选修2-2导数的实际应用课时作业

选修2-2导数的实际应用课时作业
选修2-2导数的实际应用课时作业

课时作业8 导数的实际应用

时间:45分钟 满分:100分

一、选择题(每小题5分,共30分)

1.一个箱子的容积与底面一边长x 的关系为V (x )=x 2

·(60-x 2)(0

A .30

B .40

C .50

D .60

【答案】 B

【解析】 V ′(x )=(30x 2-12x 3)′=60x -3

2x 2=0,解得x =40.

"

2.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万

件)的函数关系式为y =-13x 3

+81x -234,则使该生产厂家获取最大年利润的年产量为( )

A .13万件

B .11万件

C .9万件

D .7万件

【答案】 C

【解析】 令y ′=-x 2+81>0,解得09,∴函数y =-13x 3

+81x -234在区间(0,9)上是增函数,在区间(9,+∞)上是减函数,∴在x =9处取极大值,也是最大值,故选C.

3.若一球的半径为r ,作内接于球的圆柱,则圆柱侧面积最大值为( )

A .2πr 2

B .πr 2

C .4πr 2

πr 2

【答案】 A

【解析】 设内接圆柱的高为h ,底面半径为x ,则由组合体的知

识得h 2+(2x )2=(2r )2,又圆柱的侧面积S =2πx ·h ,

∴S 2

=16π2

(r 2x 2

-x 4

),(S 2

)′=16π2

(2r 2

x -4x 3

),由(S 2

)′=0,得x =2

2

r (x =0舍去),∴S max =2πr 2,故选A.

4.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为( )

A .32 16

B .30 15

C .40 20

D .36 18

【答案】 A

【解析】 要求用料最省,则要求新砌的墙壁总长最短,设场地宽为x 米,则长为512x 米,因此新墙总长为L =2x +512

x (x >0),则L ′=2-512x 2, )

令L ′=0得x =±16,又x >0,

∴x =16,则当x =16时,L min =64,∴长为512

16=32(米). 5.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=

???

-x 3900

+400x ,0≤x ≤390,

90 090,x >390.

则当总利润最大时,每年生产产品的单位数是( )

A .150

B .200

C .250

D .300

【答案】 D

【解析】 ∵总利润P (x )=

???

-x 3900

+300x -20 000,0≤x ≤390,

90 090-100x -20 000,x >390,

由P ′(x )=0,得x =300,故选D. <

6.(2014·陕西理)如图,某飞行器在4千米高空水平飞行,从距着

陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )

( )

A .y =1125x 3-3

5x B .y =2125x 3-4

5x C .y =3125x 3

-x D .y =-3125x 3+1

5x

【答案】 A

【解析】 本题考查导数的计算,切线的几何意义,函数的奇偶性.

根据函数图象的特点,设函数y =ax 3+cx ,

|

又∵函数在(-5,2)处切线平行于x 轴,

∴y ′=3ax 2+c ,即3a ×25+c =0, ∴c =-75a ,故选A.

二、填空题(每小题10分,共30分)

7.已知轮船甲位于轮船乙的正东方向且距轮船乙75n mile 处,

以12n mile/h 的速度向西行驶,而轮船乙则以6n mile/h 的速度向北行驶,如果两船同时起航,那么经过________h 两船相距最近.

【答案】 5

【解析】 设经过x h 两船相距y n mile ,则y 2=36x 2+(75-12x )2,令(y 2)′=72x -24(75-12x )=0,可解得x =5,易知当x =5时,y 2取得最小值.

8.做一个无盖的圆柱形水桶.若要使其体积是27π,且用料最省,则圆柱的底面半径为________. ?

【答案】 3

【解析】 设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π, ∴L =27

R 2,要使用料最省,只需使圆柱形表面积最小, ∴S 表=πR 2

+2πRL =πR 2

+2π27R ,由S ′(R )=2πR -54π

R 2=0,

得R =3,则当R =3时,S 表最小.

9.一房地产公司有50套公寓要出租,当月租金定为1 000元时,公寓会全部租出去,当月租金每增加50元,就会多一套租不出去,而租出去的公寓每月每套需花费100元维修费,则房租定为________

元时可获得最多收入.

【答案】 1 800

【解析】设x套为没有租出去的公寓数,则收入函数f(x)=(1 000+50x)(50-x)-100·(50-x),∴f′(x)=1 600-100x,∴当x=16时,f(x)取最大值,故把租金定为1 800元时,收入最多.

@

三、解答题(本题共3小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤)

10.(13分)在高为H、底面半径为R的圆锥内作一个内接圆柱,问圆柱底面半径r为多大时,圆柱体积最大

【分析】圆柱内接于圆锥,求圆柱体积最大值,解答本题的关键是画出轴截面,建立圆柱体积与底面半径r的函数解析式,利用导数求函数的最大值.

【解析】设圆柱底面半径为r、高为h、体积为V,在圆锥的轴截面△ABC中(如图),

H

H-h

R

r,

∴h=H(1-r

R),

∴V =πr 2h =πr 2H (1-r R )=πHr 2-πH

R r 3(0

@

V ′=2πHr -3πH

R r 2.

令V ′=0得r =2

3R (0

由于在(0,R )内,函数只有一个极值点,根据题意最大值存在,所以当r =23R 时,体积最大且V max =427πR 2

H .

【规律方法】 求几何体的面积或体积的最值问题,关键是分析几何体的几何特征,选择适当的量建立关于面积或体积的目标函数,然后利用导数求解.

11.(13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=

k

3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.

(1)求k 的值及f (x )的表达式;

(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 【分析】 根据自变量x 和函数值C 的实际意义以及题目的条件可知C (0)=8.由此可求出f (x )的表达式,进而求f (x )的最小值. —

【解析】 (1)设隔热层厚度x cm ,由题意建筑物每年的能源消耗

费用为C (x )=k

3x +5

(0≤x ≤10),再由C (0)=8得k =40,

故C (x )=

40

3x +5

(0≤x ≤10);又x 厘米厚的隔热层建造费用为6x , 所以由题意f (x )=403x +5×20+6x =800

3x +5+6x (0≤x ≤10).

(2)f ′(x )=6- 2 400

?3x +5?2=54?x +25

3??x -5?

?3x +5?2.

令f ′(x )=0,得x =5或x =-25

3(舍去),

当x ∈(0,5)时,f ′(x )<0,当x ∈(5,10)时,f ′(x )>0,故x =5时,f (x )取得最小值,且最小值f (5)=6×5+800

15+5

=70.

因此当隔热层修建5cm 厚时,总费用达到最小,且最小值为70万元.

12.(14分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a

x -3+

10(x -6)2,其中3

(1)求a 的值;

(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.

【解析】 (1)因为x =5时,y =11, 所以a

2+10=11,所以a =2.

(2)由(1)可知该商品每日的销售量y =2

x -3+10(x -6)2,

所以商场每日销售该商品所获得的利润f (x )=(x -3)·[2

x -3

+10(x

-6)2]=2+10(x-3)(x-6)2,3

从而f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6).

令f′(x)=0,得x=4或x=6.

于是,当x变化时,f′(x),f(x)的变化情况如下表:

值点,

所以当x=4时,函数f(x)取得最大值,且最大值等于42.

答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.

导数的综合应用学案(教师版)

第3课时 导数与函数的综合问题 题型一 导数与不等式 命题点1 证明不等式 典例 (2017·贵阳模拟)已知函数f (x )=1-x -1 e x ,g (x )=x -ln x . (1)证明:g (x )≥1; (2)证明:(x -ln x )f (x )>1-1 e 2. 证明 (1)由题意得g ′(x )=x -1 x (x >0), 当01时,g ′(x )>0, 即g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1e x ,得f ′(x )=x -2 e x , 所以当02时,f ′(x )>0, 即f (x )在(0,2)上为减函数,在(2,+∞)上为增函数, 所以f (x )≥f (2)=1-1 e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1 e 2. 命题点2 不等式恒成立或有解问题 典例 (2018·大同模拟)已知函数f (x )=1+ln x x . (1)若函数f (x )在区间????a ,a +1 2上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥ k x +1恒成立,求实数k 的取值范围.

解 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln x x 2, 令f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以x =1为函数f (x )的极大值点,且是唯一极值点, 所以00, 所以g (x )为单调增函数,所以g (x )≥g (1)=2, 故k ≤2,即实数k 的取值范围是(-∞,2]. 引申探究 本例(2)中若改为:?x 0∈[1,e],使不等式f (x 0)≥k x 0+1成立,求实数k 的取值范围. 解 当x ∈[1,e]时,k ≤(x +1)(1+ln x ) x 有解, 令g (x )=(x +1)(1+ln x ) x (x ∈[1,e]),由例(2)解题知, g (x )为单调增函数,所以g (x )max =g (e)=2+2 e , 所以k ≤2+2 e ,即实数k 的取值范围是????-∞,2+2e . 思维升华 (1)利用导数证明不等式的方法 证明f (x )

人教版数学选修2-2:导数及其应用测试题

《导数及其应用》 一、选择题 1.0()0f x '=是函数()f x 在点0x 处取极值的: A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2、设曲线2 1y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为 A. B. C. D. 3.在曲线y =x 2 上切线的倾斜角为π4 的点是( ) A .(0,0) B .(2,4) C.? ????14,116 D.? ?? ??12,14 4.若曲线y =x 2 +ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 5.函数f (x )=x 3 +ax 2 +3x -9,已知f (x )在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 6. 已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2 -2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值 范围是( ) A .m <2或m >4 B .-4,对于任意实数x 都有()0f x ≥,则 (1) '(0) f f 的最小值为

导数的概念导学案

导数的概念导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

预习目标:“导数的概念”了解瞬时速度的定义,能够区分平均速度和瞬时速 度,理解导数(瞬时变化率)的概念 预习内容: 问题1 我们把物体在某一时刻的速度称为________。一般地,若物体的运动规律为 )(t f s =,则物体在时刻t 的瞬时速度v 就是物体在t 到t t ?+这段时间内,当_________时平均速度的极限,即t s v x ??=→?0lim =___________________ 问题2 函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x f x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =处的______,记作'0()f x 或________,即___________________________________________________________. 提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑? 课内探究学案 一:探究求导数的步骤: (即________变化率) 二:精讲点拨 例1(1)求函数23x y =在1=x 处的导数. (2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数. 三:有效训练 求22+=x y 在点x=1处的导数. );()()1(00x f x x f y -?+=?求增量;)()()2(00x x f x x f x y ?-?+=??算比值时)(在求0.)3(0→???='=x x y y x x

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

第三章 导数 导学案

§3.1.1 变化率问题 1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义; 2.理解平均变化率的意义,为后续建立瞬时变化. 7880 复习1:曲线22 1259 x y +=与曲线 22 1(9)259x y k k k +=<--的( ) A .长、短轴长相等 B .焦距相等 C .离心率相等 D .准线相同 复习2:当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 二、新课导学 ※ 学习探究 探究任务一: 问题1:气球膨胀率,求平均膨胀率 吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象? 问题2:高台跳水,求平均速度 新知:平均变化率: 2121()()f x f x f x x x -?=-? 试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ?,即 x ?= 或者2x = ,x ?就表 示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ?,即y ?= ;如果它们 的比值y x ??,则上式就表示为 , 此比值就称为平均变化率. 反思:所谓平均变化率也就是 的增量与 的增量的比值. ※ 典型例题 例 1 过曲线3()y f x x ==上两点(1,1P 和(1,1)Q x y +?+?作曲线的割线,求出当0.1x ?=时割线的斜率. 变式:已知函数2()f x x x =-+的图象上一点 (1,2)--及邻近一点(1,2)x y -+?-+?,则y x ??= 例 2 已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001] 小结:

新课标人教A版高中数学选修2-2导数及其应用知识点总结

高中数学选修2-2导数及其应用知识点总结 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:

6.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个 根处无极值 8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点; 9.求曲边梯形的思想和步骤 (“以直代曲”的思想) 10.定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx b a -=?1 性质5 若[]b a x x f ,,0)(∈≥,则0)(≥?b a dx x f ①推广:1212[()()()]()()()b b b b m m a a a a f x f x f x dx f x dx f x dx f x ±± ±=±± ±????

导数导学案8

§132利用导数研究函数极值 学习目标 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤 . 心学习过程 - ■—?■"—■- ~ —? ■—— -- ——~—-_-—I _■■- ? ?- —■—— 一、课前准备 (预习教材P27~ P30,找出疑惑之处) 复习1:设函数y=f(x)在某个区间内有导数,如果在这个区间内 这个区间内为_____ 函数;如果在这个区间内y 0 ,那么函数 函数. 复习2:用导数求函数单调区间的步骤:①求函数f(x)的导数f 等式,得x的范围就是递增区间.③令______________ 解不等式,得 二、新课导学探学习探究探究任务一:问题1:如下图,函数y f(x)在a,b,c,d ,e, f ,g,h等点的函数值与这些点附近的函数值有什 么关系? y f(x)在这些点的导数值是多少?在这些点附近,y f(x)的导数的符号有什么 看出,函数y f(x)在点x a的函数值f(a)比它在点x a附近其它点的函数值都—, f (a) 且在点x a附近的左侧f (x)_0,右侧f (x)_0. 类似地,函数 y f(x)在点x b的函数值f(b)比它在点x b附近其它点的函数值都_____________ ,f (b)— 而且在点x b附近的左侧f(X) _______ 0,右侧f(X) _____ 0. 新知: 我们把点a叫做函数y f (x)的极小值点,f(a)叫做函数y f (x)的极小值;点b叫做函数y f (x) 的极大值点,f(b)叫做函数y f(x)的极大值. 极大值点、极小值点统称为极值点,极大值、极小值统称为极值. 极值反映了函数在某一点附近的_________________ , 刻画的是函数的_____________ . 试试: (1) ________________ 函数的极值 (填是,不是)唯一的. (2)一个函数的极大值是否一定大于极小值________ ⑶函数的极值点一定出现在区间的______ (内,外)部,区间的端点 极值点. 反思:极值点与导数为0的点的关系: 导数为0的点是否一定是极值点. y 0,那么函数y=f(x)在 y=f(x)在为这个区间内的 _ (x).②令 _____________ 解不 x的范围,就是递减区间. (能,不能)成为

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

【高考二轮课程】数学文科 全国通用版 第18讲 导数的综合应用 学案

高考二轮复习第18讲导数的综合应用 一、高考回顾 导数是高考的难点,一般在高考中是一大一小,小题多考切线相关问题,或者单调性、极值最值问题;而大题一直是压轴题,考查不等式恒成立、含参问题等。对大多数学生来说,导数部分能熟练掌握简 二、知识清单 1.思维导图

2.知识再现 (一)导数概念 函数)(x f y =在0x x =处的瞬时变化率为函数)(x f y =在0x x =处的导数,记作)('0x f 或0|'x x y =,即 x y x x x f x f x x ??=??-=→?→?000 0lim )(lim )(' 说明: 1. 函数应在点0x 的附近有定义,否则导数不存在 2. 在定义导数的极限式中,x ?趋近于0可正、可负、但不为0,而y ?可能为0 3. 导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ?无关 4. 在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义 式可写成 0000/) ()(lim )()(lim )(0x x x f x f x x f x x f x f x x o x --=?-?+=→→? 5. 若极限x x f x x f x ?-?+→?) ()(lim 000 不存在,则称函数)(x f y =在点0x 处不可导 6. 导数反映函数)(x f y =在点))(,(00x f x 处变化的快慢程度. 7. 导数的物理意义:瞬时速度,气球的瞬时膨胀率等. 8. 求函数)(x f y =在0x x =处的导数的一般方法: 思维特征 自变量x 因变量y 函数的切线问题 函数单调性 函数的极最值 核心知识 导数利用代数解析式研究性质 利用几何图形研究性质 利用导函数研究性质 图像语言 符号化语言 描述性语言 思维载体

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章 单元测试题 一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点() A.1 个B.2 个 C.3 个D.4 个 1 1 2.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在 1 同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是() C.8D.4 2 3.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( ) ππ3 A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π) 3 π 3 C.[ 4π,π ) D.[ 2,4π] 1 4.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()

3 3 A.m≥2 B.m>2 3 3 C.m≤2 D.m<2 x 2 2 5.函数f ( x) =cos x-2cos 2的一个单调增区间是 () f x 0+3 -f x 0 Δx 6.设f ( x) 在x=x0 处可导,且lim Δx =1, Δx→0 则 f ′(x0)等于( ) A.1 B.0 C.3 x+9 7.经过原点且与曲线y=x+5相切的切线方程为() A.x+y=0 B.x+25y=0 C.x+y= 0 或x+25y=0 D.以上皆非 8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2- 3b<0 时,f ( x) 是() A.增函数 B.减函数 C.常数 D.既不是增函数也不是减函数

3.1 导数的概念及其运算导学案

§3.1 导数的概念及其运算 2014高考会这样考 1.利用导数的几何意义求切线方程;2.考查导数的有关计算,尤其是简单的复合函数求导. 复习备考要这样做 1.理解导数的意义,熟练掌握导数公式和求导法则;2.灵活进行复合函数的求导;3.会求某点处切线的方程或过某点的切线方程. 1. 函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1) x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平 均变化率可表示为Δy Δx . 2. 函数y =f (x )在x =x 0处的导数 学&科& (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx → f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx → Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3. 函数f (x )的导函数 称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数,导函数有时也记作y ′. 4. 基本初等函数的导数公式

5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) g 2(x ) (g (x )≠0). 6. 复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [难点正本 疑点清源] 1. 深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系 (1)函数f (x )在点x 0处的导数f ′(x 0)是一个常数; (2)函数y =f (x )的导函数,是针对某一区间内任意点x 而言的.如果函数y =f (x )在区间(a ,b )内每一点x 都可导,是指对于区间(a ,b )内的每一个确定的值x 0都对应着一个确定的导数f ′(x 0).这样就在开区间(a ,b )内构成了一个新函数,就是函数f (x )的导函数f ′(x ).在不产生混淆的情况下,导函数也简称导数. 2. 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不

2020高考数学一轮复习第三章导数及其应用3-3导数的综合应用学案理

【2019最新】精选高考数学一轮复习第三章导数及其应用3-3导数的 综合应用学案理 考点1 利用导数研究生活中的优化问题 [典题1] 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底 面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成 本为12 000π元(π为圆周率). (1)将V表示成r的函数V(r),并求该函数的定义域; (2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.[解] (1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本 为160πr2元. 所以蓄水池的总成本为(200πrh+160πr2)元. 又根据题意,得200πrh+160πr2=12 000π, 所以h=(300-4r2), 从而V(r)=πr2h=(300r-4r3). 因为r>0,又由h>0可得0<r<5, 故函数V(r)的定义域为(0,5). (2)因为V(r)=(300r-4r3), 故V′(r)=(300-12r2), 令V′(r)=0,解得r=5或-5(r=-5<0,舍去). 当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数; 当r∈(5,5)时,V′(r)<0,故V(r)在(5,5)上为减函数. 由此可知,V(r)在r=5处取得最大值,此时h=8. 即当r=5,h=8时,该蓄水池的体积最大.

[点石成金] 利用导数解决生活中的优化问题的四步骤 (1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题 中变量之间的函数关系式y =f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大 (小)值; (4)回归实际问题作答. 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价 格x(单位:元/千克)满足关系式y =+10(x -6)2,其中3<x <6,a 为常数,已知销 售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值; (2)若该商品的成本为3元千克,试确定销售价格x 的值,使商场每日销售该 商品所获得的利润最大. 解:(1)因为当x =5时,y =11, 所以+10=11,a =2. (2)由(1)知,该商品每日的销售量y =+10(x -6)2. 所以商场每日销售该商品所获得的利润 ???? ??2x -3+10x -623)-(x =f(x) =2+10(x -3)(x -6)2,3<x <6. 从而,f′(x)=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6). 于是,当x 变化时,f′(x),f(x)的变化情况如下表. x (3,4) 4 (4,6) f ′(x ) + 0 - f (x ) 极大值42 由上表可得,x 所以,当x =4时,函数f(x)取得最大值,且最大值等于42.

导数导学案1

§1.1.1函数的平均变化率 ,匚* 学习目标 1 ?感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程.体会数学的博大精深以及学习数学的意义; 2?理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景. 心学习过程 一、课前准备 (预习教材P3~ P 5,找出疑惑之处) 2 2 复习1:曲线乞乂 25 9 A .长、短轴长相等 C.离心率相等1与曲线 2 X 25 k 焦距相等 准线相同 -1(k 9)的( ) k 复习2:当从0。到180°变化时,方程X2y2 cos 1表示的曲线的形状怎样变化? 二、新课导学探学习探究探究任务一: 问题1:气球膨胀率,求平均膨胀率吹气球 时,随着气球内空气容量的增加, 描述这种现 象? 气球的半径增加得越来越慢.从数学的角度如何 问题2:高台跳水, 求平均速度 f x 试试:设y f(X), X1是数轴上的一个定点, 即 在数轴X上另取一点X2 , X1与X2的差记为X , 或者X2 = 函数的变化量或增量记为y,即y = X就表示从X1到X2的变化量或增量,相应地, ____ ;如果它们的比值」,则上式就表示 X ,此比值就称为平均变化率 反思:所谓平均变化率也就是的增量与的增量的比值.

2 x ,分别计算f (x )在下列区间上的平均变化率: 小结: %动手试试 练1.某婴儿从出生到第12个月的体重变化如图所示, 试分别计算从出生到第 个月到第12个月该婴儿体重的平均变化率 . 探典型例题 例 1过曲线y 割线的斜率. f(x) 3 X 上两点P (1,1)和Q (1 x,1 y )作曲线的割线,求出当 x 0.1 时 变式:已知函数 f(x) x 2 x 的图象上一点(1, 2)及邻近一点(1 x, 2 y ),则一y = x 例2 已知函数f (1) [1,3]; (2) [1,2]; (3) [1,1.1]; (4[1,1.001] 3个月与第6

苏教版数学高二- 选修2-2导学案 《常见函数的导数》

1.2.1 常见函数的导数 导学案 一、学习目标 掌握初等函数的求导公式; 二、学习重难点 用定义推导常见函数的导数公式. 三、学习过程 【复习准备】 1.导数的相关知识 ①导数的定义;②导数的几何意义;③导函数的定义;④求函数的导数的流程图. (1)求函数的改变量 (2)求平均变化率 (3)取极限,得导数/ y =()f x '= 2.如何求切线的斜率? (0)PQ x k P ?→当时,无限趋近于点处切线的斜率 3.导数:函数在某点处的瞬时变化率 设函数y =f(x)在区间(a ,b)上有定义,x0∈(a ,b),若△x 无限趋近于零时,比值 00()()f x x f x y x x +?-?=??.无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称

该常数A 为函数f(x)在x =x0处的导数,记作f/(x 0). 4.由定义求导数(三步法) ①求函数的增量:=?y ②算比值(平均变化率): =??x y ③取极限,得导数:0 x x y ='= 【情境引入】 本节课我们将学习常见函数的导数.首先我们来求下面几个函数的导数. (1)y=x; (2)y=x 2 ; (3)y=x 3 . 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 【数学建构】 1.几种常见函数的导数: 问题引入1: (1)(23)x '-+= (4)x '= (2)(2)x '-= (5)(5)x '+= (3)3'= (6)(4)'-= 通过以上运算我们能得到什么结论? 公式一:

问题引入2: (1)x '= 2(2)()x '= 2(3)(3)x '= 1(4)()x '= 通过以上运算我们能得到什么结论? 公式二: 【知识应用】 例1 求下列函数的导数: (1)()'3x ;(2)'21x ?? ??? ;(3 )' . 解: 拓展 例2 求下列函数的导数: 4(1)y x =; 3(2)y x -=; 1(3)y x =; (4)y = =0(5)sin 45y ; =(6)cos u v . 解:

《导数的综合应用》优秀教学设计获奖定稿

《导数的综合应用》优秀教学设计 一、教材分析 “导数的综合应用”是高中数学人教A版教材选修1-1第三章的内容,是中学数学新增内容,是高等数学的基础内容,它在中学数学教材中的出现,使中学数学与大学数学之间又多了一个无可争辩的衔接点。导数的应用是高考考查的重点和难点,题型既有灵活多变的客观性试题,又有具有一定能力要求的主观性试题,这要求我们复习时要掌握基本题型的解法,树立利用导数处理问题的意识. 二、学情分析 根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。 三、教学目标 1、知识与技能: (1)利用导数的几何意义; (2)利用导数求函数的单调区间; (3)利用导数求函数的极值以及函数在闭区间上的最值; (4)解决根分布及恒成立问题 2、过程与方法: (1)能够利用函数性质作图像,反过来利用函数的图像研究函数的性质如交点情况,能合理利用数形结合解题。 (2)学会利用熟悉的问答过渡到陌生的问题。 3、情感、态度与价值观: 这是一堂复习课,教学难度有所增加,培养学生思考问题的习惯,以及克服困难的信心。 四、教学重点、难点 重点是应用导数求单调性,极值,最值 难点是方程根及恒成立问题 五、学法与教法 学法: (1)合作学习:引导学生分组讨论,合作交流,共同探讨问题(如题型一(2))。 (2)自主学习:引导学生从简单问题出发,发散到已学过的知识中去。(如题型一(1))。 (3)探究学习:引导学生发挥主观能动性,主动探索新知(如题型四的发散和直击高考的处理)。 教学用具:多媒体。

教法: 变式教学———这样可以让学生从题海中解脱出来,形成知识网络,增强知识的系统性与连贯性,从而使学生能够抓住问题的本质,加深对问题的理解,从“变”的现象中发现“不变”的本质,从“不变”的本质中探索“变”的规律;

高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题 一、 选择题(本大题共12小题,每小题5分,共60分) 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 》 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ) . A .]21,21[2π e B .)2 1 ,21(2π e C .],1[2π e D .),1(2π e 8.07622 3 =+-x x 在区间)2,0(内根的个数为 ( ) ] A .0 B .1 C .2 D .3

3.1导数导学案

导数的概念及运算 一、预习案 (一)高考解读 能利用给出的基本初等函数的导数公式求简单函数的导数,通过图像直观地理解导数的几何意义,会求在某点和过某点的切线方程。 (二)知识清单 2、求导法则 ①运算 (1)=±' )]()([x g x f 。 (2)=?')]()([x g x f 。 (3)=?? ????' )()(x g x f 。 ②复合函数的导数:设)(x v u =在x 处可导,)(u f y =在点u 处可导, 则复合函数)]([x v f 在点x 处可导,且=)('x f 。 (三)预期效果及存在困惑

二、导学案 (一)完成《新亮剑(红色)》第50页查缺补漏。 (二)高考类型 考点一、导数运算 1、已知函数ax x x x f +=sin )(,且1)2 ('=π f ,则a 的值等于( ) A.0 B.1 C.2 D.4 2、函数)(x f 的定义域是R ,2)0(=f ,对任意1)()(,'>+∈x f x f R x ,则不等式1)(+>?x x e x f e 的解集为 考点二、导数几何意义的应用 3、已知函数454)(23-+-=x x x x f 。 (1)求曲线)(x f 在点))2(,2(f 处的切线方程; (2)求经过点)2,2(-A 的曲线)(x f 的切线方程。 练习: 1(2018课标I )设函数ax x a x x f +-+=23)1()(。若)(x f 为奇函数,则曲线)(x f y =在)0,0(处的切线方程为( ) A. x y 2-= B.x y -= C.x y 2= D.x y =

2.(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0 课堂总结: 三、巩固案 1.(2016北京节选)设函数bx xe x f x a +=-)(,曲线)(x f y =在))2(,2(f 处的切线方程为4)1(+-=x e y ,求b a ,的值。 2.(2015全国II )设函数)('x f 是奇函数)(x f 的导函数,0)1(=-f ,当 0>x 时,0)()('<-x f x xf ,解不等式0)(>x f 。

2019-2020年高考数学一轮复习第16课时导数的综合应用教学案

2019-2020年高考数学一轮复习第16课时导数的综合应用教学案 教学目标:能运用导数研究函数的性质(奇偶性、单调性、极值、最值等相关问题) 一、基础训练 1. 二次函数对于任意实数都有,且,则的最小值为 . 2.设是函数的导函数,若在 上的图像如图所示,则的单调减区间 是 . 3.用边长为6的正方形铁皮做一个无盖的容器,先在四个角各截去一个小正方形,然后将四边翻 转角,再焊接而成,则容器的高为 时,容器的体积最大. 4.函数的最大值是 . 5.已知上的可导函数在上是减函数,在上是增函数,如果,那么的符号为 . 二、合作探究 例1.已知函数 (1)求函数在[1,e]上的最大值和最小值; (2)求证:当时,函数的图象在的下方. 变式训练1: 已知定义在正实数集上的函数2 21()2,()3ln 2 f x x ax g x a x b =+=+,其中,设两曲线在公共点处的切线相同,求证: x y O 1 2 3

例2 已知函数2 ()ln (0,1)x f x a x x a a a =+->≠ (1)当时,求证:上单调递增;(2)若函数有三个零点,求t 的值; (3)若存在,使得,试求实数的取值范围. 例3. 已知函数x a b bx ax x f )()(2 3 -++=(a ,b 是不同时为0的常数),其导函数为。 (1) 当时,若存在,使得>0成立,求的取值范围; (2) 求证:函数在(-1,0)内至少存在一个零点: (3) 若函数为奇函数,且在=1处的切线垂直于,关于的方程在上有且只有一个实数根, 求实数t 的取值范围。 三、能力提升 1.若曲线的一条切线的斜率为,则切点的横坐标为 . 2.曲线在点处的切线与坐标轴所围成的三角形的面积为 . 3.若曲线的切线与直线平行,则该切线的方程为 . 4.如图,等腰梯形的三边分别与函数2 12([2,2])2 y x x =-+∈-的图像切于点,求梯形面积的最小值. A B C D x y

相关文档
最新文档