南烛叶的相关资料总结

南烛叶的相关资料总结
南烛叶的相关资料总结

药材基源:为杜鹃花科植物乌饭树地叶或枝叶.

采收和储藏:月间采收,拣净杂质,晒干.贮藏干燥处.

南烛主要分布在亚洲东北部及东南部,我国主要产地有江苏、安徽、浙江、江西、福建、台湾、湖南、广东、广西、四川、云南等多个省.文档收集自网络,仅用于个人学习

【性味】酸;涩;性平.

【归经】心;脾;肾经.

【功能主治】益肠胃;养肝肾.主脾胃气虚;久泻;少食;肝肾不足;腰膝乏力;须发早白.【化学成份】叶含三十一烷(),无羁萜(酮)(),表无羁萜醇(),槲皮素(),异荭草素(,即),对-羟基桂皮酸(),内消旋肌醇().叶和嫩枝含微量元素钡、溴、硼、铁、锰、铅、锡、镓、钛、镍、铋、钼、矾、锆、铜、银、锌、钻、锶.文档收集自网络,仅用于个人学习一、食用价值:

南烛叶中有丰富地色素成分,在物理条件发生变化之后,色素会强力附着在食材上,同时发生褐变.

在中国浙江、江苏、湖北、湖南、江西、安徽等地,人们仍保留着农历四月吃乌米饭这一古老地习俗.文档收集自网络,仅用于个人学习

二、药用价值:

、黑色素(主要成分为槲皮素)

南烛叶色素含有极为丰富地有效成分,大致有类,如花青昔类、黄酮类、酚性化合物、单宁类、三菇类、各种有机酸和肌醇、维生素等,且着色能力强.因此,利用南烛叶开发天然黑色素对食品、医药和化妆行业将具有重要地意义,能满足当今世界人们对天然色素地需要.文档收集自网络,仅用于个人学习

目前仅文献报道采用超临界萃取方法提取南烛叶色素.

分析结果:南烛叶黑色素不易受自然光、食盐、糖等因素影响,但易受温度变化、酸碱值、值、氧化剂和还原剂地影响而发生变色或褪色.文档收集自网络,仅用于个人学习

、各成分分离

文献报道,采用超临界萃取方法提取南烛叶中各化学成分.根据实验条件地不同,所得产物、得率均不同.

南烛叶冻干粉萃取物甲酯化处理后进行分析,发现南烛叶含有种脂肪酸,分别为(棕榈酸)、(硬脂酸)、(油酸)、(亚油酸)、(α亚麻酸)和(花生酸).根据本试验条件,在压力为时得率最高,可达.α亚麻酸产生地长碳链是生物膜,它是人体视网膜、大脑地重要组成部分.α亚麻酸具有降低血压、血脂,抑制血小板凝集,减少血栓地作用,并具有抗癌效果.人体缺乏α亚麻酸时,可出现脱发、视觉障碍和神经性皮炎等症状.南烛叶中发现了α亚麻酸,且含量较高,具有重大地开发利用价值.文档收集自网络,仅用于个人学习

南烛叶萃取物中地黄酮类化合物主要为槲皮素,其含量亦随萃取压力地增大而增加,最高可达.槲皮素是一种天然地黄酮类化合物,具有广泛地生理活性及维生素地作用;它能降低血管脆性、降低血脂、抗炎、抗过敏、抗病毒、抗氧自由基、抗肿瘤等作用.为此可以从南烛叶中萃取具有高药用价值地槲皮素.文档收集自网络,仅用于个人学习

三、提取方法:

、色素地提取(总黄酮类)

目前可知,色素主要为总黄酮类色素,总黄酮类化合物主要又为槲皮素.

溶解性:槲皮素溶于无水乙醇,沸乙醇,溶于冰醋酸,碱性水溶液呈黄色,几乎不溶于水,乙醇溶液味很苦.文档收集自网络,仅用于个人学习

水提法经济安全,能保留较多地营养成分,但醇提法提取地有效成分如黄酮类化合物含量高,且有利于贮藏,不易变质.水提与醇提有各自地优点,但从色素有效成分地提取效果来看,醇提

法较有优势.可采用:乙醇,温度在℃之间提取,总提取时间不超过小时.文档收集自网络,仅用于个人学习

、脂溶性成分

乌饭树叶中地脂溶性成分包括脂肪酸、甾醇、萜类等,目前主要采用溶剂分离、超临界萃取法分离得到脂溶性成分.采用溶剂分离提取地方法,得到无羁萜( )、表无羁萜醇()、β谷甾醇和熊果酸种化合物.采用超临界萃取法从乌饭树叶冻干粉中萃取出脂肪,得率为. ,共有种:棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸、花生酸,其中有效成分α亚麻酸含量高达. .从分离得到地物质来看,乌饭树叶中有许多对人体有益地成分,可将其提纯制成高附加值产品.文档收集自网络,仅用于个人学习

、微宏量元素

乌饭树叶中地微宏量元素较为丰富,其中钙、钾、锌、铁、锰、铜、锶均比较高,用水、甲醇、乙醇三种提取方法比较提取液中微量元素地提取量和提取率,表明大多数元素地水相提取率高于有机相提取率.、、、地水相提取率高达、地水相提取率低于有机相,可能是由于它们在乌饭树叶中呈不溶于水地络合物状态.因此,水相提取地浓缩黑色素或乌饭树叶加水浸煮米饭可以充分利用其中大部分有益元素,其作为食品营养强化剂效果明显.文档收集自网络,仅用于个人学习

四、药效研究:

、抗疲劳及延缓衰老:乌饭树嫩枝叶地醇提物.

、抗贫血及增强机体免疫力:以乌饭树为主要成分制成地水煎液.

、抗癌防癌:乌饭树果实.

、改善视网膜功能:乌饭树树叶及其提取液.

民间功效:

黑色地有两大好处:

一个就是清香味.具有抗衰老地作用.

二是经过南烛叶浸泡过地食物存放不爱变质.

其中有报道【岁老人吃南烛叶汁做地黑色食物身体如同年轻人】.

目前市场并未有南烛叶黑色素销售,但有南烛叶提取物销售,含量().

制剂:

目前相关制剂仅有复方南烛口服液.

我对傅里叶变换(DFT,FFT)的理解

我本身不是学通信专业的,相近专业+刻苦最终能够让我理解通信理论方面的一些知识,对此我坚信不移.看了一些天的书,总结一下,现代通信中,傅里叶变换是很重要的组成部分.现代的通讯基本都是数字通信,这里面就要对数字信号处理有很多的了解,而在学信号处理之前,是要学习信号与系统的,看了书后才知道这件事情的,所以非专业的人学习的路往往是弯曲前行的,但这个弯曲的过程却会给人对知识的更深刻的了解. 尤其是随着通讯技术的发展,更多的数学被运用到通讯中,这种数学知识的运用使得本来需要用复杂的硬件来实现的功能最终被软件轻松化解,这样带来的好处就是在产品的设计中硬件的比例会变小,成本也就自然会降低.4G时代的通讯协议中大量的运用了通讯数学方面的计算,而FFT在4G通讯中变得越来越重要,如果对FFT不了解或者不理解的话,想从事4G 相关产品的研究与开发会变得很艰难. 在学校傅里叶变换的时候,多种傅里叶变换让我经常把他们弄混,搞得我晕头转向.向一位学通信的同事询问一些知识,后来发现,哥们总是不往点上说,也就是说那些最关键,最容易混淆的东西,他都不愿意说出来.但这并不能阻碍我,因为我是不怕这种情况的,我就是在这种环境下成长起来的,只要我想学的东西,我从来没被难倒过,克服了太多的困难让我对自己很有信心.后来总结了一通才发现,其实那东西只要知道了要领,最终会绕过很多弯路的. 在通讯中,我们的傅里叶变换时间上是一种在时域上的周期离散信号到频域上的周期离散信号之间的变换,这样才是数字通信,如果变换中有连续的模拟量,那也就不是数字通信了.因此,在学习的使用一定要注意到这一点.有了这个方向,你就该知道应该记住什么,应该学习哪种傅里叶变换了. 学了东西几天不看就要忘记,前几天看的,现在又开始变得模糊了,看来学的东西还是要经常复习才是. 前一篇讲我们在数字通讯中用来进行计算的傅里叶变换一般是指时域和频域上都是周期性的离散信号来讲的.这里我们要明确一下周期信号,非周期信号,连续信号,离散信号到底是什么样的信号,明确这一点对理解DFT比较有好处. 首先,我们先知道一个惯例,在通讯中,时域上的变量一般使用小写字母来表示,而频域上的变量一般使用大写字母来表示. 连续信号,应该不用再说明了吧,也就是说时域上的连续信号是指幅度在时域上随时间连续变化的信号,用x(t)的形式来表达,同理频域上的连续信号就是指幅度在频域上随频率连续变化的信号,一般用类似X(jw)之类的形式来表达.而非连续信号不言而喻就是指有间断的信号,不连续的信号,离散的信号,在数字通信中一般指类似脉冲之类的信号.

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

一、傅立叶变换的由来

写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创。在此向多位原创作者致敬!!! 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换?来源:张宗帅.docx的日志 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.360docs.net/doc/f018292613.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

傅里叶变换性质证明

傅里叶变换性质证明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。

由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 ? 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。

(1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 ? 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t)

X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性

傅里叶变换

傅里叶变换 傅里叶变换是一个概括的复杂的傅里叶级数在极限。代替离散与连续而让。然后改变一个求和积分和方程 (1) (2)在这里, (3) (4)被称为远期(傅里叶变换), (5) (6)被称为逆(傅里叶变换)。的符号介绍了Trott(2004,p .第23),然后呢和有时也用来表示傅里叶变换和傅里叶反变换,分别(“将军”1999年,p . 1999)。 注意,一些作者(特别是物理学家)更愿意编写转换角频率而不是振荡频率。然而,这破坏了对称,导致转换 (7) (8) (9) (10)恢复的对称变换,该公约 (11) (12) (13) (14)有时使用(马修斯和沃克1970,p . 102)。 一般来说,傅里叶变换可以定义使用两个任意常数和作为 (15) (16) 傅里叶变换的一个函数是实现了Wolfram语言作为FourierTransform(f,x,k),不同的选择和可以通过使用可选FourierParameters - >一个,b选择。默认情况下,Wolfram语言以FourierParameters为。不幸的是,许多其他约定在广泛使用。例如,在现代物理学中,使用使用在纯数学和系统工程,概率论中 使用的计算特征函数,在经典物理学,用于信号处理。在这工作,后Bracewell(1999年,页6 - 7),它总是假定和,除非另有说明。这种选择往往导致大大简化变换等常见功能1,等。 因为任何函数都可以分成甚至和奇怪的部分和 , (17) (18)傅里叶变换可以表达的傅里叶余弦变换和傅里叶正弦变换作为

(19)一个函数有一个向前和傅里叶反变换,这样吗 (20)前提是 1。的存在。 2。有有限数量的不连续性。 3所示。函数有界变差。一个足够的较弱的条件是满足的李普希兹条件 (拉米1985年,p . 29)。的一个函数(即更平稳。,连续的数量衍生品其傅里叶变换),更紧凑。 傅里叶变换是线性的,因为如果和有傅里叶变换和,然后 (21) (22)因此, (23) (24)傅里叶变换也是对称的意味着 . 让表示卷积,然后犹如函数的变换有特别漂亮的变换, (25) (26) (27) (28)第一个是推导如下: (29) (30) (31) (32)在哪里 . 还有一个有点令人惊讶和极其重要的关系自相关和傅里叶变换被称为Wiener-Khinchin定理。让,表示复共轭的,然后的傅里叶变换绝对的广场的 是由 (33)的傅里叶变换导数的一个函数只是相关变换的函数本身。考虑 (34)现在使用分部积分法 (35)

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

傅里叶变换实验报告

南昌大学实验报告 学生姓名:学号:6100209228 班级:电子093班 实验类型:□验证□综合■设计□创新实验日期:2011-04-8 实验成绩: 傅里叶变换 (一)实验目的 1、掌握对不同的函数进行傅里叶变换的程序编写; 2、熟悉生成联系周期信号的方法; 3、练习matlab编程。 (二) 实验内容 1.请编写函数F=fsana(t,f,,N),计算周期信号f的前N个指数形式的傅立叶级数系数,t表示f对应的抽样时间(均为一个周期);再编写函数f=fssyn(F,t),由傅立叶级数系数F合成抽样时间t对应的函数。设计信号验证这两个是否正确。 定义F=fsana(t,f,N)。 function F=fsana(t,f,N) omg1=2*pi/(max(t)-min(t)); k=[0:N]'; F=1/length(t)*exp(-j*kron(k*omg1,t.'))*f 定义f=fssyn(F,t) function f=fssyn(F,t) omg1=2*pi/(max(t)-min(t)); N=floor(length(F)/2); k=[0:N]; f=exp(j*kron(t,k*omg1))*F; 运行所定义的函数 T1=2*pi; %一个周期时域范围 N1=300; %时域抽样点数

t=linspace(0,T1-T1/N1,N1)'; %生成抽样时间点 f=cos(t); %生成抽样函数值 subplot(2,2,1) plot(t,f); title ('原函数') N=10; F1=fsana(t,f,N); %调用fsana函数求解前N项傅立叶级数系数 subplot(2,2,2) stem(abs(F1),'s'); %绘制离散的幅度曲线 title('前N项傅立叶级数系数幅度曲线'); f2=fssyn(F1,t); %调用fssyn函数求原时域函数 subplot(2,2,3) plot(t,f2,'k'); title('傅立叶逆变换后时域函数'); 运行结果

用Matlab对信号进行傅里叶变换实例

目录 用Matlab 对信号进行傅里叶变换 (2) Matlab 的傅里叶变换实例 (5) Matlab 方波傅立叶变换画出频谱图 (7)

用 Matlab 对信号进行傅里叶变换 1. 离散序列的傅里叶变换 DTFT(Discrete Time Fourier Transform) 代码: %原离散信号有 8 点 %原信号是 1行 8列的矩阵 %构建原始信号,为指数信号 %频域共-800 +800 的长度(本应是无穷, 高 %求 dtft 变换,采用原始定义的方法,对复指 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号 )'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT 变换 ') 结果: 分析:可见,离散序列的 dtft 变换是周期的,这也符合 Nyquist 采样 定理的描述, 连续时间信号经周期采样之后, 所得的离散信号的频谱 是原连续信号频谱的周期延拓。 2. 离散傅里叶变换 1 N=8; 2 n=[0:1:N-1] 3 xn=0.5.^n; 4 5 w=[-800:1:800]*4*pi/800; 频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); 数分 量求和而得

与 1 中 DTFT 不一样的是, DTFT 的求和区间是整个频域,这对 N=8; % 原离散信号有 8 点 n=[0:1:N-1] %原信号是 1行 8列的矩阵 xn=0.5.^n; %构建原始信号,为指数信号 w=[-8:1:8]*4*pi/8; %频域共 -800 +800 的长度(本应是无穷, 高频分量很少, 故省去) X=xn*exp(-j*(n'*w)); %求 dtft 变换,采用原始定义的方法,对复指数分量求和而得 subplot(311) stem(n,xn); w1=[-4:1:4]*4*pi/4; X1=xn*exp(-j*(n'*w1)); title(' 原始信号 (指数信号 )'); subplot(312); stem(w/pi,abs(X)); title(' 原信号的 16 点 DFT 变换 ') subplot(313) stem(w1/pi,abs(X1)); title(' 原信号的 8 点 DFT 变换 ') 计算机的计算来说是不可以实现的, DFT 就是序列的有限傅里叶变换。 实际上, 1 中代码也只是对频域的 -800 +800 中间的 1601 结果图: 分析: DFT 只是 DTFT 的现实版本,因为 DTFT 要求求和区间无穷, 而 DFT 只在有限点内求和。 3. 快速傅里叶变换 FFT ( Fast Fourier Transform ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

离散傅里叶变换应用举例

x=[1,1,1,1];w=[0:1:500]*2*pi/500; [H]=freqz(x,1,w); magH=abs(H);phaH=angle(H); subplot(2,1,1);plot(w/pi,magH);grid;xlabel('');ylabel('|X|'); title('DTFT的幅度') subplot(2,1,2);plot(w/pi,phaH/pi*180);grid; xlabel('以pi为单位的频率');label('度'); title('DTFT的相角')

N=4;w1=2*pi/N;k=0:N-1; X=fft(x,N); magX=abs(X);phaX=angle(X)*180/pi; subplot(2,1,1);plot(w*N/(2*pi),magH,'--');axis([-0.1,4.1,0,5]);hold on; stem(k,magX);ylabel('|X(k)|');title('DFT的幅度:N=4');text(4.3,-1,'k'); hold off; subplot(2,1,2);plot(w*N/(2*pi),phaH*180/pi,'--');axis([-0.1,4.1,-200,200]); hold on; stem(k,phaX);ylabel('度');title('DFT的相角:N=4');text(4.3,-200,'k')

n=(0:1:9);x=cos(0.48*pi*n)+cos(0.52*pi*n); w=[0:1:500]*2*pi/500; X=x*exp(-1i*n'*w); magx=abs(X); x1=fft(x);magx1=abs(x1(1:1:10)); k1=0:1:9;w1=2*pi/10*k1; subplot(3,1,1);stem(n,x);title('signalx(n),0<=n<=9'); axis([0,10,-2.5,2.5]);line([0,10],[0,0]); subplot(3,1,2);plot(w/pi,magx);title('DTFT幅度');xlabel('w');axis([0,1,0,10]); subplot(3,1,3);stem(w1/pi,magx1);title('DFT幅度'); xlabel('频率(单位:pi)');axis([0,1,0,10]) 实验总结:补零运算提供了一个较密的频谱和较好的图示形式,但因为在信号中只是附加了零,而没有增加任何新的信息,因此不能提供高分辨率的频谱。

傅里叶变换公式

第2 章信号分析 本章提要 ?信号分类 ?周期信号分析--傅里叶级数 ?非周期信号分析--傅里叶变换 ?脉冲函数及其性质信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段 §2 -1 信号的分类 ?两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。

质量-弹簧系 统的力学模型x(t) = A cos k t +0 非确定性信号(随机信号:给定条件下取值是不确定的 ?按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 ?信号描述方法 时域描述如简谐信号

简谐信号及其三个要素 频域描述 以信号的频率结构来描述信号的方法: 将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式?周期信号时域表达式 x(t) = x(t +T) = x(t + 2T) = = x(t + nT) (n = 1, 2 ,)

T :周期。注意n 的取值:周期信号“无始无 终” # ? 傅里叶级数的三角函数展开式 x (t ) = a + (a cos n t + b sin n t ) n =1 (n =1, 2, 3 ,…) 傅立叶系数: T a 0 = 1 x (t )dt - 2 T x (t )cos n tdt 2 T 2 x (t ) sin n tdt 2 式中 T--周 期;0--基频, 0=2/T 。 ? 三角函数展开式的另一种形式: 2 a n = b n =2

实验3 傅里叶变换及其性质

实验3 傅里叶变换及其性质 1. 实验目的 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 2. 实验原理及实例分析 傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞==?, 傅里叶反变换定义为:11()[()]()2j t f t F F f e d ωωωωπ ∞--∞==?。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方 法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函 数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1) F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2) F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω, 即()()jvt F v f t e dt ∞ --∞=?。 (3) F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的 函数,即()()jvu F v f t e du ∞ --∞=?。 傅里叶反变换的语句格式也分为三种。 (1) f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默 认返回是关于x 的函数。 (2) f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3) f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。 值得注意的是,函数fourier( )和ifourier( )都是接受由sym 函数所定义的符号 变量或者符号表达式。

实验六傅里叶变换及其反变换

实验六 傅里叶变换及其反变换 6.1实验目的 1.学会运用MATLAB 求连续时间信号的傅里叶变换; 2.学会运用MATLAB 求连续时间信号的傅里叶反变换; 3.学会运用MATLAB 求连续时间信号的频谱图。 6.2实验原理及实例分析 1.连续时间信号傅里叶变换----CTFT 傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。傅里叶变换和其逆变换定义如下: ?∞ ∞--= dt e t x j X t j ωω)()( 6.1 ?∞∞-=ωωπωd e j X t x t j )(21)( 6.2 连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j ωt 的线性组合构成的,每个频率所对应的周期复指数信号e j ωt 称为频率分量(frequency component ),其相对幅度为对应频率的|X(j ω)|之值,其相位为对应频率的X(j ω)的相位。 X(j ω)通常为关于的复函数,可以按照复数的极坐标表示方法表示为: X(j ω)=| X(j ω)|e j ∠ X(j ω) 其中,| X(j ω)|称为x(t)的幅度谱,而∠X(j ω)则称为x(t)的相位谱。 给定一个连续时间非周期信号x(t),它的频谱也是连续且非周期的。对于连续时间周期信号,也可以用傅里变换来表示其频谱,其特点是,连续时间周期信号的傅里叶变换时有冲激序列构成的,是离散的——这是连续时间周期信号的傅里叶变换的基本特征。 2.用MATLAB 实现CTFT 的计算 MATLAB 进行傅里叶变换有两种方法,一种利用符号运算的方法计算,另一种是数值计算。 1) MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )及ifourier( )。常用的是:F=fourier(f) 默认返回值是关于ω的函数。 f=fourier(F,t) 返回值是关于t 的函数 例:利用MATLAB 求单边指数信号f(t) = e -2t u(t)的傅里叶变换,画出f(t)及其幅度谱和相位谱图。 syms t v w x phase im re ; %定义符号变量 f = exp(-2*t)*sym('Heaviside(t)'); %f(t)=exp(-2*t)*u(t) Fw = fourier(f); %求傅里叶变换 subplot(311); ezplot(f); %绘制f(t)的时域波形 axis([-1 2.5 0 1.1]); subplot(312); ezplot(abs(Fw)); %绘制幅度谱 im = imag(Fw); %计算F(w)的虚部

傅里叶变换基础知识

傅里叶变换基础知识 1. 傅里叶级数展开 最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。 1.1 周期信号的傅里叶级数 在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。 1.1.1 狄利克雷(dirichlet )条件 狄利克雷(dirichlet )条件为: (1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值); (2)信号()x t 在一周期内只有有限个极大值和极小值; (3)信号在一个周期内是绝对可积分的,即00 /2 /2()dt T T x t -?应为有限值。 1.1.2 间断点 在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。 (1)第一类间断点(有限型间断点): a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况); b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。 (2)第二类间断点:除第一类间断点的间断点。 1.1.3 傅里叶级数三角函数表达式 傅里叶级数三角函数表达式为 0001()(cos sin )n n n x t a a n t b n t ωω∞ ==++∑ 式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。 0a 、n a 、n b 分别表示为: 000000 /20/20/20/20/2 0/201()2()cos 2()sin T T T n T T n T a x t dt T a x t n tdt T b x t n tdt T ωω---===????????? ??? 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。 合并同频项也可表示为 001 ()cos()n n n x t a A n t ωθ∞ ==++∑ 式中:信号的幅值n A 和初相位n θ分别为 arctan(/) n n n n A b a θ==-

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

傅里叶变换学习心得体会

傅里叶变换学习心得体会 篇一:《随机数字信号处理》学习心得体会 随机数字信号处理是由多种学科知识交叉渗透形成的,在通信、雷达、语音处理、图象处理、声学、地震学、地质勘探、气象学、遥感、生物医学工程、核工程、航天工程等领域中都离不开随机数字信号处理。随着计算机技术的进步,随机数字信号处理技术得到飞速发展。本门课主要研究了随机数字信号处理的两个主要问题:滤波器设计和频谱分析。 在数字信号处理中,滤波技术占有极其重要的地位。数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。但在许多应用场合,常常要处理一些无法预知的信号、噪声或时变信号,如果采用具有固定滤波系数的数字滤波器则无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以使得滤波器的动态特性随着信号和噪声的变化而变化,以达到最优的滤波效果。 自适应滤波器(adaptivefilter)是近几十年来发展起来的关于信号处理方法和技术的滤波器,其设计方法对滤波器的性能影响很大。自适应滤波器是相对固定滤波器而言的,它是一种能够自动调整本身参数的特殊维纳滤波器。自适应滤波算法的研究是自适应信号处理中最为活跃的研究课题之一,其中,两种最基本的线性滤波算法为:最小均方误差(lms)算法和最小二乘(rls)算法,由于lms算法具有初始收敛速度

较慢、执行稳定性差等缺点,本门课着重介绍了rls算法。rls算法的初始收敛速度比lms算法快一个数量级,执行稳定性好。 谱分析是随机数字信号处理另一重要内容,它在频域中研究信号的某些特性如幅值、能量或功率等随频率的分布。对通常的非时限信号做频谱分析,只能通过对其截取所获得的有限长度的样本来做计算,其结果是对其真实谱的近似即谱估计。现代谱估计算法除模型参量法之外,人们还提出了其它一些方法,如capon最大似然谱估计算法、pisarenk谐波分解法、music算法、esprit算法等利用矩阵的特征分解来实现的谱估计方法。在实际的谱估计过程中,无论是从样本数据出发(直接法),或是由样本的自协方差函数出发(间接法),窗函数的引入都是不可避免的,因为数据样本的简单截取本身就意味着通过了矩形窗。窗效应在谱分析或谱估计中的影响表现在降低谱的频率分辨力和产生能量的泄漏。本门课介绍了短时傅里叶变换以及由此引申出的一系列谱分析方法,并经验证得到了很好的效果。 综上所述,为我对本门课的理解和认知。通过本门课的学习,使我对随机数字信号处理的技术和方法有了进一步的了解,加深了对基本理论和概念的领悟程度,课程所涉及到的很多算法和思想对我个人的研究方向有很大的启发,我将继续钻研相关理论和算法,争取尽早与科研实际相结合,实现学有所用。最后,感谢老师孜孜不倦的讲解,为我们引入新的思想,帮助我们更快的成长。 篇二:算法学习心得 班级:物联网1201姓名:刘潇学号:1030612129

相关文档
最新文档