dur i ng the recen t years .The super i or ity o fm ass spectrom etry lies i n providi ng the through -pu t and the m olecu lar infor m ati on ,w hich no other techno logy can be m a tched i n proteom ics .In th i s rev ie w,w e m ade a g lance on the outli ne o fm ass spectrome try -based proteo m ics .A nd then w e addressed on t he advances o f data ana l y si s o f m ass spec trom etry -based proteom ics ,quantitati ve m ass spectro m etry -based pro teom i cs ,post -translati onal m odificati ons based m ass spectrom etry ,targeted proteo m ics and functiona l proteo m ics based -mass spectrome try .K ey word s :m ass spectrome try;proteo m ics ; quantitative pro teom i cs ; post -trans l ation m odifica ti on ; targ eted pro - teo m i cs ;f uncti ona l proteom ics 蛋白质组学(Pr o teo m ics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。 目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(electro spray ion izati o n,ESI )和基质辅助激光解析离子化(m a -tri x assisted laser desorpti o n i o nization ,MALD I)的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(ion trap ,I T),飞行时间(ti m e of fli g h,t TOF),串联飞行时间(TOF -TOF),四级杆/飞行时间(quadr upo le /TOF hybrids),离子阱/轨道阱(I T /orbitrap hybri d )和离子阱/傅里叶变换串联质谱分析仪(I T /Four i e r transfor m ioncyclotron resonance m ass spectro m eters hybr i d s ,I T /FT M S),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

质谱技术在蛋白质组学研究中的应用_甄艳

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) J o u r n a l o f N a n j i n g F o r e s t r y U n i v e r s i t y (N a t u r a l S c i e n c e E d i t i o n ) V o l .35,N o .1 J a n .,2011 h t t p ://w w w .n l d x b .c o m [d o i :10.3969/j .i s s n .1000-2006.2011.01.024]  收稿日期:2009-12-31 修回日期:2010-10-26  基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10K J B 220002) 作者简介:甄艳(1976—),副教授,博士。*施季森(通信作者),教授。E -m a i l :j s h i @n j f u .e d u .c n 。  引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J ].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q 81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 A p p l i c a t i o n o f m a s s s p e c t r o m e t r y i n p r o t e o m i c s s t u d i e s Z H E NY a n ,S H I J i s e n * (K e y L a b o r a t o r y o f F o r e s t G e n e t i c s a n d B i o t e c h n o l o g y M i n i s t r y o f E d u c a t i o n , N a n j i n g F o r e s t r y U n i v e r s i t y ,N a n j i n g 210037,C h i n a ) A b s t r a c t :W i t ht h e r a p i d d e v e l o p m e n t o f p r o t e o m i c s ,m a s s s p e c t r o m e t r y i s m a t u r i n g t o b e a p o w e r f u l t o o l a n dc o r e t e c h -n o l o g y f o r p r o t e o m i c s s t u d i e s d u r i n g t h e r e c e n t y e a r s .T h e s u p e r i o r i t y o f m a s s s p e c t r o m e t r y l i e s i n p r o v i d i n g t h e t h r o u g h -p u t a n d t h e m o l e c u l a r i n f o r m a t i o n ,w h i c hn o o t h e r t e c h n o l o g y c a n b e m a t c h e di np r o t e o m i c s .I nt h i s r e v i e w ,w e m a d e a g l a n c e o n t h e o u t l i n e o f m a s s s p e c t r o m e t r y -b a s e d p r o t e o m i c s .A n dt h e nw e a d d r e s s e d o n t h e a d v a n c e s o f d a t a a n a l y s i s o f m a s s s p e c t r o m e t r y -b a s e dp r o t e o m i c s ,q u a n t i t a t i v em a s ss p e c t r o m e t r y -b a s e dp r o t e o m i c s ,p o s t -t r a n s l a t i o n a l m o d i f i c a t i o n s b a s e d m a s s s p e c t r o m e t r y ,t a r g e t e d p r o t e o m i c s a n df u n c t i o n a l p r o t e o m i c s b a s e d -m a s s s p e c t r o m e t r y . K e yw o r d s :m a s ss p e c t r o m e t r y ;p r o t e o m i c s ;q u a n t i t a t i v ep r o t e o m i c s ;p o s t -t r a n s l a t i o n m o d i f i c a t i o n ;t a r g e t e d p r o -t e o m i c s ;f u n c t i o n a l p r o t e o m i c s 蛋白质组学(P r o t e o m i c s )是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(e l e c t r o s p r a y i o n i z a t i o n ,E S I )和基质辅助激光解析离子化(m a -t r i x a s s i s t e d l a s e r d e s o r p t i o n i o n i z a t i o n ,M A L D I )的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(i o n t r a p ,I T ),飞行时间(t i m e o f f l i g h t ,T O F ),串联飞行时间(T O F -T O F ),四级杆/飞行时间(q u a d r u p o l e /T O F h y b r i d s ),离子阱/轨道阱(I T /o r b i t r a ph y b r i d ) 和离子阱/傅里叶变换串联质谱分析仪(I T /F o u r i e r t r a n s f o r m i o n c y c l o t r o nr e s o n a n c em a s s s p e c t r o m e t e r s h y b r i d s ,I T /F T M S ),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

蛋白质组学及其主要技术

蛋白质组学及其主要技术 朱红1 周海涛2 (综述) 何春涤1, (审校) (1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学 科,广东深圳518036) 【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。 【关键词】蛋白质组,蛋白质组学 1蛋白质组学的概念 随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。 蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。 2蛋白质组学的常用技术 2.1样品的制备和蛋白质的分离技术 2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。 激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。 2.1.2蛋白质的分离技术 ①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于 l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。 第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

蛋白质组学研究的基本步骤

请简述蛋白质组学研究的基本步骤 1.蛋白质样品的制备:蛋白质样品的制备是蛋白质组学研究的首要环节,也是最为重要的部分。蛋白质样品的质量直接影响到科学研究的真实性和可信度。 2.蛋白质的分离:双向凝胶电泳技术是目前最基础和常用的蛋白质分离方法,它能将数千种蛋白质同时分离与展示的分离技术。双向电泳分为等电聚焦电泳和SDS-PAGE两个步骤,即先进行等电聚焦电泳,按照pI的不同将蛋白分离,然后再进行SDS-PAGE按照分子量的大小不同对蛋白进行分离。IPG胶条的应用,大大提高了双向电泳的重复性。 3. 蛋白质双向电泳凝胶的染色。目前双向电泳凝胶的染色的方法有3种,分别为考马斯亮蓝染色法、银染法和荧光染色法。考马斯亮蓝染色法,操作简便,无毒性,染色后的背景及对比度良好,与下游的蛋白质鉴定方法兼容,但灵敏度较低,可以检测到30~100 ng蛋白质。银染法是一种较为流行的染色方法,银染成本较低,灵敏度高,可检测少到2~5ng的蛋白。荧光试剂显色对蛋白质无固定作用,与质谱兼容性好,而其灵敏度与银染相仿,但线性范围要远高于银染,这使二维电泳分离蛋白质的荧光检测受到普遍关注和应用。 4.双向电泳凝胶图像的采集与分析:图像采集系统通过投射扫描根据吸光度的大小获碍蛋白质点的光密度信息。一般来说,该光密度值与蛋白质点的表达丰度成正比,以便于软件分析时的定量比较。完成图像采集后采用ImageMaster等图像分析软件进行分析。分析步骤:蛋白质点检测、背景消减、归一化处理、蛋白质点匹配。 5.蛋白质鉴定:蛋白质鉴定是蛋白质组学研究中的核心内容。目前蛋白质鉴定技术主要有Edman 降解法测序、质谱。质谱是目前最常用的蛋白质鉴定方法。质谱技术的基本原理是带电粒子在磁场或电场中运动的轨迹和速度依粒子的质量与携带电荷之比质荷比( m/z) 的不同而变化,可以据此来判断粒子的质量和特性。质谱完成后利用蛋白质的各种属性参数如相对分子质量、等电点、序列、氨基酸组成、肽质量指纹谱等在蛋白质数据库中检索,寻找与这些参数相符的蛋白质。

蛋白质组学检测及分析方案

iTRAQ检测及数据分析

目录 一、项目简介 (3) 二、实验方案 (3) 2.1样品准备 (3) 2.2实验流程 (3) 2.3实验结果 (4) 三、分析方案 (4) 3.1原始数据预处理及均一化 (4) 3.2差异蛋白筛选 (4) 3.3层次聚类分析 (5) 3.4差异蛋白G ENE O NTOLOGY分析 (6) 3.5差异基因P ATHWAY分析 (6) 3.6差异蛋白N ETWORK分析 (7) 四、费用概算 (7) 五、时间概算 (7)

iTRAQ检测及数据分析方案 一、项目简介 样品情况: 对比情况:针对实验产出的原始数据进行生物信息学处理。组间相互对比筛选差异蛋白,并对差异蛋白进行后续生物信息学数据分析。具体内容见如下方案: 二、实验方案 2.1 样品准备 如果送样为溶液,则溶液中一般不要有SDS、CHAPS、Triton X-100、NP40及吐温 20、40等系列的去污剂。盐浓度小于50mM。 样品可以直接寄送未处理的组织,组织样品需要>100Mg,如蛋白已经提取,则需要蛋白量>200ug。 2.2 实验流程 同位素标记相对和绝对定量(iTRAQ)技术是一种新的、功能强大的可同时对八种样品进行绝对和相对定量研究的方法。作为一种新的蛋白质绝对和相对定量技术,具有很好的精确性和重复性,并且弥补了DIGE及ICAT的不足。它可以结合非凝胶串联质谱技术,对复杂样本、细胞器、细胞裂解液等样本进行相对定量研究。

2.3 实验结果 我们的实验结果将由专业软件Protein Pilot 3.0 (ABI,USA) 进行展示: 鉴定到的该蛋白质的肽断相关信息 同一个group的蛋白质 上图选中绿色的肽断的质谱图信息 所选定蛋白质(上表绿色)的肽断信息 质谱图定量信息 三、分析方案 3.1 原始数据预处理及均一化 首先对原始检测数据进行预处理和均一化处理。使得数据达到后期统计学分析要求。 3.2 差异蛋白筛选 利用统计学方法筛选差异表达的蛋白。一般认为高丰度蛋白鉴定出多个肽段,低丰度蛋

(整理)蛋白质组学实验方法

2、蛋白质分离的双向电泳过程 2.1溶液配制 常用水化上样缓冲液 (Ⅰ) 尿素 8M 4.805g CHAPS 4% 0.4g DTT 65Mm 0.098g Bio-Lyte 0.2%(w/v) 50μl(40%) 溴酚蓝 0.001% 10μl(1%溴酚蓝) MilliQ水定容至100ml (Ⅱ) 尿素 7M 4.2g 硫脲 2M 1.52g CHAPS 4% 0.4g DTT 65Mm 0.098g Bio-Lyte 0.2%(w/v) 50μl(40%) 溴酚蓝 0.001% 10μl(1%溴酚蓝) MilliQ水定容至100ml (Ⅲ) 尿素 5M 3.0g 硫脲 2M 1.52g SB3-10 2% 0.2g CHAPS 4% 0.4g DTT 65Mm 0.098g Bio-Lyte 0.2%(w/v) 50μl(40%) 溴酚蓝 0.001% 10μl(1%溴酚蓝) MilliQ水定容至100ml 分成10小管,每小管1ml,-80℃冰箱保存。 胶条平衡缓冲液母液 尿素 6M 36g SDS 2% 2g Tris-HCl 0.05M pH8.8 3.3ml(1.5M pH8.8 Tris-HCl) 甘油 20% 20ml

MilliQ水定容至100ml 分装成10管,-20℃冰箱保存。 胶条平衡缓冲液Ⅰ 胶条平衡缓冲液母液 10ml DTT 0.2g 充分混匀,用时现配。 胶条平衡缓冲液Ⅱ 胶条平衡缓冲液母液 10ml 碘乙酰胺 0.25g 充分混匀,用时现配。 低熔点琼脂糖封胶液 低熔点琼脂糖 0.5% 0.5g Tris 25mM 0.303g 甘氨酸 192mM 1.44g SDS 0.1% 1ml(10%SDS) 溴酚蓝 0.001% 100μl(1% 溴酚蓝) MilliQ水定容至100ml 加热溶解至澄清,室温保存。 30%聚丙烯酰胺贮液 丙烯酰胺 150g 甲叉双丙稀酰胺 4g MilliQ水 500ml 滤纸过滤后,棕色瓶4℃冰箱保存。 1.5mol/L Tris碱pH8.8 Tris碱 90.75g MilliQ水 400ml 用1mol/L HCl调pH至8.8,加MilliQ水定容至500ml, 4℃冰箱保存。 10% SDS SDS 10g

蛋白质组学主要研究技术

蛋白质组学主要研究技术 目前蛋白质组学的研究手段主要依靠分离技术、质谱技术和生物信息学的发展。分离技术要求达到高分辨率和高重复率,质谱技术主要包括MALDI-TOF、Q-TOF与MS/MS等质谱设备以及样品的预处理,生物信息学则利用算法的改进和数据库查询比对的完善提高数据结果的判断。 1. 蛋白质组学的分离技术 目前蛋白质组学研究广泛采用的是双向电泳技术。高通量性、对实验要求低、操作简便快速是双向电泳具有的最大优点,它特别适合大规模的蛋白质组学研究。尽管当前蛋白质的分离技术多种多样,但目前仍然没有一种可以彻底地取代双向电泳技术。 从1975年,O’Farrells[8]等将IEF与SDS-PAGE结合创立了2D-PAGE电泳技术以来。双向电泳技术在多个方面都得到了提高和改进:(1) IPG胶条的使用。传统的载体两性电解质等电聚焦存在上样量小、长时间电泳过程中pH梯度不稳定、阴极漂移现象及其导致的碱性蛋白损失、不同批次间重复性差等问题。IPG 胶条的使用使这些问题得到了极大的改善,这使蛋白质双向电泳数据库的建立成为现实;(2) 样品制备:蛋白质样品的质量好坏从根本上决定了电泳最终结果的好坏。双向电泳的样品制备有两个关键点,即如何使样品中蛋白质充分溶解以及尽可能减少影响等电点聚焦的杂质,特别是带电杂质。采用超声或核酸酶处理的方法可以去除核酸,超速离心可除去脂类和多糖,透析、凝胶过滤或沉淀/重悬法可以降低盐浓度。近来的研究发现磺基甘氨酸三甲内盐(ASB14-16)的裂解效果最好,而2mol/l的硫脲和4%的表面活性剂CHAPS的混合液能促使疏水蛋白从IPG到第二相胶的转换。以三丁基膦(TBP)取代β-巯基乙醇或DTT,可以完全溶解链间或链内的二硫键,增强了蛋白质的溶解度,并促进蛋白质向第二向的转移。 另外,双向电泳中对低丰度蛋白的分离识别比较困难,除了显色技术的局限外,还存在容易被高丰度蛋白掩盖的问题,这样得到的蛋白质图谱很不完整,经常会忽略那些在生命过程中发挥重要功能的微量活性分子。解决方案包括增加上样量、对样品进行分级纯化从而富集低丰度蛋白、采用更高灵敏度的显色方法,

蛋白质组学及其研究方法与进展

蛋白质组学及其研究方法与进展 蛋白质是生命活动的体现者,基因的表达最后是通过蛋白质来体现的,在这个过程中,蛋白质起了连接基因与表现的功能。蛋白质是有氨基酸组成的,组成蛋白质的氨基酸的种类及排列顺序构成了蛋白质的一级结构,而在一级机构基础上的多肽链本身的折叠和盘绕方式构成了蛋白质的二级结构,考虑到多肽链上原子在空间的分布,由二级结构进一步形成了蛋白质的三级结构,对于有多个亚基的蛋白质还存在四级结构。 蛋白质的一级结构决定了高级结构,而高级结构则决定着蛋白质的生物学功能。如今对于蛋白质研究已经单独形成了一个活跃的生物学分支学科―――蛋白质组学,在蛋白质的研究中发挥着很重要的作用,下面将介绍蛋白质组学的一些基本内容及研究进展。 一.产生背景[1] 在20世纪中后期随着DNA双螺旋结构的提出和蛋白质空间结构的解析,生命科学研究进入了分子生物学时代,对遗传信息载体DNA和生命功能的体现者蛋白质的研究,成为了其主要内容。90年代初期启动的庞大的人类基因组计划.在经过各国科学家多年的努力下,已经取得了巨大的成就。10多种低等模式生物的基因组序列测定L三完成;第一个多细胞生物一线虫基因组的DNA全序列测定也在1998年年底完成;人类所有基因的部分序列测定(EST)已经完成;人类基因组的全序列测定有可能提前到2003年完成。生命科学已跨入了后基因组时代。在后基因组时代,研究重心将从揭示生命的所有遗传信息转移到在整体水平上对功能的研究。这种转向的第一个标志是产生了功能基因组学这一新学科,即从基因组整体水平上对基因的活动规律进行阐述。如在mRNA 水平上,通过DNA 芯片(DNA chips)和微阵列(Microarray)法等技术检测大量基因的表达模式,并取得了很好的进展。但是,mRNA的表达水平(包括mRNA的种类和含量)由于mRNA储存和翻译调控以及翻译后加工等的存在.并不能直接反映蛋白质的表达水平}蛋白质自身特有的活动规律,如蛋白质的修饰加工、转运定位结构形成、代谢、蛋白质与蛋白质及其他生物大分子的相互作用等.均无法从在基因组水平上的研究获知。因此,对生物功能的主要体现者或执行者一蛋白质的表达模式和功能模式的研究就成为生命科学发展的必然。在此背景下.80年代中期,国际上葫发了一门研究细胞内垒部蛋白质的组成及其活动规律的新兴学科- 蛋白质组学(Proteomic)。 蛋白质组(proteome)一词是马克.威尔金斯(Marc Wilkins)最先提出来的, 最早见诸于1995年7月的“Electrophoresis”杂志上它是指一个有机体的全部蛋白质组成及其活动方式。蛋白质组研究虽然尚处于初始阶段, 但已经取得了一些重要进展。当前蛋白质组学的主要内容是, 在建立和发展蛋白质组研究的技术方法的同时, 进行蛋白质组分析。对蛋白质组的分析工作大致有两个方面。一方面,通过二维凝胶电泳得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱, 相关数据将作为待检测机体、组织或细胞的二维参考图谱和数据库。一系列这样的二维参考图谱和数据库已经建立并且可通过联网检索。二维参考图谱

相关文档
最新文档