组合机床外文翻译文献

组合机床外文翻译文献
组合机床外文翻译文献

中英文资料外文翻译

TRANSFER AND UNIT MACHINE

While the specific intention and application for transfer and unit machine vary from one machine type to another, all forms of transfer and unit machine have common benefits. Here are but a few of the more important benefits offered by TRANSFER AND UNIT MACHINE equipment.

The first benefit offered by all forms of transfer and unit machine is improved automation. The operator intervention related to producing workpieces can be reduced or eliminated. Many transfer and unit machine can run unattended during their entire machining cycle, freeing the operator to do other tasks. This gives the transfer and unit machine user several side benefits including reduced operator fatigue, fewer mistakes caused by human error, and consistent and predictable machining time for each workpiece. Since the machine will be running under program control, the skill level required of the transfer and unit machine operator (related to basic machining practice) is also reduced as compared to a machinist producing workpieces with conventional machine tools.

The second major benefit of transfer and unit machine technology is consistent and accurate workpieces. Today's transfer and unit machines boast almost unbelievable accuracy and repeatability specifications. This means that once a program is verified, two, ten, or one thousand identical workpieces can be easily produced with precision and consistency.

rd benefit offered by most forms of transfer and unit machine tools is flexibility. Since these machines are run from programs, running a different workpiece

is almost as easy as loading a different program. Once a program has been verified and executed for one production run, it can be easily recalled the next time the workpiece is to be run. This leads to yet another benefit, fast change over. Since these machines are very easy to set up and run, and since programs can be easily loaded, they allow very short setup time. This is imperative with today's just-in-time (JIT) product requirements.

Motion control - the heart of transfer and unit machine

The most basic function of any transfer and unit machine is automatic, precise, and consistent motion control. Rather than applying completely mechanical devices to cause motion as is required on most conventional machine tools, transfer and unit machines allow motion control in a revolutionary manner2. All forms of transfer and unit machine equipment have two or more directions of motion, called axes. These axes can be precisely and automatically positioned along their lengths of travel. The two most common axis types are linear (driven along a straight path) and rotary (driven along a circular path).

Instead of causing motion by turning cranks and handwheels as is required on conventional machine tools, transfer and unit machines allow motions to be commanded through programmed commands. Generally speaking, the motion type (rapid, linear, and circular), the axes to move, the amount of motion and the motion rate (feedrate) are programmable with almost all transfer and unit machine tools.

A transfer and unit machine command executed within the control tells the drive motor to rotate a precise number of times. The rotation of the drive motor in turn rotates the ball screw. And the ball screw drives the linear axis (slide). A feedback device (linear scale) on the slide allows the control to confirm that the commanded number of rotations has taken place3. Refer to fig.1.

Fig.1

Though a rather crude analogy, the same basic linear motion can be found on a common table vise. As you rotate the vise crank, you rotate a lead screw that, in turn, drives the movable jaw on the vise. By comparison, a linear axis on a transfer and unit machine machine tool is extremely precise. The number of revolutions of the axis drive motor precisely controls the amount of linear motion along the axis.

How axis motion is commanded - understanding coordinate systems

It would be infeasible for the transfer and unit machine user to cause axis motion by trying to tell each axis drive motor how many times to rotate in order to command a given linear motion amount4. (This would be like having to figure out how many turns of the handle on a table vise will cause the movable jaw to move exactly one inch!) Instead, all transfer and unit machine controls allow axis motion to be commanded in a much simpler and more logical way by utilizing some form of coordinate system. The two most popular coordinate systems used with transfer and unit machines are the rectangular coordinate system and the polar coordinate system. By far, the more popular of these two is the rectangular coordinate system.

The program zero point establishes the point of reference for motion commands in a transfer and unit machine program. This allows the programmer to specify movements from a common location. If program zero is chosen wisely, usually coordinates needed for the program can be taken directly from the print.

With this technique, if the programmer wishes the tool to be sent to a position one inch to the right of the program zero point, X1.0 is commanded. If the programmer wishes the tool to move to a position one inch above the program zero point, Y1.0 is commanded. The control will automatically determine how many times to rotate each axis drive motor and ball screw to make the axis reach the commanded destination point . This lets the programmer command axis motion in a very logical manner. Refer to fig.2, 3.

Fig.2

Fig.3

All discussions to this point assume that the absolute mode of programming is used6. The most common transfer and unit machine word used to designate the absolute mode is G90. In the absolute mode, the end points for all motions will be specified from the program zero point. For beginners, this is usually the best and easiest method of specifying end points for motion commands. However, there is another way of specifying end points for axis motion.

In the incremental mode (commonly specified by G91), end points for motions are specified from the tool's current position, not from program zero. With this method of commanding motion, the programmer must always be asking "How far should I move the tool?" While there are times when the incremental mode can be very helpful, generally speaking, this is the more cumbersome and difficult method of specifying motion and beginners should concentrate on using the absolute mode.

Be careful when making motion commands. Beginners have the tendency to

think incrementally. If working in the absolute mode (as beginners should), the programmer should always be asking "To what position should the tool be moved?" This position is relative to program zero, NOT from the tools current position.

Aside from making it very easy to determine the current position for any command, another benefit of working in the absolute mode has to do with mistakes made during motion commands. In the absolute mode, if a motion mistake is made in one command of the program, only one movement will be incorrect. On the other hand, if a mistake is made during incremental movements, all motions from the point of the mistake will also be incorrect.

Assigning program zero

Keep in mind that the transfer and unit machine control must be told the location of the program zero point by one means or another. How this is done varies dramatically from one transfer and unit machine and control to another8. One (older) method is to assign program zero in the program. With this method, the programmer tells the control how far it is from the program zero point to the starting position of the machine. This is commonly done with a G92 (or G50) command at least at the beginning of the program and possibly at the beginning of each tool.

Another, newer and better way to assign program zero is through some form of offset. Refer to fig.4. Commonly machining center control manufacturers call offsets used to assign program zero fixture offsets. Turning center manufacturers commonly call offsets used to assign program zero for each tool geometry offsets.

Fig. 4

Flexible manufacturing cells

A flexible manufacturing cell (FMC) can be considered as a flexible manufacturing subsystem. The following differences exist between the FMC and the FMS:

1.An FMC is not under the direct control of the

central computer. Instead, instructions from the central

computer are passed to the cell controller.

2.The cell is limited in the number of part families it

can manufacture.

The following elements are normally found in an FMC:

?Cell controller

?Programmable logic controller (PLC)

?More than one machine tool

?A materials handling device (robot or pallet)

The FMC executes fixed machining operations with parts flowing sequentially between operations.

High speed machining

The term High Speed Machining (HSM) commonly refers to end milling at high rotational speeds and high surface feeds. For instance, the routing of pockets in aluminum airframe sections with a very high material removal rate1. Over the past 60 years, HSM has been applied to a wide range of metallic and non-metallic workpiece materials, including the production of components with specific surface topography requirements and machining of materials with hardness of 50 HRC and above. With most steel components hardened to approximately 32-42 HRC, machining options currently include: Rough machining and semi-finishing of the material in its soft (annealed) condition heat treatment to achieve the final required hardness = 63 HRC machining of electrodes and Electrical Discharge Machining (EDM) of specific parts of dies and moulds (specifically small radii and deep cavities with limited

accessibility for metal cutting tools) finishing and super-finishing of cylindrical/flat/cavity surfaces with appropriate cemented carbide, cermet, solid carbide, mixed ceramic or polycrystalline cubic boron nitride (PCBN)

For many components, the production process involves a combination of these options and in the case of dies and moulds it also includes time consuming hand finishing. Consequently, production costs can be high and lead times excessive.

It is typical in the die and mould industry to produce one or just a few tools of the same design. The process involves constant changes to the design, and because of these changes there is also a corresponding need for measuring and reverse engineering .

The main criteria is the quality level of the die or mould regarding dimensional, geometric and surface accuracy. If the quality level after machining is poor and if it cannot meet the requirements, there will be a varying need of manual finishing work. This work produces satisfactory surface accuracy, but it always has a negative impact on the dimensional and geometric accuracy.

One of the main aims for the die and mould industry has been, and still is, to reduce or eliminate the need for manual polishing and thus improve the quality and shorten the production costs and lead times.

Main economical and technical factors for the development of HSM

Survival

The ever increasing competition in the marketplace is continually setting new standards. The demands on time and cost efficiency is getting higher and higher. This has forced the development of new processes and production techniques to take place. HSM provides hope and solutions...

Materials

The development of new, more difficult to machine materials has underlined the necessity to find new machining solutions. The aerospace industry has its heat resistant and stainless steel alloys. The automotive industry has different bimetal compositions, Compact Graphite Iron and an ever increasing volume of aluminum3. The die and mould industry mainly has to face the problem of machining high

hardened tool steels, from roughing to finishing.

Quality

The demand for higher component or product quality is the result of ever increasing competition. HSM, if applied correctly, offers a number of solutions in this area. Substitution of manual finishing is one example, which is especially important on dies and moulds or components with a complex 3D geometry.

Processes

The demands on shorter throughput times via fewer setups and simplified flows (logistics) can in most cases, be solved by HSM. A typical target within the die and mould industry is to completely machine fully hardened small sized tools in one setup. Costly and time consuming EDM processes can also be reduced or eliminated with HSM.

Design & development

One of the main tools in today's competition is to sell products on the value of novelty. The average product life cycle on cars today is 4 years, computers and accessories 1.5 years, hand phones 3 months... One of the prerequisites of this development of fast design changes and rapid product development time is the HSM technique.

Complex products

There is an increase of multi-functional surfaces on components, such as new design of turbine blades giving new and optimized functions and features. Earlier designs allowed polishing by hand or with robots (manipulators). Turbine blades with new, more sophisticated designs have to be finished via machining and preferably by HSM . There are also more and more examples of thin walled workpieces that have to be machined (medical equipment, electronics, products for defence, computer parts) Production equipment

The strong development of cutting materials, holding tools, machine tools, controls and especially CAD/CAM features and equipment, has opened possibilities that must be met with new production methods and techniques5.

Definition of HSM

Salomon's theory, "Machining with high cutting speeds..." on which, in 1931,

took out a German patent, assumes that "at a certain cutting speed (5-10 times higher than in conventional machining), the chip removal temperature at the cutting edge will start to decrease..."

Given the conclusion:" ... seems to give a chance to improve productivity in machining with conventional tools at high cutting speeds..."

Modern research, unfortunately, has not been able to verify this theory totally. There is a relative decrease of the temperature at the cutting edge that starts at certain cutting speeds for different materials.

The decrease is small for steel and cast iron. But larger for aluminum and other non-ferrous metals. The definition of HSM must be based on other factors.

Given today's technology, "high speed" is generally accepted to mean surface speeds between 1 and 10 kilometers per minute or roughly 3 300 to 33 000 feet per minute. Speeds above 10 km/min are in the ultra-high speed category, and are largely the realm of experimental metal cutting. Obviously, the spindle rotations required to achieve these surface cutting speeds are directly related to the diameter of the tools being used. One trend which is very evident today is the use of very large cutter diameters for these applications - and this has important implications for tool design.

There are many opinions, many myths and many different ways to define HSM. Maintenance and troubleshooting

Maintenance for a horizontal MC

The following is a list of required regular maintenance for a Horizontal Machining Center as shown in fig.5. Listed are the frequency of service, capacities, and type of fluids required. These required specifications must be followed in order to keep your machine in good working order and protect your warranty.

fig. 5

Daily

Top off coolant level every eight hour shift (especially during heavy TSC usage).

Check way lube lubrication tank level.

Clean chips from way covers and bottom pan.

Clean chips from tool changer.

Wipe spindle taper with a clean cloth rag and apply light oil.

Weekly

?Check for proper operation of auto drain on filter regulator.

On machines with the TSC option, clean the chip basket on the coolant tank.

Remove the tank cover and remove any sediment inside the tank. Be careful to disconnect the coolant pump from the controller and POWER OFF the control before working on the coolant tank . Do this monthly for machines without the TSC option.

Check air gauge/regulator for 85 psi.

For machines with the TSC option, place a dab of grease on the V-flange of tools. Do this monthly for machines without the TSC option.

Clean exterior surfaces with mild cleaner. DO NOT use solvents.

Check the hydraulic counterbalance pressure according to the machine's specifications.

Place a dab of grease on the outside edge of the fingers of the tool changer and run through all tools".

Monthly

数控加工外文翻译

数控加工中心技术发展趋势及对策 原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China) 一、摘要 Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, Keywords:Numerical ControlTechnology, E quipment,industry 二、译文 数控技术和装备发展趋势及对策 装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最为核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外,世界上各工业发达国家还将数控技术及数控装备列为国家的战

机械毕业设计英文外文翻译608组合机床CAD系统开发与研究

外文资料 The aggregate machine-tool CAD system development and research Abstract aggregate machine-tool CAD is in Window 95/98, Wndows under the NT4.0 environment, designs personnel's special-purpose CAD system with VC5.0 and the AutoCAD R14 ADS/ARX technology development face the aggregate machine-tool.This software technological advance, performance reliable, function strong, convenient practical, has provided the modernized design tool for our country aggregate machine-tool profession. Key word: Aggregate machine-tool CAD jig CAD multi-axle-box CAD 1 uses the aggregate machine-tool CAD technology imperative The aggregate machine-tool is with according to serialized, the standardized design general part and the special purpose machine which composes according to the work piece shape and the processing technological requirement design special-purpose part, belongs to the disposable design, the disposable manufacture piecework product.Therefore, the design quantity is big, the design work is complex.In the

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

中英文文献翻译-加工中心数控技术

加工中心数控技术 出处:数控加工中心的分类以及各自特点 出版社:化学工业出版社; 第1版 (2009年3月16日) 作者:徐衡、段晓旭 加工中心是典型的集高技术于一体的机械加工设备,它的发展代表了一个国家设计制造的水平也大大提高了劳动生产率,降低了劳动成本,改善了工人的工作环境,降低了工人的劳动强度。本文经过对不同运动方案和各部件的设计方案的定性分析比较确定该教立式加工中心的进给传动方案为:采用固定床身,电主轴通过安装座安装在床身导轨的滑座上,床身导轨采用滚动导轨,可以实现Y 方向的进给运动。由X-Y双向精密数控工作台带动工件完成X,Y两个方向的进给运动;X,Y,Z三个方向的进给运动均滚珠丝杠,并由交流伺服电机驱动。导轨、滚珠丝杠有相应的润滑、防护等装置。 加工中心(英文缩写为CNC 全称为Computerized Numerical Control):是带有刀库和自动换刀装置的一种高度自动化的多功能数控机床。在中国香港,台湾及广东一代也有很多人叫它电脑锣。 工件在加工中心上经一次装夹后,数字控制系统能控制机床按不同工序,自动选择和更换刀具,自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其他辅助机能,依次完成工件几个面上多工序的加工。并且有多种换刀或选刀功能,从而使生产效率大大提高。 加工中心数控机床是一种装有计算机数字控制系统的机床,数控系统能够处理加工程序,控制机床完成各种动作。与普通机床相比,数控机床能够完成平面曲线和空间曲面的加工,加工精度和生产效率都比较高,因而应用日益广泛。 数控机床的组成 一般来说,数控机床由机械部分、数字控制计算机、伺服系统、PC控制部分、液压气压传动系统、冷却润滑和排泄装置组成。数控机床是由程序控制的,零件的编程工作是数控机床加工的重要组成部分。伺服系统是数控机床的驱动部分,计算机输出的控制命令是通过伺服系统产生坐标移动的。普通的立式加工中心有三个伺服电机,分别驱动纵向工作台、横向工作台、主轴箱沿X向、Y向、Z向运动。X、Y、Z是互相垂直的坐标轴,因而当机床三坐标联动时可以加工空

镗削加工和镗床机床工艺夹具外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院 本科毕业设计外文资料翻译 系别:工程技术系 专业:机械制造设计及其自动化 姓名:李旭 学号: 05211501 2015年 4 月 2 日

英文翻译原文: (一)镗削加工和镗床 像车床加工零件一样,镗床能在中空的工件或由钻削加工或其它工艺所加工的孔上进行内轮廓圆的加工。镗削是由那些类似车削的刀具完成的。因为镗头必须达到镗杆的全长,刀具将发生弯曲,因此,尺寸精度的保持性成为了一个重大问题。 镗杆必须有足够的刚度——刀杆是由较高弹性模量的材料制造的,比如碳化钨(硬质合金)——去减小弯曲和避免摇动和振动。镗杆被设计有减振的能力。 镗床既能加工在车床上加工的较小工件,镗铣床又能加工巨大的工件。这类机械既有立式的又有卧式的并且能够完成如:车削、车端面、切槽、和倒角。一台立式的镗床类似一台车床,但它有一根垂直的工件旋转轴。 刀具(通常用于切削的单独切削点是由M-2和M-3高速钢和C-8硬质合金制造的)被安装于能垂直运动(用于镗削和车削)和径向运动(用于车端面)并由十字导轨导向的刀头上。刀头能够旋转去加工圆锥形表面。 在卧式镗床上工件被装夹在能在水平面内两个轴向和径向上移动的工作台上,刀具被安装于能做垂直和纵向两方向上运动的主轴箱上。钻头、铰刀、螺纹刀和铣刀都能安装于机床主轴上。 镗床具有许多优良的性能,它所加工工件的直径是1m-4m(3ft-12ft),工件尺寸达到20m(60ft)的可在专用的立式镗床上加工。机床功率范围可达到150kw(200hp)。这些可用于所有运动都能编程的数字控制加工。利用这些控制,只需要很少的相关操作,并且稳定性和生产率大大提高了。镗床的切削速度和进给速度和车床比较相似。 坐标镗床是属于具有较高精度支撑的立式镗床。尽管它们可用于各类尺寸的工件加工和拥有夹紧合安装的刀具空间。它们正被多功能的数控机床取代。 镗床的设计要求:导轨的效率,类似于车削的经济型操作,另外,应该考虑以下因素: a.无论何时,应尽可能注意是加工通孔而并盲孔。(盲孔系列是指那些没有穿国工件厚度的孔) b.应该控制径向进给速率,很难去支撑径向,因为切削力引起镗杆的弯曲变形。 c.应该避免交叉的内表面加工。

组合机床毕业设计外文翻译

The Aggregate Machine-tool The Aggregate Machine-tool is based on the workpiece needs, based on a large number of common components, combined with a semi-automatic or automatic machine with a small number of dedicated special components and process according to the workpiece shape and design of special parts and fixtures, composed. Combination machine is generally a combination of the base, slide, fixture, power boxes, multi-axle, tools, etc. From. Combination machine has the following advantages: (1) is mainly used for prism parts and other miscellaneous pieces of perforated surface processing. (2) high productivity. Because the process of concentration, can be multi-faceted, multi-site, multi-axis, multi-tool simultaneous machining. (3) precision and stability. Because the process is fixed, the choice of a mature generic parts, precision fixtures and automatic working cycle to ensure consistent processing accuracy. (4) the development cycle is short, easy to design, manufacture and maintenance, and low cost. Because GM, serialization, high degree of standardization, common parts can be pre-manufactured or mass organizations outsourcing. (5) a high degree of automation, low labor intensity. (6) flexible configuration. Because the structure is a cross-piece, combination. In accordance with the workpiece or process requirements, with plenty of common parts and a few special components consisting of various types of flexible combination of machine tools and automatic lines; tools to facilitate modification: the product or process changes, the general also common components can be reused. Combination of box-type drilling generally used for processing or special shape parts. During machining, the workpiece is generally not rotate, the rotational motion of the tool relative to the workpiece and tool feed movement to achieve drilling, reaming, countersinking, reaming, boring and other processing. Some combination of turning head clamp the workpiece using the machine to make the rotation, the tool for the feed motion, but also on some of the rotating parts (such as the flywheel, the automobile axle shaft, etc.) of cylindrical and face processing. Generally use a combination of multi-axis machine tools, multi-tool, multi-process, multi-faceted or multi-station machining methods simultaneously, productivity increased many times more than generic tools. Since the common components have been standardized and serialized, so can be flexibly configured according to need, you can shorten the design and manufacturing cycle. Multi-axle combination is the core components of general machine tools. It is the choice of generic parts, is designed according to special requirements, in combination machine design process, is one component of a larger workload. It is based on the number and location of the machining process diagram and schematic design combination machine workpiece determined by the hole, cutting the amount of power transmission components and the design of each spindle spindle type movement. Multi-axle power from a common power box, together with the power box installed on the feed slide, to be completed by drilling, reaming and other machining processes. The parts to be processed according to the size of multi-axle box combination machine tool design, based on an original drawing multi-axle diagram, determine the range of design data,

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

机械类数控车床外文翻译外文文献英文文献车床.doc

Lathes Lathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool. The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod. The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives. Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle. The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw. The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers. Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up

牛头刨床、钻床和铣削机床夹具外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院本科毕业设计外文资料翻译 系别:工程技术系 专业:机械设计制造及其自动化 姓名:路双铭 学号: 05211623 2015 年 4 月 1 日

Shapers, Drilling and Milling Machines A shapers utilizes a single-point tool on a tool holder mounted on the end of the ram. Cutting is generally done on the forward stroke. The tool is lifted slightly by the clapper box to prevent excessive drag across the work, which is fed under the tool during the return stroke in preparation for the next cut. The column houses the operating mechanisms of the shaper and also serves as a mounting unit for the work-supporting table. The table can be moved in two directions mutually perpendicular to the ram. The tool slide is used to control the depth of cut and is manually fed. It can be rotated through 90 deg, on either side of its normal vertical position, which allows feeding the tool at an angle to the surface of the table. Two types of driving mechanisms for shapers are a modified Whitworth quick-return mechanism and a hydraulic drive. For the Whitworth mechanism, the motor drives the bull gear, which drives a crank arm with an adjustable crank pin to control the length of stroke. As the bull gear rotates, the rocker arm is forced to reciprocate, imparting this motion to the shaper ram. The motor on a hydraulic shaper is used only to drive the hydraulic pump. The remainder of the shaper motions are controlled by the direction of the flow of the hydraulic oil. The cutting stroke of the mechanically driven shaper uses 220 deg. Of rotation of the bull gear, while the return stroke uses 140 deg. This gives a cutting stroke to return stroke ratio of 1.6 to 1. The velocity diagram for a hydraulic shaper shows that for most of the tool during cutting stroke is never constant, while the velocity diagram for a hydraulic shaper shows that for most of the cutting stroke the cutting speed is constant. The hydraulic shaper has an added advantage of infinitely variable cutting speeds. The principal disadvantage of this type of machine is the lack of a definite limit at the end of the ram stroke, which may allow a few thousandths of an inch variation in stroke length. A duplicating device that makes possible the reproduction of contours from a sheet-metal template is available. The sheet metal template is used in conjunction with hydraulic control. Upright drilling machines or drill presses are available in a variety of sizes and types, and are equipped with a sufficient range of apindle speeds and automatic feeds to fit the neds of most industries. Speed ranges on a typical machine are from 76 to 2025 rpm., with drill feed from 0.002 to 0.020 in.per revolution of the spindle. Radial drilling machines are used to drill workpieces that are too large or

组合机床外文文献

Int J Adv Manuf Technol (2006) 29: 178–183 DOI 10.1007/s00170-004-2493-9
ORIGINAL ARTICLE
Ferda C. C ? etinkaya
Unit sized transfer batch scheduling in an automated two-machine ?ow-line cell with one transport agent
Received: 26 July 2004 / Accepted: 22 November 2004 / Published online: 16 November 2005 ? Springer-Verlag London Limited 2005 Abstract The process of splitting a job lot comprised of several identical units into transfer batches (some portion of the lot), and permitting the transfer of processed transfer batches to downstream machines, allows the operations of a job lot to be overlapped. The essence of this idea is to increase the movement of work in the manufacturing environment. In this paper, the scheduling of multiple job lots with unit sized transfer batches is studied for a two-machine ?ow-line cell in which a single transport agent picks a completed unit from the ?rst machine, delivers it to the second machine, and returns to the ?rst machine. A completed unit on the ?rst machine blocks the machine if the transport agent is in transit. We examine this problem for both unit dependent and independent setups on each machine, and propose an optimal solution procedure similar to Johnson’s rule for solving the basic two-machine ?owshop scheduling problem. Keywords Automated guided vehicle · Lot streaming · Scheduling · Sequencing · Transfer batches entire lot to ?nish its processing on the current machine, while downstream machines may be idle. It should be obvious that processing the entire lot as a single object can lead to large workin-process inventories between the machines, and to an increase in the maximum completion time (makespan), which is the total elapsed time to complete the processing of all job lots. However, the splitting of an entire lot into transfer batches to be moved to downstream machines permits the overlapping of different operations on the same product while work proceeds, to complete the lot on the upstream machine. There are many ways to split a lot: transfer batches may be equal or unequal, with the number of splits ranging from one to the number of units in the job lot. For instance, consider a job lot consisting of 100 identical items to be processed in a three-stage manufacturing environment in which the ?ow of its operations is unidirectional from stage 1 through stage 3. Assume that the unit processing time at stages 1, 2, and 3 are 1, 3, 2 min, respectively. If we do not allow transfer batches, the throughput time is (100)(1+3+2) = 600 min (see Fig. 1a). However, if we create two equal sized transfer batches through all stages, the throughput time decreases to 450 min, a reduction of 25% (see Fig. 1b). It is clear that the throughput time decreases as the number of transfer batches increases. Flowshop problems have been studied extensively and reported in the literature without explicitly considering transfer batches. Johnson [1], in his pioneering work, proposed a polynomial time algorithm for determining the optimal makespan when several jobs are processed on a two-machine (two-stage) ?owshop with unlimited buffer. With three or more machines, the problem has been proven to be NP-hard (Garey et al. [2]). Besides the extension of this problem to the m -stage ?owshop problem, optimal solutions to some variations of the basic two-stage problem have been suggested. Mitten [3] considered arbitrary time lags, and optimal scheduling with setup times separated from processing was developed by Yoshida and Hitomi [4]. Separation of the setup, processing and removal times for each job on each machine was considered by Sule and Huang [5]. On the other hand, ?owshop scheduling problems with transfer batches have been examined by various researchers. Vickson
1 Introduction
Most classical shop scheduling models disregard the fact that products are often produced in lots, each lot (process batch) consisting of identical parts (items) to be produced. The size of a job lot (i.e., the number of items it consists of) typically ranges from a few items to several hundred. In any case, job lots are assumed to be indivisible single entities, although an entire job lot consists of many identical items. That is, partial transfer of completed items in a lot between machines on the processing routing of the job lot is impossible. But it is quite unreasonable to wait for the
F.C. ?etinkaya (u) Department of Industrial Engineering, Eastern Mediterranean University, Gazimagusa-T.R.N.C., Mersin Turkey E-mail: ferda.cetinkaya@https://www.360docs.net/doc/f09034275.html,.tr Tel.: +90-392-6301052 Fax: +90-392-3654029

相关文档
最新文档