关于利用微生物用于木质纤维素生物质转化为燃料乙醇的研究进展综述

关于利用微生物用于木质纤维素生物质转化为燃料乙醇的研究进展综述
关于利用微生物用于木质纤维素生物质转化为燃料乙醇的研究进展综述

关于利用微生物用于木质纤维素生物质转化为燃料乙

醇的研究进展综述

摘要:木质纤维素生物质是一种廉价、易得的可持续发展的潜在新能源材料,随着能

源危机的加剧,由木质纤维素生物质转化为燃料乙醇成为开发新能源的一个新突破口。国

内外近年来在这个领域都有很多研究成果。本文就微生物在木质纤维素生物质转化为燃料

乙醇的预处理、水解中的应用作出综述,分析了现在木质纤维素生物质转化为燃料乙醇要

想实现产业化所遇到的问题,并提出几条对策。

关键词:木质纤维素、燃料乙醇、发酵、纤维素酶、研究进展

随着现代工业与经济的发展,能源需求日益增加。特别是石油能源,由于人类社会的不断开采,石油资源目前面临着枯竭的危险。据2010年11月8号《环境科学与技术杂志》发表的研发报告显示,以当前的使用速度,化石燃料原料将在2050年前枯竭,而石油开采量下降10%~15%足以令发达工业国家的经济完全瘫痪1。这就意味着,要想保证人类社会的继续发展,寻求清洁、可持续的新能源已经成为了人类一项必须要完成的任务。因此,越来越多的国家已将生物质能源产业作为国家的一项重大战略推进,纷纷投入巨资进行生物质能源的研发。20世纪70年代石油危机以来,一些国家开始尝试利用生物质资源生产液体燃料2。

继美国和巴西用玉米和甘蔗生产燃料乙醇成功后,欧盟、日本、加拿大、印度等国家和地区也先后加大用粮食制备燃料乙醇的投入,2006年,仅美国由玉米淀粉生产乙醇的产量就达到了50亿加仑3。然而,随着随着世界耕地面积的缩小和人口数量的急剧增多,世界粮食价格也在近年出现大幅攀升。如何寻求价格低廉且来源广泛的替代原料来生产燃料乙醇,成为了发展生物质能转化为乙醇新能源亟待解决的问题。木质纤维素生物质如农林牧业加工废弃物,是可再生、价廉易得和来源丰富的资源和能源。全球每年光合作用的产物高达1500-2000亿吨,其中80%以上为木质纤维素生物质(如秸秆、草类、树木等)4。利用木质纤维素生物质生产乙醇不仅有利于环境保护和资源再利用,而且可减少温室气体的排放和缓解化石能源的危机,因此成为了一条解决新能源问题的新途径,其研究得到了世界各国的大力支持,并且也取得了很多阶段性的进展。本文就木质纤维素类生物质来制备燃料乙醇的研究现状及进展进行了综述(主要以微生物研究方向为主)。

1 纤维素生物质的主要成分

木质纤维素生物质主要由纤维素、半纤维素和木质素组成,其中,用于处理制取燃料乙醇的主要是纤维素和半纤维素。纤维素分子是由葡萄糖分子通过β-1,4糖苷键连接而成的链状高分子聚合物,是地球上最丰富的生物聚合物,其水解产物是葡萄糖。半纤维素是无定型的生物高聚物,是由包括六碳糖(葡萄糖、半乳糖、甘露糖)和五碳糖(木糖、阿拉伯糖)等不同糖基组成的,在温和条件下很容易水解成单糖5。在植物体内,木质素与半纤维素经共价键结合,将纤维素分子包埋其中,使多糖成分不易被降解6。由于其葡萄糖单体之间特殊的糖苷键,纤维素结构稳定,不易分解,常用于构成植物体稳定的骨架结构。

2 从纤维素生物质来制备燃料乙醇的工艺

目前,从木质纤维素生物质制备燃料乙醇的基本工艺可以分为预处理、水解、发酵和纯化4个部分7。预处理主要是为了破坏木质纤维素结构,释放出纤维素和半纤维素,主要方法包括物理预处理法、化学预处理法、物理-化学预处理法和生物预处理法。水解主要是为了将纤维素等多糖水解转化为单糖,主要方法包括酸水解法和生物酶水解法。发酵工艺主要是用微生物将单糖酵解为乙醇。结合水解和发酵过程,此工艺主要可分为分步水解发酵工艺(separate hydrolysis and fermentation,SHF)、同步糖化发酵工艺(simultaneous saccharificationand fermentation,SSF)8和固定化微生物水解发酵法(consolidated bio-processing,CBP)9。纯化过程主要是通过蒸馏、过滤等手段,获得纯度较高的乙醇。在这四个过程中,主要以预处理、水解成本耗费较大。由于在这两步过程中使用微生物发酵相对于物理、化学处理有较大的成本优势,因此有关木质纤维素转化为燃料乙醇的大量研究集中在如何利用微生物和用微生物产生的纤维素酶对木质纤维素进行预处理、分解以及发酵过程中微生物选育的优化上。本文就木质纤维素生物质制备燃料乙醇方法中的预处理、水解所涉及的微生物研究进行总结。

3 微生物在预处理过程中的应用

真菌类的白腐担子菌类和某些放线菌类能产生降解木质素的木质素降解酶,如木质素过氧化物酶、锰过氧化物酶或漆酶10。这些酶类能破坏木质纤维素中复杂的网状结构,使得一般的物理化学方法很难处理的木质素轻松脱离出来并被降解。能降解木质素的担子菌类主要包括: Phanerochaete chrysosporium11,Daldinia concentrica,Daedalea flavida12, Postia plancenta , Panus tigrinus13, Rigidoporus lignosus14。其它白腐菌类包括Pleurotus ostreatus15, Ceriporiopsis subvermispora。放线菌类主要包括Streptomyces viridosporus,S. lividans TK 64.116。

目前,国内外对能有效降解木质素的微生物研究较多的主要是担子菌类的黄孢原毛平革菌。它可以分泌胞外的木质素过氧化物酶和锰过氧化物酶来破坏和降解木质素,再

者,根据真菌可以在固相表面生长的特点,黄孢原毛平革菌已经被成功应用于木质素降解的固相发酵工艺17。用微生物进行生物预处理法具有成本低、条件温和等独特的优势,使得这一方法具有较大的前景。但是这种方法现在还停留在试验阶段,而且这种方法的周期一般较长,过程中糖损耗较大,要实现工业化还有一定距离要走。

4 微生物在纤维素水解过程中的应用

微生物在纤维素水解过程中的应用机制主要是由某些微生物分泌的能够水解纤维

素至葡萄糖的纤维素酶来完成。纤维素酶是一种高效的复合酶,可根据其催化功能不同分为:①内切葡萄糖苷酶(EC3.2.1.4,也称Cx酶),该酶的作用位点为β-1,4糖苷键,能随机切割β-1,4糖苷键,将长链纤维素分子水解为数个短链;②外切葡萄糖苷酶

(EC3.2.1.91,也称C1酶),主要作用于纤维素分子的还原或非还原端,切割糖苷键,生成纤维二糖;③β-葡萄糖苷酶(EC3.2.1.21,也称纤维二糖酶),其作用为切割纤维二糖为单个葡萄糖分子。这三种酶协同作用,共同将纤维素分子降解成葡萄糖。

目前发现的能产生纤维素酶的微生物主要为细菌和真菌类,细菌类主要可分为三大类:①厌氧型,如热纤梭菌(Clostridium thermocellum)、解纤维梭菌(Clostridium cellulolyticum)等;②好氧型,如纤维弧菌属(Cellvibrio)18;③好氧滑动菌,如噬胞菌属(Cytophaga)19。国内外研究较多的主要集中在细菌中厌氧嗜热型的热纤梭菌( Clostridium thermocellum)20。但由于细菌所产纤维素酶一般存在于细胞质基质或者吸附在细菌细胞壁上,只有很少一部分分泌到培养液中,再加上厌氧菌生长慢,无法工业化生产。因此,此类微生物大多用于实验室。

真菌类产纤维素酶的真菌,目前国内外研究较多的是木霉属(Trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium)。木霉可以产生胞外的纤维素酶,并且易分离提纯,酶活性也较高,可在工业生产上广泛应用。其中应用的较多的主要有里氏木霉(Trichoderma reesei)、绿色木霉(Trichoderma viride)、康氏木霉(Trichoderma koningi)和黑曲霉(Aspergillus niger)21。由于某些担子菌类如黄孢原毛平革菌既可以产生降解木质素的木质素酶,同时可以产生降解纤维素的纤维素酶22,因此也有研究者培育专门用于纤维素预处理和分解的黄孢原毛平革菌菌株,国内外在这方面也有很多研究报道。

5 利用微生物用于木质纤维素生物质转化产业化所遇到的问题

现阶段,大规模工业化将微生物发酵用于木质纤维素生物质转化为燃料乙醇还存在着几个亟待解决的关键性问题。①木质纤维素预处理过程复杂:天然纤维素材料的结构性质非常复杂,纤维素不仅被半纤维素和木质素所包裹,且其本身也存在着高度结晶性和木质化,阻碍了酶与纤维素的接触,使其难以直接被微生物降解23;②酶的催化效率偏

低,成本偏高:目前生产所运用的菌株所产生的纤维素酶活性大多偏低,因此需要较大的酶投入量,无形中增大了催化成本。其纤维素酶的热不稳定性也使得纤维素酶的催化效率偏低、成本过高。

6 利用微生物用于木质纤维素生物质转化产业化的发展对策

通过对纤维素酶的高效菌株进行选育、改造,可产生具有高催化效率的纤维素酶菌株。可主要通过基因重组及定位突变技术对优良菌株进行改造,从而选育出适合工业生产的高效能菌株。目前对纤维素酶基因的研究主要集中在产纤维素酶的高产真菌及耐热细菌上。有报道称,将编码Erwinia chrysanthemi P86021 endoglucanase的基因序列重组到Escherichia coli KO11 质粒中24,可以使表达的纤维素酶产率大大提高。随着生物化学和分子生物学的发展,高效能产纤维素酶微生物的研究将取得一个新的里程碑。

对纤维素酶作用机理进行进一步研究,可以从其分子结构上了解其催化的机理,进而提高其催化效率。由于纤维素酶的空间结构复杂,加之纤维素酶不易分离纯化、结晶难,如果能在分离纯化技术和研究方法上进行进一步突破,就能更好地了解纤维素酶的机理,从而改造纤维素酶,提高转化效率。

总之,利用微生物进行木质纤维素生物质制备燃料乙醇的研究取得了很多重大的进展,但还有很多技术问题需要解决。其中包括成本过高、工艺复杂等诸多问题。但是随着科学技术的发展和进步,这些关键技术一定会在某一天被攻破,顺利实现木质纤维素生物质制备燃料乙醇的工业化生产,并为人类带来一个和谐、稳定发展的社会。

参考文献

1 刘锋祁文纤维素生物质能源的发展之路安徽科技,2011年第4期.

2 高凤芹孙启忠刑启明木质纤维素乙醇的研究进展理论与研究,2009年第4期.

3-5 李祖明李鸿玉厉重先刘雪峥张洪勋纤维素酶转化木质纤维素生物质生产乙醇的研

究进展科学研究.

6 Moiser N,Wyman C,Dale B,et al. Features of promising technologies for pretreatment of

lignocellulosic biomass[J]. Bioresource Technology,2005,96:673 - 686.

7 Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of

Biotechnology,1997,56:1-24.

8 Elia T,Jose M,Mercedes B,et https://www.360docs.net/doc/f015077501.html,parison of SHF and SSF processes from steam-exploded

wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting

Saccharomyces cerevisiae strains[J]. Biotechnol. Bioeng. 2008,100:1122-1131.

9 Lynd L R,Van Z H,Mcbride J E,et al . Consolidated bioprocessing of cellulosic biomass:

an update[J]. Current Opinion in Biotechnology,2005,16:577 - 583.

10 Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of

Biotechnology,1997,56:1-24.

11 Bonnarme P,Dellattre M,Drouet H,et al. Toward a control of lignin and manganese

peroxidases hypersecretion by Phanerochaete chrysosporium in agitated vessels. Evidence of the

superiority of pneumatic bioreactors on mechanically agitated bioreactors[J]. Biotechnol. Bioeng.,1993,41 (4):440-450.

12 Arora D S,Garg K K. Comparative degradation of lignocellulosic residues by different

fungi[J]. Bioresource Technol.,1992,41 (3):279-280.

13 Golovleva L A,Leontievsky A A,Maltseva O V,et al. Ligninolytic enzymes of P. tigrinus:Biosynthesis,purification,properties[J]. VTT Symp.,1991,122:93-109.

14 Galliano H,Gas G,Series J L,et al. Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes Mn peroxidase and laccase[J]. Enzyme Microbial Technol.,1991,13 (6):478-482.

15 Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnology,1997,56:1-24.

16 Korus R A,Lodha S J,Adhi T P,et al. Kinetics of peroxidase production by Streptomyces viridosporus and recombinant Streptomyces lividans[J]. Biotechnol. Prog.,1991,7 (6):510-515.

17 Petr B,Vendula V. Degradation of cellulose by basidiomycetous fungi[J].FEMS Microbiol. Rev.,2008,32:501-521.

18 Edward A B,Henri C,Raphael L,et al. Cellulose,cellulases and cellulosomes[J]. Current Opinion in Structural Biology,1998,8:548-557.

19 Wilson D B.Three microbial strategies for plant cell wall degradation [J]. Ann. N. Y. Acad. Sci.,2008,1125:289-297.

20 Arnold L D,Michael N,Wu J H. Cellulase,clostridia,and ethanol[J]. Microbiology and Molecular Biology Reviews,2005,69(1):124-154.

21 Huitron C,Perez R,Sanchez A E,et al. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes[J]. J. Environ. Biol.,2008,29(1):37-41.

22 Petr B,Vendula V. Degradation of cellulose by basidiomycetous fungi[J]. FEMS Microbiol. Rev.,2008,32:501-521.

23 勇强等玉米秸秆生物转化制取酒精的中间试验资源生物技术与糖工程学术研讨会论文集,2005.

24 Wood B E,Beall D S,Ingram L O. Production of recombinant bacterial endoglucanase as a co-product with ethanol during fermentation using derivatives of Escherichia coli KO11[J]. Biotechnol. Bioeng.,1997,55(3):547-555.

常见食品纤维素含量

常见食品纤维素含量常见食品的纤维素含量

麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。

麦片:8-9%; 燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。 豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆。(无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。 蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜。 菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:香菇、银耳、木耳。此外,紫菜的纤维。20%素含量也较高,达到. 黑芝麻、松子、10%以上的有:。坚果:3-14%以下的有白芝麻、核桃、榛子、胡桃、;10%杏仁

葵瓜子、西瓜子、花生仁。含量最多的是红果干,纤维素含量接近:水果大枣、酸枣、黑枣、其次有桑椹干、50%,樱桃、小枣、石榴、苹果、鸭梨。各种肉类、蛋类、奶制

品、各种油、海鲜、酒精饮料、软饮料都不含纤维素;各种婴幼儿食品的纤维素含量都极低。 蔬菜中的膳食纤维 1、笋干:笋干含有多种维生素和纤维素,具有防癌、抗癌作用。发胖的人吃笋之后,也可促进消化,是肥胖者减肥的佳品 2、辣椒:辣椒中含有丰富的膳食纤维,能清洁消化壁和增强消化功能,并能抑制致癌物质的产生和加速有毒物质的排除,可降低血脂和控制胆固醇。. 3、蕨菜:其所含的膳食纤维能促进胃肠动,具有下气通便、清肠排毒的作用。经常食用

还可降低血压缓解头晕失眠治疗风湿性关炎等作用。其所含的膳食纤维能促进胃肠蠕动具有下气通便清肠排毒的作用经常食用还降低血压缓解头晕失眠治疗风湿性关节

纤维素催化转化制备多元醇和

纤维素催化转化制备多元醇和5-羟甲基糠醛姓名:王静学号:2011207259 班级:工艺二班 开题:煤炭、石油和天然气是支撑人类社会生活生存和发展的重要能源支柱。随着1973年由于石油短缺引发的能源危机以及近期国际石油价格大幅上涨,已经让我们认识到能源并不是取之不尽用之不竭的。同时因化石能源的过度消耗带来的环境污染问题也使得社会发展面临着巨大的压力。在化石能源日益匾乏,环境保护彰显重要的形势下,如何发展新能源己经成为各国政府、专家、学者共同关注的焦点问题。正是在这一形势下,人们开始关注生物质能源。 多元醇包括山梨醇、木糖醇、甘露醇、麦芽糖醇、甘油和乙二醇等CZ一C6的多轻基化合物。传统的多元醇制备原料多源于石油和天然气等资源,但随着石油、天然气等资源的日渐短缺和人们环保意识的增强,且相当一部分可再生的生物质资源可以用来制备多元醇,使得生物质多元醇的研究越来越多地受到人们的关注。在最初阶段,多元醇多用于食品和医药等行业,随着人们对多元醇的逐步重视和工业技术的进步,多元醇现在己广泛应用于制备聚氨醋材料、烷烃、氢气、燃油以及化工中间体等领域上,成为新一代的能源平台。2004年,美国能源部在一份报告中将甘油和山梨醇等多元醇列为在未来生物质开发过程中最为重要的12种“ buildingblock”分子,可见从纤维素出发制备多元醇的意义非常重大。 2006年,Fukuoka等人利用固体酸(Y一A12o3或A一203一5102等)担载金属Pt或者Ru为催化剂,在水相中463K实现了纤维素的催化转化。在Pt/A12O3双功能催化剂上转化纤维素生产30%产率的六碳醇。采用环境友好的固体酸来替代传统的液体酸,同样可以实现糖普键水解以及金属催化剂的加氢,但在产物分离以及催化剂的循环利用上已经取得了很大改善,其采用的不同固体酸的催化反应北京大学刘海超教授等人发展了利用高温水原位产生的酸催化纤维素水解同时结合Ru/C催化剂催化氢化葡萄糖一步法生产碳六多元醇的过程。该反应过程在5l8K下六碳多元醇的产率能达到23.2%,而且高温水原位产生的酸在低温时消失对环境友好,成本低,无污染。Ru/C催化剂在这个反应过程中的催化活性要超过Pt/A1203,因为相比Pt,Ru是更好的C=0双键氢化催化剂。,反应过程分为两部分,首先,纤维素在高温水原位产生的酸催化下水解成葡萄糖,葡萄糖

木质纤维素处理转化为乙醇的研究进展

木质纤维素处理转化为乙醇的研究进展 潘春雷081143020 生科制药班摘要:木质纤维素是廉价易得,来源广泛的生物质,将其转化为生物无污染的,可再生的乙醇燃料具有很好发展前景。本文介绍了对木质纤维素的物理处理,物理化学处理,化学水解处理,生物处理的方法。 关键词:木质纤维素,乙醇,处理方法。 研究背景:目前世界温室效应及能源危机日益上升,人们在不断地寻找一种可再生的污染小的能源。各国将焦点放在乙醇的生产上。乙醇可以从粮食以及木质纤维素的发酵中得到,但由于全球仍然面临粮食危机,所以研究的焦点转到了对纤维素的处理上。纤维素原料是地球上产出量很大的可再生资源,其来源包括树木的枝叶、农作物的秸秆等, 据估计木质纤维素原料占世界生物质量(100 亿~500 亿t)的50 %【1】在整个生态系统的能量循环中有重要地位。在近几年的生态环境调查中表明农作物秸秆大多被焚烧,以获得钾肥,但此做法不仅污染了环境,而且浪费了资源,开发以木质纤维素为原料制备乙醇的工艺是未来工业燃料生产的发展方向。 1、木质纤维素生物质的主要成分 木质纤维素物质的主要组成是纤维素、半纤维素和木质素,纤维素和半纤维素可通过处理得到糖类。纤维素是由葡萄糖分子通过高度脱水缩合连接而成的高分子聚合物,纤维素的水解产物是葡萄糖单体。半维素也是生物高聚物,是由各种不同糖基组成的,主要是六碳糖和五碳糖,在特定条件下可以水解成单糖。木质素是由苯丙烷结构单体组成的天然高分子化合物,在细胞壁中起支撑和把纤维素和半纤维素结合起来的作用,但是木质素不能水解为单糖。 2、木质纤维素的预处理技术 (1) 物理处理方法 常见处理方法是机械破碎法、液相热水处理法等。其优点在于处理方便,装置简单,且处理过程中产生的污染小,但物理法处理要很高的能量, 如电能和热能,所以会增加生产成本。 机械破碎法:通常木质纤维素经碾碎处理后的原料大小通常为10~30 mm, 而经粉碎、研磨之后的原料颗粒大小一般为0.2~2 mm。粉碎处理的方法中, 以研磨中的球磨尤其是振荡球磨的效率高【2】。但是粉碎法耗能大, 粉碎处理耗能占整个过程总耗能的一半以上。而且该方法也不能适合所有的物质处理【3】所以此种物理处理方法不是很常用。 液相热水处理法:水在强的外界压力下能够渗透到木质纤维素的细胞结构中,从而达到水解纤维素和消除半纤维素的目的。原因是水使得离子化合物电离并溶解半纤维素。相对于化学预处理法, 液态热水法具有以下优点:①不使用酸碱类化学物质, 所以不需使用化学药品进行各种复杂 耗时的准备阶段的处理, 对于反应设备无特别严格的抗碱耐酸要求,从而降低了成本,获得更高的经济利益。②在进行液相热水处理法之前, 无需对物料进行降低颗粒大小的粉碎处理,相对于机械破碎法,反应能耗较少③水解产物中中性残余物数量极少, 几乎不产生对发酵有抑制作用的副产品, 对纤维素和半纤维素的下一步化学或生物水解处理不会产生不良的影响【4】。 (2)物理化学法 物理化学法预处理主要包括蒸汽爆裂、氨纤维爆裂、CO2 爆裂等。蒸汽爆裂法是使高温蒸汽与生物质混合,经计算预定好的时间后迅速打开阀门降压,水蒸气提供了一个强有力的热量载体,可使原料快速升温而不至于使生成的糖受到太强的稀释作用。在减压时,喷射出的蒸汽和液化物质由于压力降低而迅速放热,温度降低。该预处理方法可以使高压蒸汽可渗入纤维内部,最终以气体的形态从封闭的细胞膜和细胞壁中爆发出来,使纤维发生一定的物理断裂,于此同时,高温高压加剧了纤维素内部氢键的破坏和顺序构型的变化,得到了可以构成糖的官能团,促进半纤维素和

木质纤维素生物炼制

实验名称:木质纤维素生物炼制 一、摘要 生物炼制是利用农业废弃物、植物基淀粉和木质纤维素材料为原料,生产各种化学品、燃料和生物基材料。根据近来研究开发的不同情况,生物炼制分为木质纤维素炼制、全谷物炼制和绿色炼制。本实验属木质纤维素炼制,这是利用自然界中干燥的原材料如含纤维素的生物质和废弃物作原料进行的生物炼制。生物炼制大幅扩展可再生植物基原材料的应用,使其成为环境可持续发展的化学和能源经济转变的手段。纤维素生物转化燃料乙醇对解决当前世界能源危机、粮食短缺和环境污染等问题具有重要意义,已成为当前研究的热点。 二、实验目的、原理 2.1实验目的 本课程的目的是在生物反应器工程国家重点实验室生物炼制微型工厂公共平台实验室通过进行以类似工厂化的木质纤维素生物炼制流程操作,以玉米秸秆为起始原料经过典型的生物炼制过程生产燃料乙醇。通过对玉米秸秆的预处理和预处理效果评价以及玉米芯残渣的酶解制糖过程,使学生理解生物炼制工程的基本原理在科学研究和工业生产上的应用,掌握生物炼制工程的基本实验流程和技能,学会正确使用生物炼制专用仪器,观察记录实验数据,并对实验结果进行分析讨论。 2.2实验原理 高温稀酸预处理原理:玉米秸秆主要由大分子聚合物纤维素、半纤维素和木质素组成,而且在长期进化过程中演化出了对周围环境、生物酶、病虫害等具有极强生物抵抗性的致密结构。在高温的酸性环境中,可以促使半纤维素快速降解,破坏木质素的结构和纤维素的晶体结构,提高玉米秸秆中纤维素的酶解转化率。 预处理效果评价及玉米芯残渣糖化原理:在纤维素酶的作用下,将预处理后玉米秸秆中的纤维素/玉米芯残渣中的纤维素组分酶解生成葡萄糖。 三、实验材料、方法 3.1原材料与纤维素酶 原料:含有木质纤维素的生物质样品:外地产农作物玉米秸秆,用烘箱烘干后备用,采

食品营养标签管理规范--膳食纤维(简)

食品营养标签管理规范 卫生部印发 2008年5月1日开始实施 推荐性法规:国家鼓励食品企业对其生产的产品标示营养标签。卫生部根据本规范的实施情况和消费者健康需要,确定强制进行营养标示的食品品种、营养成分及实施时间。 营养标签是指向消费者提供食品营养成分信息和特性的说明,包括营养成分表、营养声称和营养成分功能声称。 食品企业在标签上标示食品营养成分、营养声称、营养成分功能声称时,应首先标示能量和蛋白质、脂肪、碳水化合物、钠4种核心营养素及其含量。 膳食纤维的定义 膳食纤维(dietary fiber)膳食纤维是指植物中天然存在的、提取的或合成的碳水化合物的聚合物,其聚合度DP ≥ 3、不能被人体小肠消化吸收、对人体有健康意义的物质。包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分等。 食品中产能营养素的能量折算系数 表 1 食物中产能营养素的能量折算系数 * 1 营养成分的标示

包括能量和核心营养素的标识以及宜标示的营养成分的标示,膳食纤维属于宜标识的营养成分。 膳食纤维包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分。膳食纤维可根据其成分选择检测方法和标示方式。 1)以国标或GB/T 9822测定数据,标示为: 不溶性膳食纤维…克(g); 2)以AOAC 、AOAC 方法测定数据,标示为: 膳食纤维…克(g);也可标示为:膳食纤维、可溶性膳食纤维、不可溶性膳食纤维, 例如:膳食纤维…克(g) 或膳食纤维…克(g) --可溶性膳食纤维…克(g)(自愿) --不溶性膳食纤维…克(g)(自愿) 3)以AOAC其他方法测定的膳食纤维单体成分的数据,可标示出膳食纤维和单体成分如“膳食纤维(以xxx计)…克或g ”, 例如:膳食纤维(以菊粉计)…克(g) “零”数值的表达 当某食品营养成分含量低微,或其摄入量对人体营养健康的影响微不足道时,允许标示“0”的数值。可标示的“0”的界限值如下表: 表5 标示“0”的界限值

白蚁及共生微生物木质纤维素水解酶的种类

白蚁及共生微生物木质纤维素水解酶的种类 3 相 辉 周志华 33 (中国科学院上海植物生理生态研究所 上海 200032) Lignocellulolytic enzymes in termite and its symbiotic microbes .XI ANG Hui ,ZH OU Zhi 2Hua 33 (Shanghai Institute o f Plant Physiology and Ecology Chinese Academy o f Sciences ,Shanghai 200032,China ) Abstract T ermites are im portant decom posers of lignocellulose in tropical ecosystems.They com prise a com plex assemblage of diverse species ,roughly divided into s o 2called lower and higher termites with different phag ous characters.T ermites can produce their own endoglucanases (EG )of G HF9,as well as glucosidase.Protistan symbiotic system of lower termite degrades cellulosic com pounds with high efficiency.Diverse lignocellulolytic enzymes are found in this system including G HF5,7and 45.Other related functional genes may include xylanase and pectinolytic related enzymes.Higher termites don ’t harbor flagellate.Fungus 2growing termites efficiently decom pose lignocellulose through their symbiotic relationship with basidiomycete fungi of the genus T ermitomyces.The symbiotic fungi produce cellulose ,xylanase and putative pectinolytic enzymes.They als o produce laccase which might be related to lignin degradation.H owever ,on m olecular level ,studies on lignocellulolytic emzymes of symbiotic fungi are relatively few.Many lignocellulolytic bacteria strains were is olated from termite guts ,divers cellulose genes were als o found recently.Lignocellulolytic enzymes in termite and its symbiotic systems may have potentials for the idea of cellulosic ethanol production by biological process. K ey w ords termite ,symbiotic flagellate ,fungi ,bacteria ,lignocellulolytic enzymes 摘 要 白蚁是热带生态系统重要的木质纤维素降解者。白蚁种类丰富,可分成高等白蚁和低等白蚁,食性也具有各自特点。白蚁自身可以产生纤维素酶,主要是G HF9的内切葡聚糖酶(EG ),也有β-葡萄糖苷酶(G B )。低等白蚁共生的原虫中已发现丰富的纤维素酶基因,属于G HF5,7和45。同时还有其他相关功能基因,如木聚糖酶和果胶类物质水解酶。高等白蚁肠道中没有共生原虫。高等培菌白蚁可以利用共生蚁巢伞属真菌促进木质纤维素降解,真菌可以产生纤维素酶,果胶质水解酶类、木聚糖酶,同时还产生可能与木质素分解相关的一种漆酶,但是从分子水平,关于共生真菌纤维素水解酶的研究还较少。白蚁肠道已分离出许多具有木质纤维素降解能力的菌株,最近的研究也发现了大量细菌纤维素酶基因。白蚁-共生系统丰富的木质纤维素水解酶类为发展生物方法开发纤维素乙醇这一思路提供有价值的资源。 关键词 白蚁,原生动物,真菌,细菌,纤维素水解酶 3中国科学院知识创新工程重要方向项目(K SCX22Y W 2G 2 022);中科院上海生命科学院优秀青年人才领域前沿项目(2007KIP501)。 33通讯作者,E 2mail :zhouzhihua @https://www.360docs.net/doc/f015077501.html, 收稿日期:2007212229,修回日期:2008203213 地球上的生物质资源主要来自光合生物,其中90%以上为木质纤维素类物质,它们代表了生态系统中营养金子塔的最庞大的基层 [1] 。 天然的木质纤维素材料含有纤维素、半纤维素和木质素等。其中纤维素是地球上最丰富的多糖物质,这类物质是植物细胞壁的主要成分,也是地球上最廉价的可再生资源。纤维素是葡萄 糖分子通过β-葡萄糖苷键连接而成的大分子多糖类物质。天然的纤维素是由多条纤维素分 子链所组成的聚合物,有着复杂的超分子结构。 半纤维素是一种碱溶性的多糖,包括木聚糖、木葡聚糖和愈创葡聚糖,其中木聚糖是最丰富、分布最广的一类。木质素是一种复杂的不溶性酚

食用纤维素

食用纤维素(网摘) 纤维素虽然不能被人体吸收,但具有良好的清理肠道的作用,因此成为营养学家推荐的六大营养素之一,具有很好的肠道质素作用。各种食物的纤维素含量--麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。麦片:8-9%;燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:发菜、香菇、银耳、木耳。此外,紫菜的纤维素含量也较高,达到20% 坚果:3-14%。10%以上的有:黑芝麻、松子、杏仁;10%以下的有白芝麻、核桃、榛子、胡桃、葵瓜子、西瓜子、花生仁水果:含量最多的是红果干,纤维素含量接近50%,其次有桑椹干、樱桃、酸枣、黑枣、大枣、小枣、石榴、苹果、鸭梨。富含纤维素的食品之于冠心病,能降低胆固醇。胆固醇是造成动脉粥样硬化的原因之一,是由于血浆胆固醇的增加,使较多的胆固醇沉积在血管内壁。其结果不仅降低了血管的韧性和弹性,而且使血

管内壁加厚,管径变细,影响血液流通,增加了心脏的负担。而食品中的粗纤维能与胆固醇相互结合,防止血浆胆固醇的升高,从而有利于防止冠心病的发生和进一步恶化。另外,食品中的粗纤维还能和胆酸结合,使部分胆酸随着粗纤维排出,而胆酸又是胆固醇的代谢产物。为了补充被排出的部分胆酸,就需要有更多的胆固醇进行代谢。胆固醇代谢的增加则减少了动脉粥样硬化发生的可能性。那么,哪些食物含纤维素多呢?①海带、紫菜、木耳、蘑菇等菌藻类;②黄豆、赤小豆、绿豆、蚕豆、豌豆等豆类;③水果、蔬菜类。一言概之,冠心病患者宜多食富含纤维素的食物。一些粗粮,诸如玉米,小米、紫米、高粱、燕麦这样的食物。纤维素不能背吸收,可以充盈你的肠道,促进排泄。排泄顺畅了,身体就自然不会聚集什么毒素了。而且这类食物不被肠道吸收,就会使你有饱涨感吃不下别的

木质纤维素预处理方法的研究进展

木质纤维素预处理方法的研究进展 摘要:概述了几种比较实用的木质纤维素预处理技术,总结了各种预处理技术的方法?原理以及优缺点,进而对木质纤维素预处理方法的发展前景进行了展望? 关键词:木质纤维素;预处理方法;研究进展 Research Advances of Pretreatment Technology of Lignocellulose Abstract: Some practical pretreatment technologies of lignocellulose were briefly introduced, including the main methods, principles, advantages and disadventages. And the development prospect of pretreatment technology of lignocellulose was put forward. Key words: lignocellulose; pretreatment method; research progress 随着世界经济的不断发展和石油资源的日益消耗,开发更加长久有效的能源是各国面临的一个巨大难题?作为一种可再生能源,生物质能源是中国能源可持续发展的必然战略选择之一?利用木质纤维素生产生物乙醇?丁醇等生物质燃料是生物质能源开发的重要内容?我国天然纤维素原料非常丰富(包括农作物秸秆?林业副产品?城市垃圾和工业废弃物等),利用生物技术分解和转化木质纤维素既是资源利用的有效途径,对于解决环境污染?食品短缺和能源危机又具有重大的现实意义? 1 木质纤维素的结构 木质纤维素是指以纤维素?半纤维素和木质素为主要成分的原料,3种成分在植物原料中的含量分别为35%~50%?15%~25%和15%~30%?纤维素是聚合度在 1 000~10 000的葡萄糖的线性直链聚合物,由结晶相和非结晶相交错形成,结晶相结构致密,阻碍纤维素的分解?半纤维素结构较纤维素简单,主要是由木糖?阿拉伯糖等戊糖及少量的葡萄糖?甘露糖和半乳糖等己糖形成的直链或支链聚合物,在适宜的温度下易于溶解在稀酸溶液中并降解成单糖?木质素是一种由苯丙烷结构单体组成的具有复杂三维结构的芳香族高聚物,在植物结构中发挥胶粘作用,将纤维素和半纤维素紧密结合在一起,增大茎秆的机械强度,起到木质化作用,阻碍微生物对植物细胞的攻击,同时减小了细胞壁的透水性?纤维素和半纤维素作为可酵解糖类,占原料总重的65%~75%[1]? 2 预处理的目的 木质纤维素的转化利用可分为原料预处理?酶水解和糖发酵3个阶段,主要的技

膳食纤维的作用与常见食物含量

膳食纤维的作用与常见食物含量 山野国际霍永明高级营养师膳食纤维的定义: 膳食纤维是一种重要的非营养素,它是碳水化合物中的一类非淀粉多糖及寡糖等不消化部分。越来越多的研究表明,膳食纤维的摄入与人体健康密切相关。过量摄入膳食纤维会影响维生素、铁、锌、钙、等的消化吸收,但是摄入足会增加便秘、肥胖、糖尿病、心血管疾病和某些癌症发生的危险。所以与食物中的其他营养素一样,为了保持健康,膳食纤维的摄入量也应在适宜的范围之内。 膳食纤维的定义有两种,一是从生理学角度将膳食纤维定义为哺乳动物消化系统内未被消化的植物细胞的残存物,包括纤维素、半纤维素、果胶、树胶、抗性淀粉和木质素等;二是从化学角度将膳食纤维定义为植物的非淀粉多糖加木质素。 膳食纤维的分类: 膳食纤维可分为可溶性膳食纤维与非可溶性膳食纤维。可溶性膳食纤维包括部分半纤维素、果胶、树胶等;非可溶性膳食纤维包括纤维素、木质素等。 膳食纤维的主要特性: 1,吸水作用 膳食纤维具有很强的吸水能力或与水结合能力。此作用可使肠道中粪便的体积增大,加快其转运速度、减少其中有害物质接触肠壁的时间。 2,黏滞作用 一些膳食纤维具有很强的黏滞性,能形成黏液性溶液,包括果胶、树胶、海藻多糖等。 3,结合有机化合物作用 膳食纤维具有结合胆酸和胆固醇的作用。 4,阳离子交换作用 膳食纤维的与阳离子交换作用与糖醛酸的羧基有关,可在胃肠内结合无机盐,如钾、钠、铁等阳离子形成膳食纤维复合物,影响其吸收。 5,细菌发酵作用 膳食纤维在肠道内易被细菌酵解,其中可溶性膳食纤维可完全被细菌所酵解,而非溶性膳食纤维则不易被酵解。酵解后产生的短链脂肪酸如乙酯酸、丙脂酸和丁酯酸均可作为肠道细胞和细菌的能量来源。 膳食纤维的生理功能: 1,有利于食物的消化过程 膳食纤维能增加食物在口腔咀嚼时间,可促进肠道消化酶分泌,同时加速肠道内容物的排泄,这些都有利于食物的消化吸收。 2,降低血清胆固醇 膳食纤维可结合胆酸,故有降血脂作用,此作用以可溶性纤维(如果胶、树胶、豆胶)的降脂作用较明显,而非溶性纤维无此作用。

纤维素生物能源转化利用现状的分析研究

纤维素生物能源转化利用现状的分析研究 孟玥(中国药科大学,江苏,南京,邮编:211198) 摘要:本文综述了现阶段纤维素生物能源转化利用的现状,阐明了纤维素生物能源利用过程中存在的基本问题。对纤维素转化为乙醇燃料过程中的预处理技术、纤维素酶技术、发酵乙醇和转化过程集成等环节的研发现状、存在问题、技术难点和研究方向等做了比较详细的论述。 关键词:纤维素;纤维素酶;生物能源 Analysis of the conversion and utilization of cellulose bio-energy MENG Yue (China Pharmaceutical University,Jiang su Nanjing Zip:211198) Abstract:This paper reviewed the current situation in conversion and utilization of cellulosic biomass energy,explained the basic problems in the process of bio-synthesizing cellulose bio-energy.It also discussed in details about the current situation of research,the obstacles,the technical problems and the research direction in the process of pretreatment,cellulose enzyme technology,fermentation of ethanol and inte -gration of the fermentation reactions.Key words:cellulose;cellulose;bio-energy 国土与自然资源研究 ·78· TERRITORY &NATURAL RESOURCES STUDY 2010No.4 文章编号:1003-7853(2010)04-0078-03 中图分类号:TK6 文献标识码:B 进入21世纪以来,人类在能源、资源与环境等诸方面都面临着非常严峻的问题。纤维素是将可再生碳水化合物蓄积得最丰富的一种物质,怎样把纤维素转变成高效的能源,成为新能源研究中的一个重要方向。有关纤维素生物转化的研究已有百年历史,但至今纤维素乙醇产业仍没有形成 [1][2] 。 纤维素乙醇生产的工艺过程是首先采用有效的预处理技术打破由纤维素,半纤维素和木质纤维素等高分子相互结合形成的天然屏障,然后利用纤维素酶将预处理后的木质纤维素降解成可发酵性的单糖,再通过微生物将可发酵性单糖转化成乙醇等液体燃料[3]。 1预处理技术 预处理技术是松弛、软化纤维结构使之变成酶可以处理的状态的“事先准备”技术。其作用是改变或去除其物化结构和组成的障碍,实现原料组分分离定向转化,更有利于微生物或者酶对原料中纤维素和半纤维素进行充分的降解和低分子化。 1.1预处理方法 对木质纤维素的预处理方法主要包括物理法、化学法、物理化学法和生物法。常用的物理方法包括机械粉碎、蒸汽爆碎、微波辐射和超声波预处理等;物理化学法包括蒸汽爆破和氨纤维爆破法;化学法一般采用酸、碱、次氯酸钠、臭氧等试剂进行预处理,其中以NaOH 和稀酸预处理研究较多;生物法是用白腐菌产生的木质素分解酶类和氢键酶。 1.1.1碱处理 具有标志性意义的研究成果发表于2002年,丹麦Rise 国家实验室研究人员利用碱湿氧化法(水、碳酸钠、氧气、高温高压)处理小麦秸秆取得了良好的效果,纤维素回收率达96%,酶解转化率为葡萄糖的产率为67%。这一成果的后续研究包括预处理过程作中对催化生成乙醇的微生物抑制,以及对半纤维素的继续处理方法。 1.1.2稀酸预处理 稀酸预处理纤维原料的研究很早就已经展开,后续研究的方向之一是对预处理产物的酶解研究。已证实了利用纤维二糖 酶可以有效提高稀酸预处理的参数,并进一步发展了稀酸预处理后的酶解模型。 酶解模型的进一步研究有两条主线:一是进一步发展成软木的同步糖化发酵模型,并由此用于研究纤维素水解过程中的乙醇和纤维二糖酶的抑制作用。另一条主线是,稀酸预处理改进为 SO2蒸汽两步处理,两段式处理工艺可以使半纤维素和纤维素分 别在不同条件下得到水解,其效果比直接处理效益好。 1.1.3蒸汽爆破技术 蒸汽爆破技术将汽爆与溶剂(乙醇、离子液体、甘油等)萃取组合,实现原料化学水平组分分离,形成了秸秆中半纤维素定向转化为低聚木糖(或木糖醇)、纤维素定向酶解发酵、木质素分离纯化的秸秆高值转化路线。 将汽爆与湿法超细粉碎组合,实现原料纤维组织和非纤维组织的分离,形成了纤维组织定向酶解发酵、非纤维组织定向热化学转化乙酰丙酸等的高值转化。 1.1.4离子液体的特殊溶剂 离子液体是100℃以下的较低温度也能维持液体状态的盐。离子液体的分子结构非常复杂,一般分子量都很大,多是具有碳氢化合物侧链的有机物。2002年美国阿拉巴马大学的Robin D. Roger 教授首次报告了在100°C 左右能够溶解纤维素的离子液 体的研究。后来又有在常温下溶解纤维素的研究成果,还知道了将酶溶解在离子液体中能够使酶发挥活性的事实。还发现将纤维素和纤维素酶同时溶解,能够实现常温下纤维素的酶糖化。 溶解纤维素的离子液虽然具有在常温下溶解纤维素的优良特性,但所有的都是亲水性的,这就是难点所在,关键在于要向溶解了糖的离子液体加水。离子液体如果是疏水性的,就会像水和油那样物理分离。如果糖的水溶解度大于其离子液体溶解性,那么糖就会从离子液体向水相转移。这样一来,就能顺利地将糖从离子液体分离出来。 对疏水性离子液的开发,将是未来攻克的主要技术。这不仅可以提高纤维素糖化效率,从离子液体的重复利用的观点看也是非常重要。纤维素变成糖后,将糖从离子液体分离后,离子液体可以再次作为纤维素的溶剂使用。直接关系到降低成本的问题。 [4]

生物质中纤维素、半纤维素和木质素含量的测定

生物质中纤维素、半纤维素和木质素含量的测定 一实验目的 1.掌握生物质中主要化学成分含量的经典分析方法和原理。 2.了解纤维素、半纤维素以及木质素这三种主要化学成分在生物质热裂解中的作用。 二实验原理 植物的主要化学成分是纤维素、半纤维素和木质素这三部分。它们是构成植物细胞壁的主要组分。其中,纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素是填充在纤维和微细纤维之间的“粘合剂”和“填充剂”。 1.纤维素 生物质粉末在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。淀粉、多缩戊糖和其它物质受到了水解。用水洗涤除去杂质以后,纤维素在硫酸存在下被重铬酸钾氧化成二氧化碳和水。 C6H10O5 + 4K2Cr2O7 + 16H2SO4 = 6CO2 + 4Cr2(SO4)3 + 4K2SO4 + 21H2O 过剩的重铬酸钾用硫酸亚铁铵溶液滴定,再用硫酸亚铁铵滴定同量的但是未与纤维素反应的重铬酸钾,根据差值可以求得纤维素的含量。 K2Cr2O7 + 6FeSO4+ 7H2SO4 = 3 Fe2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O 2.半纤维素 用沸腾的80%硝酸钙溶液使淀粉溶解,同时将干扰测定半纤维素的溶于水的其它碳水化合物除掉。将沉淀用蒸馏水冲洗以后,用较高浓度的盐酸,大大缩短半纤维素的水解时间,水解得到的糖溶液,稀释到一定体积,用氢氧化钠溶液中和,其中的总糖量用铜碘法测定。 铜碘法原理:半纤维素水解后生成的糖在碱性环境和加热的情况下将二价铜还原成一价铜,一价铜以Cu2O的形式沉淀出来。用碘量法测定Cu2O的量,从而计算出半纤维素的含量。 测定还原性糖的铜碱试剂中含有KIO3和KI,它们在酸性条件下会发生反应,也不会干扰糖和铜离子的反应。加入酸以后,会发生反应释放出碘: KIO3 + 5KI +3H2SO4 = 3I2 + 3K2SO4 +3H2O 加入草酸以后,碘与氧化亚铜发生反应: Cu2O + I2 + H2C2O4 = CuC2O4 + CuI2 + H2O 过剩的碘用Na2S2O3溶液滴定:2Na2S2O3 + I2 = Na2S4O6 + 2NaI 3.木质素 先用1%的醋酸处理以分离出糖、有机酸和其它可溶性化合物。然后用丙酮处理,分离叶绿素、拟脂、脂肪和其它脂溶性化合物。将沉淀用蒸馏水洗涤以后,在硫酸存在下,用重铬酸钾氧化水解产物中的木质素: C11H12O4 + 8K2Cr2O7 + 32H2SO4 = 11CO2 + 8K2SO4 + 8Cr2(SO4)3 + 32H2O 过量的重铬酸钾用硫酸亚铁铵溶液滴定。方法和测定纤维素相同。 三实验所需试剂和仪器 1. 实验试剂 硫酸亚铁铵分析纯,重铬酸钾分析纯,硫代硫酸钠分析纯, 硝酸钙分析纯,硫酸铜分析纯,碘化钾分析纯, 可溶性淀粉分析纯,氯化钡分析纯,邻菲啰啉分析纯,

微生物在木质纤维素降解中的应用进展

草学 微生物在木质纤维素降解中的应用进展CAO XUE 微生物在木质纤维素降解中的应用进展 熊乙匕杨富裕2,倪奎奎J许庆方“ (1.山西农业大学动物科技学院,山西太谷030801; 2.中国农业大学草业科学与技术学院,北京100193) 摘要:木质纤维素广泛存在于植物细胞壁中,是造纸、制糖工业、农田降解和畜牧业中常见的大分子物质,有着广泛的研究关注度。微生物降解法在不同行业木质纤维素降解中发挥着重要的作用,它安全、高效、绿色的方式是环保节能性产业发展的理想模式。本文对国内外木质纤维素结构和微生物降解相关文献进行分析和评述,由这些研究进展报告可以发现:(1)木质素和纤维素由变构后的木聚糖作为中介连接形成复合体— —木质纤维素;(2)细菌在降解过程中不同于真菌,能产生多种多样的酶;(3)工业催化剂和基因编辑技术应用于木质纤维素降解中,前者利用金属氧化物等作为催化剂大大提高了降解效率,后者通过沉默或者敲除特定基因,改变木质纤维素合成途径。催化剂是降解木质纤维素效率较高的方法,通过改进反应压强和温度等工艺,未来可能实现温和条件降解木质纤维素。基因编辑技术则从根本上改变了木质纤维素原料的组成,使得其利用发生质的变化。但是微生物降解仍然是最适于农业木质纤维素降解的方法,未来应该会有更多关于耐热性酶制剂的研究。 关键词:木质素;纤维素;真菌;细菌;生物降解 中图分类号:Q946文献标识码:A文章编号:2096-3971(2019)05-0001-07 DOI:10.3969/j.issn.2096-3971.2019.05.001 1木质纤维素概述 木质纤维素由纤维素、半纤维素和木质素组成, 是维持植株形态,保护植物组织的重要物质,广泛 存在于植物界各种植物细胞壁中。自然界中绿色植 物通过同化作用将无机碳转化为糖类储藏于组织中, 这些葡萄糖经过不同的聚合反应进一步合成为半纤 收稿日期:2019-07-19 基金项目:"十三五”国家重点研发计划— —千草低损耗高品质 规模化生产及产品加工技术研究与示范 (2017YFD0502103-02)资助。 作者简介:熊乙(1993-),男,在读博士,研究方向为饲草 生产加工与利用。 *通讯作者:许庆方(1972-), 为饲草生产与利用。男,教授,博士,研究方向 维素、纤维素等复杂的化合物,木质素则由含苯环 的氨基酸通过转氨基作用进行转化合成⑴。它们再 通过酯键、醯键等化学键连接形成高聚合大分子, 纤维素长链扭曲成外部疏水的微纤丝,木质素通过 静电作用与变构后的木聚糖结合,木聚糖桥接纤维 素微纤丝的疏水区域,三者形成复杂的木质纤维素 复合体⑴(见图1)。 半纤维素常由木糖、阿拉伯糖等单糖聚合构成, 半纤维素具有一定的亲水性,使得植物细胞具有纤 维弹性,比纤维素容易降解;纤维素是较难降解的 大分子聚合物,是生物界中分布最广、含量最高的 生物质,其含量占植物界碳含量的50%以上⑷;木 质素主要通过化学键连接半纤维素组成植物细胞壁, 具有运输水分和保护等功能,其含量占生物质的 10%-30%t3'51o IIED

常见食品纤维素含量

常见食品的纤维素含量 麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。 麦片:8-9%; 燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。 豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆。 (无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。 蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜。 菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:香菇、银耳、木耳。此外,紫菜的纤维素含量也较高,达到20%。 坚果:3-14%。10%以上的有:黑芝麻、松子、杏仁;10%以下的有白芝麻、核桃、榛子、胡桃、葵瓜子、西瓜子、花生仁。 水果:含量最多的是红果干,纤维素含量接近50%,其次有桑椹干、樱桃、酸枣、黑枣、大枣、小枣、石榴、苹果、鸭梨。 各种肉类、蛋类、奶制品、各种油、海鲜、酒精饮料、软饮料都不含纤维素;各种婴幼儿食品的纤维素含量都极低。 蔬菜中的膳食纤维 1、笋干:笋干含有多种维生素和纤维素,具有防癌、抗癌作用。发胖的人吃笋之后,也可促进消化,是肥胖者减肥的佳品

2、辣椒:辣椒中含有丰富的膳食纤维,能清洁消化壁和增强消化功能,并能抑制致癌物质的产生和加速有毒物质的排除,可降低血脂和控制胆固醇。 3、蕨菜:其所含的膳食纤维能促进胃肠蠕动,具有下气通便、清肠排毒的作用。经常食用还可降低血压、缓解头晕失眠,治疗风湿性关节炎等作用。其所含的膳食纤维能促进胃肠蠕动,具有下气通便、清肠排毒的作用。经常食用还可降低血压、缓解头晕失眠,治疗风湿性关节炎等作用。 蕨菜 4、菜花:菜花的能量很低,膳食纤维很高,对抵抗许多癌症都有帮助。 5、菠菜:菠菜中含有的大量维生素和膳食纤维,能促进人体新陈代谢,延缓衰老,排除体内毒素。菠菜中的膳食纤维能起到很好的通便作用。 常见的高纤维食品 绿豆 绿豆营养丰富,其籽粒中含有蛋白质22%~26%,是小麦面粉的倍,小米的倍,玉米面的倍,大米的倍,甘薯面的倍。其中球蛋白%,清蛋白%,谷蛋白%,醇溶蛋白%。在绿豆蛋白质中,人体所必需的8种氨基酸的含量%~%,是禾谷类的2~5倍。绿豆籽粒中含淀粉50%左右,仅次于禾谷类,其中直链淀粉29%、支链淀粉71%。绿豆中纤维含量较高,一般在3%~4%,而禾谷类只有1%~2%,水产和畜禽类则不含纤维素。 燕麦 燕麦的营养价值较高,籽粒蛋白质含量高于其它谷类作物,栽培燕麦品种的蛋白质含量一般为13%~22%。蛋白质的氨基酸含量均衡,组成比较全面,不随蛋白质含量而发生明显

木质纤维素预处理技术_易锦琼

农产品加工·学刊 2010年第6期 随着能源、环境、粮食三大危机的出现,发达国家和发展中国家越来越认识到寻求清洁、可再生能源的迫切性[1]。从20世纪70年代石油危机爆发以来,一些国家开始尝试利用生物质原料生产燃料乙醇。越来越多的国家将生物质能源产业作为国家的重大战略推进,纷纷投入巨资进行生物质能源的研发。以玉米、麦、甘蔗等农作物为原料生产燃料乙醇,在许多国家(如巴西、美国、中国)已实现产业化和商业化。但在世界范围内,粮食供应仍是一个大问题,以粮食为原料生产燃料乙醇必将受到限制。而以木质纤维素生产燃料乙醇具有可再生性、无污染性等特点,得到了广泛的研究与应用[2-6]。 木质纤维素是地球上最丰富、最廉价,且符合可持续发展要求的可再生资源[7-8]。每年仅陆生植物就产生纤维素约500×108t ;纤维素资源还是最主要的生物质资源,它占地球生物总量的60%~80%。我国是一个农业大国,玉米秸秆、小麦秸秆和稻草是我国农业生产中农作物的3大秸秆,每年仅农作物秸秆就有7×108多t ,林业副产品、城市垃圾和工业废物数量也很可观。以纤维素为原料生产乙醇有巨大发展潜力和工业应用前景。 木质纤维原料主要由纤维素、半纤维素和木质素 组成,其结构稳定复杂[9-10]。纤维素不仅被半纤维素和木质素所包裹,且其本身也存在着高度结晶性使酶制剂很难与纤维素接触[11]。天然纤维素材料直接进行 酶促水解,酶解率一般都非常低( <20%)[12],进而影响总糖产率,增加了经济成本。因此必须借助化学和物理的方法进行预处理,破坏纤维素—木质素—半纤维素之间的连接,降低纤维素的结晶度,脱去木质素,增加原料的疏松性,以增加纤维素酶系与纤维素的接触面积,从而提高酶效率。1 预处理方法 预处理必须满足以下要求[13]:促进糖的形成,或提高后续酶水解形成糖的能力;避免糖降解或损失;避免形成副产物阻碍后续水解和发酵过程;节约成本。目前,木质纤维素原料预处理的方法主要有:物理法、化学法、物理化学法和生物法等。1.1物理方法 常用的物理方法有:机械粉碎、微波处理、高温分解和高能辐射等。1.1.1机械粉碎 机械粉碎包括:干法粉碎、湿法粉碎、球磨和锤磨等。木质纤维素原料在机械外力作用下颗粒变小, 收稿日期:2010-03-01基金项目:973计划项目(2009CB226108)。作者简介:易锦琼(1986-),女,湖南人,在读硕士,研究方向:生物质能源。E-mail :yijinqiong@https://www.360docs.net/doc/f015077501.html, 。 木质纤维素预处理技术 易锦琼1,2,熊兴耀1,2 (1.湖南省作物种质创新与资源利用重点实验室,湖南长沙410128;2.湖南农业大学园艺园林学院,湖南长沙410128) 摘要:纤维质物料的预处理是木质纤维素原料生产燃料乙醇的关键步骤。介绍了木质纤维素的组成结构及其对纤维 素水解的影响,概述了酸碱处理、湿氧处理、爆破处理、氨爆破处理等方法,对预处理技术的发展前景进行了展望。关键词:纤维素;半纤维素;木质素;预处理中图分类号:TQ223.12+2文献标志码:A doi :10.3969/jissn.1671-9646(X).2010.06.001 Research on the Pretreatment of Lignocellulose Yi Jinqiong 1,2,Xiong Xingyao 1,2(1.Hu'nan Provincial Key Laboratory for Gerplasm Innovation and Utilization of Crop ,Changsha ,Hu'nan 410128,China ;2.College of Horticulture and Landscape Architecture ,Hu'nan Agricultural University ,Changsha ,Hu'nan 410128,China )Abstract :The pretreatment of fibre material was a critical step in the production of fuel ethanol by lignocellulosic materials.The structure and composition of lignocellulose ,and its effects on cellulose hydrolysis were introduced.Various pretreatment techniques of lignocellulose were summed up in this paper.The foreground of the development of pretreatment techniques was also predicted. Key words :cellulose ;hemicellulose ;lignin ;pretreatment 第6期(总第211期)农产品加工·学刊 No.62010年6月 Academic Periodical of Farm Products Processing Jun. 文章编号:1671-9646(2010)06-0004-04

相关文档
最新文档