自密实混凝土研究概述

自密实混凝土研究概述
自密实混凝土研究概述

自密实混凝土研究概述

本文由同济大学孙振平教授课题组曾文波整理注:本公众号所发布内容均为课题组原创,转载或修编时请务必注明出处。0 引言自密实混凝土(Self-Compacting Concrete,简称SCC),又称高流态混凝土,免振捣混凝土,自流平混凝土或自填充混凝土等,指混凝土拌合物依靠自重和自身流动性,无需振捣(或稍加振捣)即可填充模板并包裹钢筋,硬化后成为性能对较均匀混凝土硬化体。自密实混凝土是高性能混凝土的一个分支[1]。自密实混凝土的突出特点是拌合物具有良好的工作性能,在密集配筋和复杂模板形状条件下,无需振捣(或稍加振捣)便能均匀密实填充成型,为施工操作带来极大方便。与传统混凝土施工技术相比,自密实混凝土施工具有减少振捣、降低噪音、改善施工环境、加快施工进度、提高劳动生产率及降低工程费用等技术、经济和环保效益,被称为“最近几十年中混凝土技术最具革命性的发展”。自密实混凝土于二十世纪80年代后期由日本首先发明并应用。1988年日本东京大学教授冈村甫最早开发出“不振捣的高耐久性混凝土”,其关键技术是通过掺加高效减水剂和矿物掺合料。在低水胶比条件下,大幅度提高混凝土拌合物的流动性,同时保证良好的黏聚性和稳定性,有效减少了泌水和离析等现象。1996年冈村甫教授在美国得克萨斯大学讲学

中,首次将其命名为“自密实高性能混凝土”[2]。1 自密实混凝土研究现状自密实混凝土优良的工作性及其他方面的性

能引起了各国科研人员的极大兴趣,其研究与应用在世界范围内广泛展开。美国、日本等国的学者开展了针对自密实混凝土的系统研究,包括工作性及流变性能测定、配合比设计、耐久性、结构性能以及关于配制自密实混凝土的矿物掺合料与外加剂等方面的研究[3]。2002年3月,欧盟混凝土和化学专业委员会(EFNARC)发表了关于自密实混凝土设计、应用指南,是自密实混凝土的第一个设计、应用规范[4]。同年美国ASTM C09委员会也开展了制定自密实混凝土标准的工作[5]。我国同济大学、中南大学、清华大学、苏州混凝土水泥制品研究院、福州大学等科研单位均对自密实混凝土进行了研究,但研究方向各有侧重。同济大学主要在自密实混凝土用高性能减水剂和高性能矿物外加剂的开发与应用技

术方面开展了大量研究工作[6]。中南大学针对自密实混凝土掺合料、工作性、耐久性等方面进行了研究[7];清华大学进行了抗压强度为80MPa的自密实混凝土工程试验研究[8];苏州混凝土水泥制品研究院进行了配制方法方面的研究[9];福州大学进行了配合比设计方面的研究等[10];在大量研究基础上,我国也陆续发布了关于自密实混凝土设计、应用的规范和标准。2004年中国土木工程学会发布了《自密实混凝土设计与施工指南》,2006年中国工程建设标准化协会发

布了《自密实混凝土应用技术规程》,2012年发布了国家行业标准JGJ/T 283-2012《自密实混凝土应用技术规程》。近10多年来,随着我国自密实混凝土应用技术规范不断完善,自密实混凝土的应用进入了全面爆发阶段,应用范围涉及了核能、铁路、水利、市政、民用等各类工程,除地下暗挖、密筋、形状复杂等无法浇筑或浇筑困难部位等特殊工程部位外,在加固工程,盾构管片、离心成型等预制构件的生产中也有所应用。随着自密实混凝土性能不断提升,种类也趋于多样化,如掺加钢纤维和合成纤维的自密实混凝土,轻骨料自密实混凝土,堆石自密实混凝土,机场道面自密实混凝土及石灰石粉自密实混凝土等,以及“三明治”即

SCC-NMC-SCC的夹层施工体系等均在实际工程中得到了应用。2 自密实混凝土的设计及制备方法 2.1 设计方法及原理与普通混凝土相比,自密实混凝土的关键是在新拌阶段能够依靠自重作用充模、密实,而不需额外的人工振捣,也就是所谓的“自密实性(Self-compactability)”,流动性、填充性、间隙通过性以及抗离析性是其重要的特征。自密实混凝土拌合物的自密实过程可由图1表示,粗骨料悬浮在具有足够粘度和变形能力的砂浆中,在自重的作用下,砂浆包裹粗骨料一起沿模板向前流动,通过钢筋间隙,进而形成均匀密实的结构。图1 自密实混凝土拌合物的自密实过程自密实混凝土拌合物的自密实性为混凝土硬化后的性能提供了重

要保证,因而,自密实性是进行自密实混凝土设计的重要基础,已有的自密实混凝土设计方法大部分是根据这一原理发展的。日本东京大学最早进行了自密实混凝土的设计研究,提出了自密实混凝土原型模型方法(Prototype method)[11]。在此基础上,各国学者也进行了自密实混凝土的设计方法的相关研究,可归纳为三类:(1) 基于自密实混凝土拌合物的变形性、间隙通过性以及抗离析性的理论分析,结合实验室试验研究结果,建立拌合物变形性、抗离析性及间隙通过性与其配合比参数之间的经验关系。Edanatsu等[12]认为:砂浆的变形性能对自密实混凝土拌合物性能起关键作用,自密实混凝土拌合物中砂子与砂浆的体积比(VS/Vm)相对固定,然后基于普通混凝土配合比设计方法即可进行自密实混凝

土设计,并提出了一种测定砂浆变形性能和粘度的V形漏斗测定方法。Kasemsamrarm等[13]认为:自密实混凝土拌合物的自密实性取决其变形性、离析以及间隙通过性,其关键影响因素是拌合物的自由水含量、粉体与骨料的保水性以及固体颗粒的有效表面积,由此建立了这些参数与变形能力、变形速度、离析等之间的经验模型。(2) 基于各组分对自密实混凝土拌合物工作性贡献的理论分析,提出的自密实混凝土设计方法。Sedran[14]等提出可压缩密实模型(compressible packing model, CPM),主要根据自密实混凝土拌合物流变性能与混合物体系密实度、超塑化剂等参数之

间的理论分析,为了计算的精确性和快速化,开发了一套配合比设计软件。该模型采用计算机处理,大大减少了工作量。然而,该模型需建立混凝土拌合物的流变性能与实际工程应用中工作性之间的关系,以更好的用于现场施工控制与应用;且由于各类原材料参数具有较高的复杂性,因此需建立适用于更广泛性质原材料组成混凝土拌合物流变模型,并应考虑模型的变异性。(3) 基于大量试验统计关系的自密实混凝土

配合比设计方法,即:通过积累大量的实验数据,建立原材料配比参数与混凝土性能之间的经验关系。此方法能解决由于材料组成的多样性与复杂性以及对混凝土拌合物性能的

高要求而导致的理论计算与模拟分析的不确定性和困难,但是工作量非常巨大,需要进行大范围的相关数据的收集累积,建立相关的数据库,以提高模型的普适性。自密实混凝土与普通混凝土的配合比设计有很大差别,至今没有形成统一的设计方法。目前国内已有的混凝土配合比设计方法各有针对性和侧重点,配制自密实混凝土应根据具体需求选择合适的方法。JGJ/T 283-2012《自密实混凝土应用技术规程》的颁布与实施能较好的指导和规范自密实混凝土的配合比设计,为自密实混凝土配合比设计提供了依据。 2.2 配制技术自密实混凝土原材料包括:粗细骨料、胶凝材料、外加剂等。为了获得理想的性能,必须采取相应的技术途径,对自密实混凝土进行精心设计,确定各特定性质组成材料的合理比例。

实践表明:混凝土拌合物的性能取决于浆体和骨料的性质与含量。当骨料性质与含量一定时,优化浆体的粘度、屈服剪切应力,可获得工作性良好的自密实混凝土拌合物。随着化学外加剂合成技术及矿物掺合料、在混凝土中的应用技术的进步,自密实混凝土已形成了三大配制技术途径,即矿物掺合料(填料)体系、增稠剂体系以及两者并用体系。化学外加剂对促进混凝土技术的发展起到了非常大的作用,其研究与应用潜力巨大。相信在不久的将来,自密实混凝土技术会取得更大的突破,配制技术复杂和成本偏高等现有缺点不再成为其广泛应用的障碍,自密实混凝土将成为真正普遍应用的“普通混凝土”。3 自密实混凝土工作性能的评价自密实混凝土区别于普通混凝土的最大特点在于对拌合物工作性能的

要求,主要包括流动性、填充性、黏聚力、钢筋间隙通过性和抗离析性等,通常这几项指标并不需要同时达到最佳,而是根据自密实混凝土应用特点着重对其中一项或者几项做

重点要求。由于工作性能的显著差异,采用普通混凝土工作性能测试方法和指标(如坍落度)已经不能完全满足实际工程需要,目前实验室和施工现场通常采用坍落度、坍落扩展度、T50cm时间、L型仪、U型仪、V型漏斗、筛分法等其中的一种或几种来评价自密实混凝土工作性能[15]。 3.1 流动性与填充性能测试方法主要方法为坍落度和坍落扩展

度测试,简单易行,试验装置和方法与普通混凝土基本相同,

只是混凝土装入坍落度筒时不振捣,以坍落扩展度、坍落度作为控制指标。坍落扩展度有4种级别:(1)坍落扩展度在(550-650)mm之间,主要用于不配筋或者配筋量很少的结构,并且混凝土从上至下浇筑;(2)坍落扩展度为(660-750)mm,主要用于普通钢筋混凝土结构,如墙、柱等;(3)坍落扩展度为(760-850)mm,此时石子最大粒径宜小于16mm,主要用于密集配筋、形状复杂或者从模板下面浇筑的结构;(4)坍落扩展度大于850mm,主要用于一些对混凝土流动性和填充

性要求更高的部位和结构,如加固修补等。此时最大骨料粒径宜小于12mm,并且要特别注意保证高流动下的抗离析性。

3.2 黏聚力与流动性测试方法主要测试方法有T50cm时间、V型漏斗和O型漏斗等方法。T50cm时间是以混凝土从坍

落度筒中流出摊平为直径50cm范围的时间作为评价指标,对T50cm时间的控制有2个级别:(1)T50cm流动时间在2s 以内,这样的自密实混凝土有很好的表面特征与良好的填充性,但拌合物容易发生离析;(2)T50cm流动时间大于2s,混凝土拌合物可能会受表面气泡影响,表面常有孔洞现象,抗离析性好,对模板侧压力也比较小。一般高砂率、粗骨料粒径较小情况下,T50cm流动时间宜控制得小一些,以减少表面孔洞;反之,T50cm时间宜控制得大些,以增加抗离析性。 3.3 钢筋通过性能测试方法自密实混凝土应用于配筋密集结构时需测试钢筋通过性,扁平构件中钢筋净距大于

80mm或其他结构中钢筋净距大于100mm时,可不做该项要求。钢筋通过性测试常用L型筒试验和U型筒试验方法。L型筒试验分为筒口放置2根钢筋和3根钢筋两种方法,用混凝土流过钢筋后水平筒终止端和起始端混凝土高度比衡

量钢筋通过性,控制目标为H2/H1>0.8。当构件钢筋间距为(80-100)mm时,宜采用2根钢筋的L型筒;当构件钢筋间距为(60-80)mm时,宜采用3根钢筋的L型筒;当钢筋间距小于60mm时,除了要求H2/H1>0.8外,同时应限制石子最大粒径,并要求目测钢筋出口处没有堵塞现象。 3.4 抗离析性能测试方法流动性过大必然造成抗离析性差,要专门测试自密实混凝土抗离析性,在流动性和稳定性之间找到合理的平衡。抗离析首先要求目测混凝土坍落度试验中坍落扩展的混凝土中间是否有石子堆积、边缘泌水现象。此外还有筛分析法,采用5mm方孔直径为350mm的标准筛,用筛通过量反映抗离析性,具体做法是从预拌混凝土中取10L左右置于桶中,静置15min后将桶上部4.8kg左右的混凝土倒入方孔筛,称重,静置120s后把筛及其中混凝土移走,称量筛孔流下的水泥浆重量,二者之比即为筛通过率,要求筛通过率小于20%;当抗离析性要求严格时,筛通过率应小于15%。4 自密实混凝土应用存在的问题(1) 自密实混凝土需要的优质骨料和高性能减水剂发展滞后,影响了自密实混凝土性能的提升和推广应用。目前天然骨料资源接近枯竭,且

质量不易控制,人工优质骨料由于造价、环保、政策支持和地方保护等诸多原因在某些地区应用与推广较慢。自密实混凝土所需的高性能减水剂需具备高减水率、高保坍、高粘度调节能力及可降低收缩等特点,目前市场上可供选择的优质减水剂较少。(2) 由于原材料质量的限制,目前配制自密实混凝土采用的高胶凝材料掺量和较大浆骨比方案会对自密

实混凝土的体积稳定性和造价带来不利影响,急待优质骨料和高性能减水剂性能提升予以解决。(3) 自密实混凝土应用的配套技术方案及管理还有待完善。实际工程往往习惯于采取常规普通混凝土的施工方式来“对待”自密实混凝土施工,可造成模板支撑刚度不够、辅助振捣过度、养护效果不良等诸多质量缺陷和安全隐患。(4) 自密实混凝土的实体检测规范还有待进一步完善。由于钢筋或型钢(钢管)密集,尺寸受限等原因,自密实混凝土结构一般难以钻取芯样检测;另一方面,掺加较多的掺合料并免振成型,自密实混凝土表面硬度与普通混凝土存在一定差别,采用统一的回弹法进行实体强度检测,势必存在较大的偏差,不能真实反映自密实混凝土结构的实际强度。5 结语自密实混凝土的出现很好地解决了普通混凝土发展过程中的相关问题,其不仅适应了当代混凝土工程超大规模化、复杂化的要求,而且为混凝土走向绿色化、高性能化提供了技术保障,是混凝土技术的一次革命。针对自密实混凝土的深入研究具有较高的学术价值,可为自

密实混凝土在实际工程中的应用提供必要的理论指导。参考文献[1] 施惠生, 孙振平, 邓恺, 等. 混凝土外加剂技术大全[M]. 北京: 化学工业出版社, 2013: 235-236.[2] 赵筠. 自密实混凝土的研究和应用[J]. 混凝土, 2003, (6): 9-17.[3] 周履. 高性能混凝土与自密实混凝土在日本的发展与应用[J]. 国外桥梁, 1998, (2): 14-16.[4] EFNARC. Specifying

self-compacting concrete.World tunneling, 2002, (3): 140.[5] Martin Vachon. ASTM Puts

Self-Consolidatingconcrete to the Test. Ohio ASTM Standardization News, 2002, (1): 34-37.[6] 孙振平, 金慧忠, 蒋正武, 等. 聚羧酸系减水剂在钢管拱桥施工中的应用[J].

建筑技术, 2006, 37(1): 60-62.[7] Youjun Xie, Baoju Liu, Jian Yin. Optimum mixparameters of highstrength

self-compacting concrete with ultrapulverized flyash. Cement and concrete Research, 2002, (3): 48-51.[8] 田培. 水泥基复合材料科学与技术[M]. 北京: 中国建材, 1998:

32-37.[9] 王晓飞. 自密实混凝土在公路隧道中的应用[J].

铁道建筑技术, 2000, (6): 28-30.[10] R. Khurana,R. Saccone. Fly Ash in self-compactingconcrete.

India:Seventh CANMET/ACI International Conference, 2001, (1): 259-274.[11] Okamura Hajime, Ouchi Masahiro. Self-compactingconcrete: development, present use and

future[A]. In: SKARENDAHL A, PETERSSON Oeds. Proceedings of 1st International RILEM Symposium on Self-CompactingConcrete. Paris: RILEM Publication SARL, 1999, 3–14.[12] Edanatsu Yoshinobu, Nishida Naoki. A rational mixdesign method for self-compacting concrete considering interaction betweencoarse aggregate and mortar particles [A]. In: SKARENDAHL A, PETERSSON O eds.Proceedings of 1st International RILEM Symposium

on Self-Compacting Concrete.Paris: RILEM Publication SARL, 1999, 309–320.[13] Kasemsamrar N, Tangtermsirikul S. A designapproach for self-compacting concrete based on deformability, segregationresistance and passing ability models [A]. In: YU Zhiwu, SHI Caijun, KHAYAT KH, et al eds. Proceedings of 1st International Symposium on Design, Performanceand Use of

Self-Consolidating Concrete. Paris: RILEM Publication SARL, 2005,47–54.[14] Sedran T, de Larrard F. Optimization of self-compactingconcrete thanks to packing model [A]. In: Skarendahl A, Petersson O eds.Proceedings of 1st International RILEM Symposium on Self- Compacting concrete.Paris: RILEM Publication SARL, 1999, 321–332.[15] 赵贵详. 自密实混凝土早期性能研究

[D]. 同济大学, 2006.

自密实混凝土的配合比特征与硬化后的性能优缺点-朋-批注

自密实混凝土的配合比特征与硬化后的性能优缺点 摘要:首先论述了自密实混凝土的配制原理,然后讲述了自密实混凝土的配合比设计原则与其特征,最后论述了自密实混凝土硬化后的性能优缺点。 关键词:自密实混凝土;配合比;硬化。 0 引言 20世纪80年代初,混凝土结构的耐久性问题在日本引起了广泛的关注。为了减少混凝土施工质量下降的问题,而衍生了自密实混凝土,这一概念首先是Okamura在1986年提出的。自密实混凝土(Self—Compacting Concrete,简称SCC)是高性能混凝(Higll Performance Concrete,简称HPC)的一种,是指具有不离析、不泌水,能够不经振捣或少振捣而自动流平,并能够通过钢筋间隙充满模板的混凝土,即无需振捣,仅依靠自重作用就能仿混凝土密实填充模板的各个角落【1】。其与相同强度等级的普通混凝土相比,具有较大的浆骨比、砂率较大、细掺料总量大的特点,有很高的施工性能[1]。但至今为止,国内在自密实混凝土的配制技术上,仍未形成一种统一的配合比方法,因为对其配合比特征是很有意义的。混凝土硬化后,在力学性能和耐久性方面与普通混凝土相比具有很大优势。 1 国内外应用研究现状 自密实混凝土自80年代后半期由日本东京大学的岗村甫提出来

而问世以来,它的应用越来越广泛,其研究也越来越受到重视。此后,北京建工集团二公司开始研制并试用。中南大学等单位于2005年5月26~28日在湖南长沙主办了我国第一次自密实混凝土技术方面 的国际研讨会(1st International Symposium Design,Performance and Use of Self-Consolidating Concrete,SCC,2005—China)。特别是近几年,国内免振捣自密实混凝土的研究有了很大起色,到目前为止,已经将自密实混凝土应用于各类工业与民用建筑、道路、桥梁、隧道及水下工程【3】。但是由于各地原材料和施工条件的差别,具体实施时不能照搬国内外同行的技术经验。为保证自密实混凝土具有良好的工作性,且完全符合自密实混凝土的工作性要求,可通过采用优化配合比的方式来改善其工作性能,以达到自密实性。所以,对自密实混凝土的配合比特征与硬化后的性能优研究是很有必要的。 2 自密实混凝土的制备原理 与普通混凝土相比,自密实混凝土的关键是在新拌阶段能够依靠自重作用充模、密实, 而不需额外的人工振捣, 也就是所谓的“自密实性 (self- compactability)”,它 包括流动性或填充性、间

自密实混凝土施工方案

大连中心·裕景(公建)ST2塔楼大支撑钢管混凝土施工方案 编制: 审核: 批准: 大支撑钢管混凝土施工方案

一、工程概况 大连中心?裕景ST2塔楼为巨型框架核心筒结构,核心筒为钢筋混凝土剪力墙结构,核心筒外框架竖向结构由5根钢-混巨型柱、10根普通型钢柱及与其斜向联系的矩形钢管大支撑组成。其中大支撑截面尺寸(H*B*t1*t2)最大为2300*700*100*35,最小为900*700*35*35。 钢结构深化设计在大支撑上开设灌浆圆孔,如下图共两种形式,其中A位于矩形大支撑上翼缘板靠近筒外钢柱处,直径230mm;B位于K形节点大支撑内侧腹板靠近组合巨柱处,直径250mm。 由于大支撑内有隔板结构形状复杂,且相邻孔之间间距一般跨越2-3层、砼振捣困难,拟采用具有高流动度、不离析、均匀性和稳定性好的自密实混凝土进行此大支撑钢管混凝土施工,混凝土强度等级C40。 二、编制依据 1、《矩形钢管混凝土结构技术规程》CECS 159:2004 2、《钢管混凝土结构设计与施工规程》CECS 28:90 3、《自密实混凝土应用技术规程》CECS203:2006等 4、东北院施工蓝图、中建钢构施工深化设计图 三、基本技术特性 自密实混凝土是具有高流动度、不离析、均匀性和稳定性,浇筑时依靠其自重流动,无需振捣而达到密实的混凝土。 应用于本工程的自密实砼基本技术性能指标及注意事项如下: 1)自密实性能等级三级,Tso(s)控制在3~20s之间,V漏斗通过时间在4~25s之间;

2)粗骨料最大粒径不大于20mm; 3)砂子采用中偏粗砂,含泥量≤1.5%,细度模度2.7~2.9; 4)外加剂采用大连市建科院聚羧酸DK-PC。 5)采用大连水泥厂水泥。 6)掺少量矿粉,水粉比控制在规范要求范围内。 7)到场的砼扩展度>600mm,在650mm左右为佳,具体测坍落度时,将砼坍开后,垂直方向量砼直径,两方向平均值即为扩展度,两方向平均值不允许超过2cm。 8)到场砼测坍落度时,高度差(中心与边缘)不允许大于2cm。 四、施工部署及施工顺序 由于大支撑钢管混凝土工程量较小,且现场浇筑需要在灌浆孔部位提供施工工作面,故将此部分混凝土浇筑安排于灌浆孔下部相邻楼板层结构施工完毕之后,利用已施工完成楼板面、及布设在楼板面上的泵管,进行大支撑钢管砼泵送施工。 1、基本施工顺序如下: 2、施工顺序原则: 1)大支撑砼具体浇筑时间随塔楼整体结构进度、穿插施工,不占用总工期时间。 2)大支撑砼施工前,相关钢结构构件安装、焊接完毕,焊缝探伤及相关验收合格。 五、施工措施及注意事项 1、施工前,应将泵管接好,保证气密性,不允许漏水(只允许少量掺水),然后用砂浆润滑泵管。 2、大支撑钢管混凝土浇筑之前,应将管内异物、积水清除干净。 3、自密实砼的运输:应保持混凝土拌合物的均匀性,不应产生离析、分层和前后不均匀现象。运输时间符合规定要求,在90min内卸料完毕,当最高气温低于25℃时,运送时间可延长30min。

自密实高性能混凝土技术性能研究

·39· 随着建筑技术的不断改进,原有的“肥梁胖柱”现象已逐渐消失,取而代之的是结构灵巧、造型奇特的新型结构。由于新型结构混凝土强度等级的不断提高,内部配筋状况也发生了变化,较密集的配筋布置已成为现实。在这种情况下,如果再用普通混凝土已不能满足施工要求,而自密实高性能混凝土却能解决这些难题。它可以通过自流动而充实薄壁混凝土结构和钢筋密集的结构部位,可以不经振捣即可密实,这样既解决了混凝土的振捣困难,又消除了施工噪音,因此,这类混凝土极具现实意义,具有广阔的发展前景。 1 试验目标 对于自密实高性能混凝土,拌合物的工作性能是研究的重点。分别从流动性、抗离析性、间隙通过性、填充性四个方面考虑。要解决好流动性与抗离析性、间隙通过性与填充性之间的矛盾,混凝土高工作性与硬化后力学和耐久性的矛盾。 具体目标: (1)研制一种高工作性能的易于泵送施工、不用振捣而自行密实的混凝土。 (2)混凝土的高工作性能能保持较长时间,以满足远距离运输后的施工需要。 (3)混凝土硬化后具有理想的力学性能和耐久性。 (4)采用较常规的原材料和生产工艺,并经济合理,便于推广应用。 2 材料选择 (1)水泥:鹿泉长城矿渣32.5,3d 强度19.1MPa,28d 强 度36.4MPa ; (2)集料:正定中砂,细度模数2.6,含泥量1.2%; 鹿泉碎石5~10mm,10~20mm,含泥量<0.5%,针片状含量<7.6%; (3)掺合料:西柏坡电厂粉煤灰,其技术指标见表1。 表1 粉煤灰技术指标 种类级别活性指数(%)胶砂流动度比 7d 28d 粉煤灰 Ⅰ级 89.0 109.0 110 自密实高性能混凝土技术性能研究 刘福战 (河北大地建设科技有限公司) [摘要]本文采用正交试验的设计方法从水胶比、砂率、掺合料掺量、碎石比例等几个方面进行了研究,得出了自密实高性能混凝土配合比设计的参数。进而通过优化配合比,又得出了混凝土的工作参数。同时从抗渗性、抗冻性、碳化、收缩等四个方面对自密实高性能混凝土的耐久性进行了研究。[关键词]自密实混凝土;高性能;配合比;耐久性;抗渗性;抗冻性;碳化 (4)外加剂:采用大新外加剂厂生产的RCMG-5高效泵送剂,建议掺量2.0%~3.5%。为了确定合理掺量,通过改变掺量进行试配,试验结果见表2。 表2 外加剂技术指标 外加剂掺量(%)坍落度(mm)扩展度(mm)7d 强度 (MPa)28d 强度(MPa)56d 强度(MPa)初始90min 2.525559056033.643.247.23.027*********.844.548.03.5 270 650 590 30.9 41.3 46.8 从试验结果看出:改变外加剂掺量对混凝土抗压强度没有显著影响,但能有效改变混凝土拌合物的保塑性能,当掺量在3.0%时,混凝土坍落度、扩展度在90min 内基本保持不变,故外加剂掺量为3.0%效果最佳。 3 混凝土配合比设计 3.1 正交试验 选用L9(34)正交表。其因素与水平的安排见表3;L9(34)正交表见表4;试验结果见表5;L9 (34) 正交设计计算表见表6。 表3 正交设计 因素水平 123A :水灰比0.370.400.43B :砂率%424548C :矿渣粉掺量%253035D :碎石比例 3:7 4:6 5:5 通过L9(34)正交计算表可知各因素对混凝土拌合物性 能及力学性能的影响顺序为: (1)坍落度为A >B >C >D (主次),最优配合比A1B2C2D1(或A2B2C2D3)。 (2)扩展度为A >C >D >B (主次),最优配合比A1C2D3B3。

多层混凝土框架结构设计文献综述

多层混凝土框架结构设计 1.前言 随着社会的发展,钢筋混凝土框架结构的建筑物越来越普遍.由于钢筋混凝土结构与砌体结构相比较具有承载力大、结构自重轻、抗震性能好、建造的工业化程度高等优点;与钢结构相比又具有造价低、材料来源广泛、耐火性好、结构刚度大、使用维修费用低等优点。因此,在我国钢筋混凝土结构是多层框架最常用的结构型式。近年来,世界各地的钢筋混凝土多层框架结构的发展很快,应用很多。 一般框架结构是由楼板、梁、柱及基础4种承重构件组成的,由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来而形成的空间结构体系。文献[1]认为,在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间,其平面布置比较的灵活,可适合多种工艺与使用功能的要求。 多层钢筋混凝土框架结构设计可以分为四个阶段:一是方案设计,二是结构分析,三是构件设计,四是绘施工图。结构分析和构件设计是结构设计中的计算阶段,在现代,已由电子计算机承担这一工作,常采用PKPM建模计算。但是,结构的计算并不能代替结构的设计。文献[2]中认为:良好的结构设计的重要前提,应该是合理组织与综合解决结构的传力系统、传力方式,良好的结构方案是良好结构设计的重要前提。2.关于框架结构设计文献回顾 2.1框架结构的优缺点 框架结构体系是由横梁与柱子连接而成.梁柱连接处(称为节点)一般为刚性连接,有时为便于施工和其他构造要求,也可以将部分节点做成铰接或者半铰接.柱支座一般为固定支座,必要时也可以设计成铰支座.框架结构可以分为现浇整体式,装配式,现浇装配式. 文献[3]中提到:框架结构的布置灵活,容易满足建筑功能和生工艺的多种要求.同时,经过合理设计,框架结构可以具有较好的延性和抗震性能.但是,框架结构承受水平力(如风荷载和水平地震作用)的能力较小.当层树较多或水平力较大时,水平位移较大,在强烈地震作用下往往由于变形过大而引起非结构构件(如填充墙)的破坏.因此,为了满足承载力和侧向刚度的要求,柱子的截面往往较大,既耗费建筑材料,又减少使用面积.这就使框架结构的建筑高度受到一定的限制.目前,框架结构一般用于多层建筑和不考虑抗震设防,层数较少的的高层建筑(比如,层数为10层或高度为30米以下) 2.3框架结构的布置 多层框架结构的平面布置形式非常的灵活,文献[4]中将框架结构按照承重方式的不同分为以下三类:(1)横向框架承重方案,以框架横梁作为楼盖的主梁,楼面荷载主要由横向框架承担.由于横向框架数往往较少,主梁沿横向布置有利于增强房屋的横向刚度.同时,主梁沿横向布置还有利于建筑物的通风和采光.但由于主梁截面尺寸较大,当房屋需要大空间时,净空较小,且不利于布置纵向管道. (2)纵向框架承重方案以框架纵梁作为楼盖的主梁,楼面荷载由框架纵梁承担.由于横梁截面尺寸较小,有

自密实混凝土对材料的要求

自密实混凝土对材料的要求 1胶凝材料 1.1水泥应符合现行国家标准《通用硅酸盐水泥》GB175的规定;当采用其他品种水泥时,其性能指标应符合相应标准的规定。 1.2粉煤灰、粒化高炉矿渣粉、硅灰等矿物掺合料,其性能指标应符合国家现行相关标准的要求。当采用其它掺合料时,应通过充分试验进行验证。 2骨料 2.1粗骨料宜采用连续级配或2个及以上单粒径级配搭配使用,最大公称粒径不宜大于20mm;对于结构紧密的竖向构件、复杂形状的结构以及有特殊要求的工程,粗骨料的最大公称粒径不宜大于16mm。粗骨料的针片状颗粒含量、含泥量及泥块含量,应符合表2.1的要求,其他性能及试验方法应符合现行行业标准《普通商品混凝土用砂、石质量及检验方法标准》JGJ52中的相关规定。 2.2轻粗骨料宜采用连续级配,性能指标应符合表2.2的要求,其它性能及试验方法应符合现行国家标准《轻集料及其试验方法第1部分:轻集料》GB/TI7431.1和行业标准《轻骨料商品混凝土技术规程》JGJ51中的相关规定。 2.3细骨料宜选用级配Ⅱ区的中砂,天然砂的含泥量、泥块含量应符合表2.3-1的要求;人工砂的石粉含量应符合表2.3-2的要求,当人工砂中含泥量很低(MB≤1.0),在配制C25及以下商品混凝土时,经试验验证能确保商品混凝土质量后,其石粉含量可放宽到15%。试验应按现行行业标准《普通商品混凝土用砂、石质量及检验方法标准》JGJ52中的相关规定进行。 3外加剂 3.1外加剂宜选用高性能减水剂或高效减水剂。外加剂性能应符合现行国家标准《商品混凝土外加剂》GB8076和《商品混凝土外加剂应用技术规范》GB50119中的相关规定。 3.2掺用改善拌合物性能的其他外加剂时,应通过充分试验进行验证,其性能应满足现行相关标准的要求。

自密实混凝土优点及推广意义--(1)

自密实混凝土的优点及推广意义 1 前言 自密实混凝土是20世纪70年代初由前西德发明并首先应用于工程的。这种混凝土在日本得到极其迅速的发展,到20世纪90年代中期,日本已生产自密实免振捣混凝土80万m3。从20世纪80年代末开始,我国高强混凝土的应用开始普及;到90年代中期,在研制高性能混凝土及高性能外加剂的基础上,越来越多的高强混凝土脱离了单纯高强的范畴,而转向高耐久性,大流动性,超高度泵送,自密实不振捣等高性能混凝土。自密实混凝土的主要特点是无须振捣而能自密实。在实际施工中自密实混凝土消除了浇筑混凝土时的振捣噪声,提高了施工速度和质量,实现了混凝土浇筑的省力化;为改善和解决过密配筋、薄壁、复杂形体、大体积、钢管混凝土施工,高、深、快速施工,水下施工,以及具有特殊要求、振捣困难的工程施工条件带来了极大的方便。 2 自密实混凝土配合比设计 自密实混凝土配制的技术路径,既要考虑施工时(新拌状态下)的高流动性,同时又要照顾到混凝土硬化以后的耐久性,即密实性。换句话说,就是要平衡好新拌状态下混凝土的高变形能力与高抗材料离析性之间的关系,尤其在配有钢筋的狭小区域,混凝土的流动性要求和防止粗骨料被阻塞的要求更高。日本的主要做法是,先做水泥浆和砂浆试验,主要目的是检查超塑化剂、水泥、细骨料和火山灰材料的性能和密实能力,然后再做SCC试验。该方法的优点在于,可以避免在混凝土上重复同一种质量控制,这种质量控制既费时又费力。但该种方法亦有其缺点:一是在拌制SCC前,需要进行水泥浆和砂浆的质量控制试验,但许多施工单位和商品

混凝土供应厂缺乏必要的试验设备;二是这种配合比设计方法和试验程序对于实际工程而言,,显得太过复杂。 瑞典水泥和混凝土研究会、中国大陆及台湾的学者均提出了HPC的设计方法。台湾提出的方法是填密拌合物设计算法,是从最大密度原理和超砂浆理论推导出来的,但无从知道该方法和混凝土通过钢筋间隙与抗离析能力方面之间的关系。大陆的研究表明,如果混凝土中的水泥浆过少,则不仅影响混凝土通过钢筋间隙的能力,而且影响抗压强度。 配制SCC,原则是用水泥浆(胶凝材料)填充骨料骨架的间隙。计算步骤是依次计算:粗、细骨料用量;水泥用量;按强度推算水泥需要的拌合用水量;粉煤灰及矿渣灰掺量;SCC中需要的拌合用水量(水泥、粉煤灰、矿渣灰用水量之和);减少剂用量;根据骨料的含水率调整SCC 中的拌合水用量。计算出配合比后,进行试配和性能测试试验。 3 自密实混凝土性能评定 根据SCC的特点,在试配和生产中应作到:①良好的流动性,即在自重作用下能够自流平、自密实;②具有良好的材料匀质性和稳定性,在流动状态下不泌水、不起泡、无粗骨料离析现象;③硬化后体积稳定性好,不产生收缩裂缝,尽量避免内部缺陷。具体而言,评定SCC质量的要素有:较大变形能力,抗离析能力,钢筋之间的通过能力。此外,根据自密实混凝土的耐久性要求,还应评价混凝土硬化期的抗渗性,由于评定内容和手段与常规混凝土大致相同,故此处不再赘述。下面仅介绍新拌SCC的评定。 Okamura等开始配制SCC时,以为配制出这种混凝土会很容易,原因是水下不分散混凝土已在实际工程中应用。但由于水下不分散混凝土掺用大掺量增稠剂,使得离析问题得到严格控制,同时也阻止了水泥颗粒扩散到周围水中。尤其值得注意的是,抗水洗水下混凝土不能应用于空气中浇注成型的结构中,原因有两个:首先,由于这种混凝土具有比较高的粘聚性,所

C40自密实混凝土应用

1自密实混凝土工作特性 自密实混凝土的一个显著特性是具有更高的流动性,在不振捣的情况下可以自流平而充满模板,并且能够保持不离析、不泌水,成型后质量均匀,不会产生普通混凝土由于振捣不充分而造成的蜂窝、麻面和内部空洞的质量缺陷。20世纪80年代,日本学者首先提出自密实混凝土的概念,并在今后的时间得到及其迅速的发展,我国也有部分工程使用。它是通过外加剂、胶凝材料和粗细骨料的选择和配合比的设计,使混凝土拌合物屈服剪切应力减小且又具有足够的塑性粘度,粗细骨料能够悬浮于水泥浆体中不离析、不泌水,在不用或基本不用振捣的情况下,能够充分填充模板和钢筋空隙,形成密室、均匀的混凝土结构。 2 自密实混凝土配合比设计 按照《普通混凝土配合比设计规程》(JGJ55-2000)和中国土木工程学会标准CCES 02-2004《自密实混凝土设计与施工指南》进行,目的使寻找混凝土的流动性、稳定性以及通过钢筋间隙的能力的最佳配合比,以期达到混凝土的高流动性和高稳定性之间的平衡。 2.1 设计要求 混凝土强度等级C40,塌落度240-260mm,扩展大于600mm,水灰比不大于0.50;粗骨料最大粒径不大于20mm;水泥宜采用P.O42.5 2.2 试验原材料 水泥:北京兴发水泥有限公司生产P.O42.5,28d实测抗压强度51.2Mpa。

细骨料:滦平潮白河中砂,细度模数2.6,Ⅱ区砂,h 含泥1.7%,表观密度2.61g/cm 3。 粗骨料:密云尾矿废石,粒径5-20mm,表面密度2.65g/cm 3,压碎指标10.8%,针片状含量6.7%,含泥量0.5%。 外加剂:JF-9混凝土泵送剂,掺量2.0-2.2%,混凝土终凝时间20小时,减水率20-25%。 粉煤灰:天津军电粉煤灰,实测技术性能指标见表1 矿渣粉:唐山建龙S95级矿粉,实测技术性能指标见表2 2.3 试验方法 混凝土拌和按照《混凝土试验规程》“混凝土拌合物室内拌和 方法”进行。混凝土拌合物的性能测试采用塌落度(扩散度)试验、压力泌水试验和自流填充箱试验,分别对混凝土的流动能力、扩展能力、抗离析能力、通过钢筋间隙的能力以及混凝土自密实填充能力进行测试。自流填充箱结构示意图如图1所示,内置Φ16净距25mm 的钢筋隔栏, 打 开阀门混凝土依 靠自重通过钢筋 间隙填充整个模

建筑设计参考文献综述

文献综述 建筑设计参考文献综述: [1]《房屋建筑学》,邢双军主编 建筑学作为一门内容广泛的综合性学科,它沙及到建筑功能、工程技术、建筑经济、建筑艺术以及环境规划等许多方面的问题。般说来,建筑物既是物质产品,又具有一定的艺术形象,它必然随着社会生产生活方式的发展变化而发展变化,并且总是受科学技术、政治经济和文化传统的深刻影响*建筑物—一作为人们亲手创造的人为环境的重要组成部分,需要耗用大量的人力和物力。它除了具行满足物质功能的使用要求外,其空间组合和建筑形象又常会赋予人们以精神上的感受。 [2]《建筑设计防火规范》(GB50016-2006) 1.0.1 为了防止和减少建筑火灾危害,保护人身和财产安全,制定本规范。 1.0.2 本规范适用于下列新建、扩建和改建的建筑: 1 9层及9层以下的居住建筑(包括设置商业服务网点的居住建筑); 2 建筑高度小于等于24.0m 的公共建筑; 3 建筑高度大于24.0m 的单层公共建筑; 4 地下、半地下建筑(包括建筑附属的地下室、半地下室); 5 厂房; 6 仓库; 7 甲、乙、丙类液体储罐(区); 8 可燃、助燃气体储罐(区); 9 可燃材料堆场; 10 城市交通隧道。 注:1 建筑高度的计算:当为坡屋面时,应为建筑物室外设计地面到其檐口的高度;当为平屋面(包括有女儿墙 的平屋面)时,应为建筑物室外设计地面到其屋面面层的高度;当同一座建筑物有多种屋面形式时,建筑 高度应按上述方法分别计算后取其中最大值。局部突出屋顶的瞭望塔、冷却塔、水箱间、微波天线间或设 施、电梯机房、排风和排烟机房以及楼梯出口小间等,可不计入建筑高度内。 2 建筑层数的计算:建筑的地下室、半地下室的顶板面高出室外设计地面的高度小于等 于 1.5m 者,建筑底部设置的高度不超过2.2m 的自行车库、储藏室、敞开空间,以及建筑屋顶上突出的局部设备用房、出屋面 的楼梯间等,可不计入建筑层数内。住宅顶部为两层一套的跃层,可按1 层计,其它部位的跃层以及顶部 多于2 层一套的跃层,应计入层数。 1.0.3 本规范不适用于炸药厂房(仓库)、花炮厂房(仓库)的建筑防火设计。 人民防空工程、石油和天然气工程、石油化工企业、火力发电厂与变电站等的建筑防火设计,当有专门的国家现行标准时,宜从其规定。 1.0.4 建筑防火设计应遵循国家的有关方针政策,从全局出发,统筹兼顾,做到安全适用、技术先进、经济合理。 1.0.5 建筑防火设计除应符合本规范的规定外,尚应符合国家现行有关标准的规定。

自密实混凝土暂行技术标准

. CRTS Ⅲ型板式无砟轨道自密实混凝土 自密实混凝土的施工 7.1 一般规定 7.1.1 应根据设计要求、灌注施工工艺和施工环境等因素,会同设计、监理各 方,共同制定自密实混凝土施工技术方案、施工过程的质量控制与保证措施。 7.1.2 自密实混凝土的施工包括自密实混凝土的搅拌、运输、灌注、养护和拆模等。根据交通运输条件,采取不同的自密实混凝土灌注方案。 7.1.3 正式施工前,应进行自密实混凝土的试灌注,并进行自密实混凝土的现场揭板质量检验,验证并完善混凝土的灌注施工工艺。 7.1.4施工和监理单位应确定并培训专门从事自密实混凝土关键工序施工的操作人员和试验检验人员。 7.1.5 应建立完善的质量保证体系和健全的施工质量检验制度,加强对施工过程每道工序的检验,发现与规定不符的问题应及时纠正,并按规定作好记录。 7.1.6 应明确施工质量检验方法。质量检验方法和手段应符合本技术要求的规定以及国家和铁道部的相关标准要求,检验结果应真实可靠。 7.1.7 应根据设计要求、工程性质以及施工管理要求,在施工现场建立具有相应资质的实验室。 7.1.8 自密实混凝土达到75%的设计强度后方可承载。 . . 7.2 原材料储存与管理 7.2.1 混凝土原材料进厂(场)后,应对原材料的品种、规格、数量以及质量 证明书等进行验收核查,并按有关标准的规定取样和复验。经检验合格的原材料方可进厂(场)。

7.2.2 混凝土原材料进厂(场)后,应及时建立“原材料管理台帐”,台帐内容 包括进货日期、材料名称、品种、规格、数量、生产单位、供货单位、“质量证明书”编号、“复试检验报告”编号及检验结果等。“原材料管理台帐”应填写正确、真实、项目齐全,并经监理工程师签认。 7.2.3混凝土用水泥、矿物掺合料等应采用散料仓分别存储。袋装粉状材料在运输和存放期间应用专用库房存放,不得露天堆放,且应特别注意防潮。 7.2.4不同混凝土原材料应有固定的堆放地点和明确的标识,标明材料名称、 品种、生产厂家、生产日期和进厂(场)日期。原材料堆放时应有堆放分界标识,以免误用。骨料堆场应事先进行硬化处理,并设置必要的排水设施。 7.3 混凝土拌合 7.3.1 自密实混凝土应采用拌合站集中拌制,拌合站应配有自动计量系统和强制式搅拌机,混凝土原材料称量最大允许偏差应符合铁建设 [2005]160号文规定(按重量计):胶凝材料(水泥、矿物掺和料等)±1%;外加剂±1%;骨料±2%;拌合用水±1%。 . . 7.3.2 搅拌混凝土前,应严格测定粗细骨料的含水率,准确测定粗细骨料含水率变化,及时调整施工配合比。一般情况下,含水率每班抽测2 次。 7.3.3搅拌时,宜先向搅拌机投入粗骨料、细骨料、水泥和矿物掺和料和其他材料,搅拌1分钟,再加入所需用水量和外加剂,并继续搅拌2分钟。 7.3.4冬期施工时,直接与水泥接触的水的加热温度不宜高于80℃,自密实混凝土搅拌时间宜较常温施工延长50%左右。 7.3.5 夏(热)期施工时,水泥进入搅拌机时的温度不宜大于50 ℃。 7.3.6 正式生产前必须对自密实混凝土拌合物进行开盘鉴定,检测其工作性能。 7.4 模板安装

自密实混凝土的研究现状及展望

自密实混凝土的研究现状及展望 摘要:本文简要说明了自密实混凝土的定义,概述了自密实混凝土的发展历程以及当前国内外的研究现状,着重介绍了当前较为成熟的自密实混凝土配制技术和主要性能,并对其未来的发展给出了建议。 关键词:自密实混凝土;高性能;配制技术;性能 1引言 近年来混凝土工程不断向规模化、复杂化、高层化方向发展,钢筋混凝土体内配筋越来越复杂稠密,浇筑难度很大,振捣困难,导致工程质量难以保证;对于已有建筑、桥梁的加固工程等,更是难以用普通混凝土进行正常施工;同时城市建筑施工因混凝土振捣引起的噪音污染问题也亟待解决。在此工程背景下,自密实混凝土以其独特的优点脱颖而出。 自密实混凝土源于高性能混凝土而高于高性能混凝土,是高性能混凝土的一个重要分支和发展方向。自密实混凝土是于上世纪80年代首先在日本发明和应用的,而后推广至欧美等发达国家,进而传入我国。这一概念最早由日本学者Okamum于1986年提出,该混凝土能够在自重作用下,均匀密实的填充至试模空间,而且不发生离析,因此在成型过程中不需要振捣,减小噪音,减少环境污染,给施工带来方便,给周围居民带来安宁和谐的环境。 自密实混凝土是基于混凝土的施工性能来分类和命名的,这是一种流动性大、不用振捣即可自行密实的混凝土,其某些性能类似于大流动性混凝土和泵送混凝土,但又不完全相同。与普通混凝土相比,自密实混凝土具有以下性能特点:(1)在新拌阶段,不需人工额外振捣密实,依靠自重充模、密实;(2)早龄期阶段,避免了原始缺陷的产生;(3)硬化后,具有足够的抗外部环境侵蚀的能力。 自密实混凝土一方面要求在不增加水泥用量和用水量的前提下具有大流动性混凝土的施工性能,便于浇筑成型时免于振捣,另一方面又要求得到泵送混凝土的质量, 保证浇筑时不离析,硬化后不开裂,而且耐久性要好,所以它是一种

建筑混凝土新技术3:自密实混凝土技术

2混凝土技术 2.3自密实混凝土技术 1.主要技术内容 自密实混凝土(Self-Compacting Concrete,简称SCC),指混凝土拌合物不需要振捣仅依靠自重即能充满模板、包裹钢筋并能够保持不离析和均匀性,达到充分密实和获得最佳的性能的混凝土,属于高性能混凝土的一种。自密实混凝土技术主要包括自密实混凝土流动性、填充性、保塑性控制技术;自密实混凝土配合比设计;自密实混凝土早期收缩控制技术。 (1)自密实混凝土流动性、填充性、保塑性控制技术 自密实混凝土拌合物应具有良好流动性、填充性和保水性。通过骨料的级配控制以及高效减水剂来实现混凝土的高流动性、高填充性。其测试方法主要有U型槽法、L型槽法、倒坍落度筒法等。自密实混凝土工作性的控制技术是一个关键。 (2)配合比设计 自密实混凝土配合比设计与普通混凝土不同,有全计算法、固定砂石法等。配合比设计时,应注意以下几点: 1)单位体积用水量宜为155~180kg。 2)水胶比根据粉体的种类和掺量有所不同,按体积比宜取0.8~1.15。 3)根据单位体积用水量和水胶比计算得到单位体积粉体量。单位体积粉体量宜为0.16~0.23。 4)自密实混凝土单位体积浆体量宜为0.32~0.40。 (3)自密实混凝土早期收缩 由于自密实混凝土水胶比较低、胶凝材料用量较高,使得混凝土早期的收缩较大,尤其是早期的自收缩。主要包括自收缩的收缩机理、计算公式及检测技术等方面。 2.技术指标 (1)原材料的技术要求 1)胶凝材料 水泥选用较稳定的普通硅酸盐水泥;掺合料是自密实混凝土不可缺少的组成部分之一,一般常用的有粉煤灰、磨细矿渣、硅粉、矿粉等。胶凝材料总量不少于500kg/m3。 2)细骨料 砂的含泥量和杂质,会使水泥浆与骨料的粘结力下降,需要增加用水量和增加水泥用量,所以砂必须符合规范技术。砂率在45%以上,最高可到50%。 3)粗骨料 粗骨料的最大粒径一般以小于20mm为宜,尽可能选用圆形且不含或少含针、片状颗粒的骨料。 4)外加剂 自密实混凝土具备的高流动性、抗离析性、间隙通过性和填充性这四个方面都需要以外加剂的手段来实现。因此对外加剂的主要要求为:与水泥的相容性好;减水率大;缓凝、保

绿色高性能混凝土研究及应用进展综述

广州大学 高等钢筋混凝土 结业论文 题目:绿色高性能混凝土研究与应用进展 学生:王康 学号:0 6 1 1 4 2 2 6 学院:土木工程学院 专业班级:防灾减灾工程及防护工程06 级

绿色高性能混凝土研究与应用进展 王康 摘要:在21世纪,人与自然必须和谐相处。为了实现可持续发展,我们必须发展绿色高性能混凝土,因为它是混凝土目前和未来的发展方向。介绍了绿色高性能混凝土的基本概念、优越性能、实现途径等。总结了绿色高性能混凝土在工程应用中的现状,分析了该领域存在的问题,总结了本领域的研究理念。 关键词:绿色高性能混凝土、生态环境; STUDY ON AND APPLICATION OF GREEN HIGH PERFORMANCE CONCRETE Wang kang Abstract: People must be harmonious to get along with the nature in the 21st century. In order to realize the sustainable development, we must develop Green High Performance Concrete because that it is the trend of concrete development at present and future. In this paper, the concept, the excellent performance and the way of realizing the GHPC were presented. The present statuses of the engineering application of GHPC were reviewed. The problems of GHPC were analyzed. The principles of research on the GHPC were summed up. Key words:Green High Performance Concrete、environment; 0混凝土的发展方向 中国自改革开放以来,国家建设日新月异,取得了举世瞩目的成就。但经济高速发展是一把双刃剑,我们为经济发展而欢呼的同时,也要看到它所带来的一系列问题。资源短缺与环境污染日益成为制约我国经济发展的瓶颈。水泥工业亦是如此:水泥生产过程中资源和能源消耗量大,对环境的污染严重。我国是世界水泥生产第一大国,每年排出CO2近4亿t、SO260万t、NOx100万t、粉尘2000万t左右,严重的破坏了生态环境。[1]进入21世纪以来,国家政府提出坚持科学发展观,构建和谐社会。为了实现水泥工业的可持续发展, 许多学者做了大量的科学研究: 为了实现城市垃圾的再次利用,有学者对生态混凝土进行了研究,并认为是以后混凝土的发展方向。冯乃谦教授指出生态水泥(Eco-cement)是以生态环境(Ecology)与水泥(Cement)的合成语而命名的,它是一种新型的波特兰水泥。这种水泥以城市垃圾烧却灰和下水道污泥为主要原料,经过处理、配料,并通过严格的生产管理而制成的工业制品,从而把生活垃圾和工业废弃物变成了一种有用的建设资源。再生利用是生态水泥的特征。[2] 为了更好的处理废弃混凝土,实现混凝土的循环利用。有学者提出了再生混凝土的概念:再生混凝土是将废弃混凝土经过清洗、破碎、分级和按一定比例相互配合后得到的“再生骨料”作为部分或全部骨料配制的混凝土。[3] 随着经济的发展,人们的环保意识逐渐增强。环境混凝土[4]、环保型混凝土[5]等概念先后出现。 吴中伟院士提出绿色高性能混凝土是混凝土(GHPC)的发展方向。[6]国外学者Aitcin 提出21世纪水泥工业应改名为水硬性胶凝材料工业,他预言21世纪的混凝土发展方向是绿色高性能混凝土。[7] 1绿色高性能混凝土的基本概念 世界环境组织提出广义“绿色”概念,其三大含义为:节约资源、能源;不破坏环境,

土木工程毕业设计文献综述钢筋混凝土框架结构

文献综述 钢筋混凝土框架结构 1.前言 随着经济的发展、科技进步、建筑要求的提升,钢筋混凝土结构在建筑行业得到了迅速发展。随着建筑造型和建筑功能要求日趋多样化,无论是工业建筑还是民用建筑,在结构设计中遇到的各种难题日益增多,钢筋混凝土结构以其界面高度小自重轻,刚度大,承载能力强、延性好好等优点,被广泛应用于各国工程中,特别是桥梁结构、高层建筑及大跨度结构等领域,已取得了良好的经济效益和社会效益。而框架结构具有建筑平面布置灵活、自重轻等优点,可以形成较大的使用空间,易于满足多功能的使用要求,因此,框架结构在结构设计中应用甚广。为了增强结构的抗震能力,框架结构在设计时应遵循以下原则:“强柱弱梁、强剪弱弯、强节点强锚固”。 2.现行主要研究 2.1预应力装配框架结构 后浇整体节点与现浇节点具有相同的抗震能力;钢纤维混凝土对减少节点区箍筋用量有益,但对节点强度、延性和耗能的提高作用不明显。与现浇混凝土节点相比,预应力装配节点在大变形后强度和刚度的衰减及残余变形都小;节点恢复能力强;预制混凝土无粘结预应力拼接节点耗能较小,损伤、强度损失和残余变形也较小。装配节点力学性能受具体构造影响很大,过去进行的研究也较少,一般说,焊接节点整体性好,强度、耗能、延性等方面均可达到现浇节点水平;螺栓连接节点刚度弱,变形能力大,整体性较差。因此,这一类节点连接如应用于抗震区,需做专门抗震设计。 2.2地震破坏 钢筋混凝土在地震破坏过程中瞬态震动周期逐步延长,地震动的低频成分是加剧结构破坏的主要因素,峰值和持时也是非常重要的原因。瞬态振型的变化与结构的破坏部位直接相关。结构破坏过程中,瞬态振型参与系数变化不大。结构瞬态振动周期

自密实混凝土大赛设计书

第五届高强度混凝土设计大赛 队名: 队员:

一、设计依据: 1.GJ55-2011《普通混凝土配合比设计规程》 2.JGJ55-2011《自密实混凝土应用技术规程》 3.50119-2003《混凝土外加剂应用技术规范》 4.BJT46-90《粉煤灰混凝土应用技术规程》 5.JGJ28-86《粉煤灰在混凝土和砂浆中应用技术规程》 7.GJ52-79《普通混凝土用砂质量标准及检验方法》 8.GJ53-79《普通混凝土碎石或卵石质量标准及检验方法》 9. GB50204-2011《混凝土结构工程施工质量验收规范》 10.赵铁军教授的《双掺高性能混凝土配合比实验研究》 二、设计要求 1.自密实混凝土配合比设计原则 (1)自密实混凝土配合比设计应采取绝对体积法。 (2) 自密实混凝土要求拌合物在保持大流动性的同时增加粘聚性。国内外一般均采取增加胶结材与惰性粉体量的方法,也可以采取掺用一部分增粘剂的方法。关于自密实混凝土粉体量欧洲规范则规定为160L-240L浆体用量320L-400L。 (3)在增加胶结材浆体粘性的同时,还要保持大流动性,就需要选择优质高效减水剂。宜选用减水率大于30%的聚羧酸系高效减水剂。 (4 )要选用粒型与级配较优的粗细骨料,并限定粗骨料的最大粒径。关于粗骨料最大粒径,规范规定粗骨料最大粒径为20 mm或25mm。

在增加粉体量的同时,粗骨料用量也相应减少。规范规定粗骨料用量为280 L-350 L。 2.自密实混凝土用料选择 (1)水泥 水泥的主要问题是与外加剂的相容性、标准稠度用水量和强度问题,水泥与外加剂是否相适应,决定着能否配制出某个强度等级的自密实混凝土,因此应选用较稳定的水泥。规范建议使用硅酸盐水泥和普通硅酸盐水泥,也可使用矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥。 (2)粗骨料 宜选用4.75~20mm连续级配的碎(卵)石或 4.75~10mm和10~20mm两个单粒级配碎(卵)石。石子的孔隙率应低于40%。最大粒径可选择25mm,应严格控制针片状含量<8%。 (3)细骨料 宜选用2区中砂或中粗砂。细砂的使用易导致外加剂用量的增加,成本提高,所配制的自密实混凝土粘性较大,粘性较低时易发生泌浆、抓底等问题;粗砂的使用易导致粉体用量较高,成本增加 (4) 矿物掺合料 粉煤灰是自密实混凝土最常用的活性掺合料,具有“活性效应”、“界面效应”、“微填充效应”和“减水效应”。在自密实混凝土中,要求充分发挥这些效应,一是要求活性掺合料的颗粒与水泥颗粒在微观上应形成级配体系;二是球形玻璃体含量要求高,因为球

文献综述-混凝土结构加固技术的一般方法

附件B 本科学生毕业设计(论文) 文献综述 题目混凝土结构加固技术的一般方法 指导教师评语: 指导教师评定成绩签字: 交叉评阅教师评语: 交叉评阅教师评定成绩签字: 教务处

文献综述: 混凝土结构加固技术的一般方法 摘要:结构在长期的自然环境和使用环境的作用下,其功能必然逐渐减弱,我们结构工程的任务不单要作好建筑物前期的设计工作,还要能科学的评估结构损伤的客观规律和程度,并采取有效的方法保证结构的安全的使用,那么,结构的加固将成为一项重要的工作。可以预见的是21世纪,人类建筑物还会以混凝土结构、钢结构、砌体结构等为主,现阶段我认为我们在结构的加固这方面的研究应该还以此为主要突破方向。 关键词:混凝土结构的加固 混凝土结构的加固分为直接加固与间接加固两类,设计时可根据实际条件和使用要求选择适宜的方法和配套的技术。 一、直接加固的一般方法有: 1、加大截面加固法 在钢筋混凝土受弯构件受压区加混凝土现浇层,可增加截面有效高度,扩大截面面积,从而提高构件正截面抗弯,斜截面抗剪能力和截面刚度,起到加固补强的作用。 在适筋范围内,混凝土弯变构件正截面承载力随钢筋面积和强度的增大而提高。在原构件正截面配筋率不太高的情况下,增大主筋面积可有效地提高原构件正截面抗弯承载力。在截面的受拉区加现浇混凝土围套增加构件截面,通过新加部分和原构件共同工作,可有效地提高构件承载力,改善正常使用性能。 加大截面加固法施工工艺简单、适应性强,并具有成熟的设计和施工经验;适用于梁、板、柱、墙和一般构造物的混凝土的加固;但现场施工的湿作业时间长,对生产和生活有一定的影响,且加固后的建筑物净空有一定的减小。 2、置换混凝土加固法

自密实混凝土标准与试验方法

自密实混凝土标准

Ⅰ. 坍落流动度测试方法 1.应用范围 本标准适用于最大粗集料尺寸不超过40mm的自密实混凝土的坍落流动度试验方法。 2.仪器 2.1 坍落度筒,采用《水运工程混凝土试验规程》(JTJ270—98)规定的坍落度筒尺寸。 2.2 钢板,底板采用坚硬不吸水材料,最小边长为800mm的正方型,底板中央有圆形标记,更外围标记有直径为500mm的同心圆。 2.3 刮刀、铲、直尺、秒表 3.步骤 3.1 用湿布擦拭坍落度筒的内外表面和平板表面。将坍落度筒放在水平放置的平板上。 3.2 按照方法A或者方法B向坍落度筒内填充试样。方法A对应于实际建筑物不需要振捣的情况,方法B则对应于需要振捣的情况。在方法A中,混凝土不需插捣或者震动,连续填充。在方法B中,混凝土分三层填充,每层深度相同。用捣棒先使每层水平,然后均匀插捣5次。 注意:(1)水平状态要保持在同一等级上。 (2)准备的试样盛于容器中,向坍落度筒内倒入混凝土并使混凝土均匀分布。 3.3 应在2分钟内将混凝土填充到坍落度筒内。 3.4 抹平混凝土上表面,使其与坍落度筒的上边缘水平,然后立刻垂直向上提起坍落度筒,提升速度稳定并不能有间断[6]。当混凝土的流动停止以后,测量最大直径以及与其成直角方向的直径,取两个直径的平均值作为坍流度。测量只进行一次。

注意:(3)提升坍落度筒至300mm高度的时间应为2到3秒。 3.5 对于500mm流动时间,要测量从提起坍落度筒直到最大直径达到500mm所用的时间,使用秒表测量至0.1秒。 3.6 若要测量流动结束时间,就要用秒表测量从提起坍落度筒开始,直到流动停止所用的时间。 备注:当需要测量坍落度时,应测量混凝土中心的垂直下落高度,将其作为坍落度。测量的坍落度精确至5mm。 4.结果 对坍流度值(mm),成直角方向的两个直径值的测量应精确至1mm。平均值精确至5mm。 备注:如果混凝土扩展流动的形状明显偏离圆形,其坍流度直径的差异达到50mm或者更大时,就需要从同一批次的混凝土中另外取样来重新进行测试。 5 试验报告 试验报告应包括下列必需的项目: (1)时间 (2)天气 (3)气温 (4)批次编号 (5)最大粗集料粒径 (6)混凝土温度 (7)坍落流动度 (8)500mm流动时间 (9)停止流动时间 (10)坍落度 (11)是否观察到离析 6 结果说明 坍流度(SF)值越高,混凝土在自重作用下填充模板的能力越好。对于SCC,要求最低值为650mm。对于特定数值的合理公差方面还没有达成共识,一般可取±50mm。 T50时间是流动度的次要表征。时间短表示流动性好。应用于土木工程方面,建议T50时间可为3~7秒;房屋建筑方面应用时,可为2~5秒。 如果混凝土分离严重,则大多数粗集料停留在混凝土的中央位置,而灰浆或水泥砂浆分布于周边。在混凝土分离较小的情况下,混凝土的边缘将会出现不包裹粗集料的灰浆。如果上述现象没有发生,也不能确定混凝土不会出现分离,因为还有一个时间的影响因素,可能混凝土在经过一个较长的时间后会出现离析现象。

自密实混凝土技术

自密实混凝土技术 一、分项工程概况 本文主要介绍了在北京首都国际机场T3B航站楼工程中,采用高强度自密实清水饰面混凝土施工的方法、特点和难点。因为工程项目的性质为公共建筑,在设计中采用了大跨度、高强度混凝土结构,混凝土强度等级往往达到C50、C60的高强度;同时因为该工程的重要性,就要保证混凝土外观质量,所以设计要求采用清水饰面混凝土。在结合了上述两个问题后,我们在工程实践中就必须既要保证满足结构高强度混凝土的这个要求,又要保证结构为清水饰面混凝土,在这两个前提条件下,再采用自密实混凝土浇筑的技术措施。这就产生了高强度自密实清水饰面混凝土在工程实际中的应用,从而顺利解决了这一问题。 二、施工方法及创新点 自密实混凝土的特点是:能够自流平填密模板空间;不需要振捣,可以降低由于振捣而导致的混凝土的离析现象;采用自密实混凝土可以保证结构中混凝土的密实性;可以减少劳动力,从而节约施工成本;不需要振捣,没有扰民问题。 本工程主要利用了自密实混凝土的匀质性和填密性,依靠其自身重力作用,将模板内钢筋之间的微小空间自流平充满填密实。 工艺流程: 对进入现场的自密实混凝土各项技术指标进行进场验收(塌落度、和易性、流动性)――加固模板――浇筑混凝土自密实周边混凝土――浇筑自密实混凝土――进行振捣 1.商砼控制。 1)本工程所采用的自密实混凝土由中航空港混凝土搅拌站和北京建工搅拌站提供,混凝土强度为C40、C50、 C60,到现场的混凝土塌落度控制在250mm~270mm之间,骨料粒径小于1.5 cm~2.0cm。为了使高强度自密实混凝土与清水混凝土之间的颜色差异控制的可接受范围内,在保证自密实混凝土强度的前提下,经过与搅拌站协商以及试配工作,确定了强度符合要求、流动性、稳定性和通过钢筋间隙能力最佳的自密实混凝土配合比用量。 2)下面是度混凝土在不同强度条件下采用清水混凝土和自密实混凝土,在配合比上的对照表:

相关文档
最新文档