剪力墙等效抗弯刚度

剪力墙等效抗弯刚度
剪力墙等效抗弯刚度

《高层建筑结构与抗震》辅导文章五

剪力墙结构内力与位移计算

学习目标

1、了解剪力墙结构的分类,以及各种剪力墙的受力特点;

2、熟悉剪力墙的分类判别式。

3、掌握整体墙和小开口整体墙的内力及位移计算、掌握双肢墙的内力及位移计算。

学习重点

1、剪力墙的分类及分类判别式;

2、整体和小开口整体墙的内力及位移计算;

3、双肢墙的内力及位移计算。

剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本章着重讨论剪力墙在水平荷载作用下的内力及位移计算。

一、基本假定

剪力墙结构是一个比较复杂的空间结构,为了简化,剪力墙在水平荷载作用下计算时,作如下假定:

(1)楼板在其自身平面内的刚度极大,可视其为刚度无限大的刚性楼盖;

(2)剪力墙在其自身平面内的刚度很大,而在其平面外的刚度又极小,可忽略不计。因此可以把空间结构化作平面结构处理,即剪力墙只承受在其自身平面内的水平荷载。

基于以上两个假定,剪力墙结构在水平荷载作用下可按各片剪力墙的等效抗弯刚度分配水平力给各片剪力墙,然后分别进行内力和位移计算。例如图6-1(a)所示的剪力墙结构可分别按图6-1(b)和图6-1(c)的剪力墙考虑。同时,现行国家标准《高层建筑混凝土结构技术规程》(JGJ3-2002)为考虑纵、横墙的共同工作,将纵墙的一部分作为横墙的有效翼缘,横墙的一部分也可以作为纵墙的有效翼缘。

剪力墙的等效抗弯刚度是一个非常重要的概念,是指按剪力墙顶点侧移相等的原则,考虑弯曲变形和剪切变形后,折算成一个竖向悬臂受弯构件的抗弯刚度。

图6-1 剪力墙结构计算图

二、剪力墙的分类

为满足使用要求,剪力墙常开有门窗洞口。理论分析和试验研究表明,剪力墙的受力特性与变形状态主要取决于剪力墙上的开洞情况。洞口是否存在,洞口的大小、形状及位置的不同都将影响剪力墙的受力性能。剪力墙按受力特性的不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)和壁式框架等几种类型。

1.整体剪力墙

无洞口的剪力墙或剪力墙上开有一定数量的洞口,但洞口的面积不超过墙体面积的15%,且洞口至墙边的净距及洞口之间的净距大于洞孔长边尺寸时,可以忽略洞口对墙体的影响,这种墙体称为整体剪力墙。

2.小开口整体剪力墙

当剪力墙上所开洞口面积稍大且超过墙体面积的15%时,在水平荷载作用下,这类剪力墙截面上的正应力分布略偏离了直线分布的规律,变成了相当于在整体墙弯曲时的直线分布应力之上叠加了墙肢局部弯曲应力,当墙肢中的局部弯矩不超过墙体整体弯矩的15%时,其截面变形仍接近于整体截面剪力墙,这种剪力墙称之为小开口整体剪力墙。

3.联肢剪力墙

当剪力墙沿竖向开有一列或多列较大的洞口时,由于洞口较大,剪力墙截面的整体性已被破坏,剪力墙的截面变形已不再符合平截面假设。这时剪力墙成为由一系列连梁约束的墙肢所组成的联肢墙。开有一列洞口的联肢墙称为双肢墙,当开有多列洞口时称之为多肢墙。

4.壁式框架

当剪力墙的洞口尺寸较大,墙肢宽度较小,连梁的线刚度接近于墙肢的线刚度时,剪力墙的受力性能已接近于框架,这种剪力墙称为壁式框架。

图6-2为剪力墙墙体上洞口大小对剪力墙工作性能的影响

图6-2剪力墙的分类

不同类型的剪力墙,其相应的受力特点、计算简图和计算方法也不相同,计算其内力和位移时则需采用相应的计算方法。以下分别介绍几种常见剪力墙的内力与位移计算方法。

三、整体剪力墙的内力与位移计算

对于整体剪力墙,在水平荷载作用下,根据其变形特征,可视为一整体的悬臂弯曲杆件,用材料力学中悬臂梁的内力和变形的基本公式进行计算。

1.内力计算

按上端自由,下端固定的悬臂梁计算其任意截面的弯矩和剪力。

2.位移计算

在位移计算时,由于剪力墙的截面高度较大,应考虑其剪切变形影响。当开洞时,应考虑洞口对位移增大的影响。

整体剪力墙的顶点位移?可按以下公式计算:

(1)均布荷载作用时,如图6-3(a )所示,

(6-1)

图6-3 剪力墙结构顶点位移计算图

(2)倒三角形荷载作用时,如图6-3(b )所示,

(6-2)

(3)顶点集中力下作用时,如图6-3(c )所示。

(6-3)

式中,0V 为剪力墙底部的总剪力;H 为剪力墙总高度;w A 为考虑洞口影响的剪力墙水平截面的折算面积;μ为剪应力分布不均匀系数;w J 为考虑洞口影响的剪力墙水平截面的折算惯性矩;d EJ 为剪力墙的等效抗弯刚度;E 为混凝土的弹性模量;G 为混凝土的剪力模量。

由式(6-1)、式(6-2)、式(6-3)分别得出各种水平荷载作用下剪力墙的等效抗弯刚度。

???????

????????+=+=+=2223164.3141H GA EJ EJ EJ H GA EJ EJ EJ H GA EJ EJ EJ w w w d w w w d w w w d μμμ顶点集中荷载时倒三角形荷载时

均布荷载时

(6-4) 将式(6-4)用c E G 42.0=代人,可近似归并为一个统一的计算式:

2

91H A J EJ EJ w w w d μ+= (6-5)

四、小开口整体墙的内力及位移计算

小开口整体墙的洞口总面积虽超过了墙总立面面积的15%,但总的来说洞口仍很小,其受力性能仍能接近于整体剪力墙,各墙肢中仅有少量的局部弯矩,在沿墙肢的高度方向,弯矩图形不出现反弯点。因此,在计算中仍可用材料力学公式计算其内力和侧移,但须考虑局部弯曲应力的作用,作一些修正。

1.内力计算

先将小开口整体墙作为一悬臂构件,按图6-4算出其标高之处的截面所承受的总弯矩FZ M 和总剪力FZ V 。

图6-4小开口整体墙计算图

(1)墙肢弯矩计算

小开口整体墙墙肢的总弯矩是由两部分弯矩叠加而成,其一是作为整体悬臂墙产生整体弯曲的弯矩'Zi M ,另一为产生局部弯曲的弯矩'

'Zi M 。

第i 墙肢的全部弯矩Zi M 为 (6-6)

式中,K 为整体弯矩系数,可取K=0.85;i J 为墙肢i 的惯性矩;J 为剪力墙整个截面的惯性

矩。 ()∑-+=+=i i FZ i FZ Zi Zi Zi J J M K J J KM M M M 1''

'

(2)墙肢剪力计算

墙肢剪力,底层按墙肢截面面积分配;其余各层墙肢剪力,可按材料力学公式计算截面面积和惯性矩比例的平均值分配剪力,第i 墙肢分配到的剪力Zi V 可近似地表达为:

???

? ??+=∑∑i

i i i FZ Zi J J A A V V 21 (6-7) 式中,i A 为墙肢截面面积。

(3)墙肢轴力计算 各墙肢所受的轴力应为整体弯曲使墙肢受到的正应力的合力,局部弯曲并不在墙肢中产生轴力。因此

(6-8)

式中,i x 为微面积i dA 的形心到墙肢i 的截面形心间的距离;i y 为墙肢i 的截面形心到剪力墙整个截面的形心间的距离。

2.侧移

小开口整体墙的侧移计算仍可按整体剪力墙公式计算,但应考虑洞口对截面刚度的削弱。因此,应将计算结果乘侧移增大系数1.2,即

按整体截面墙计算小开口墙?=?2.1 (6-9)

五、双肢墙的内力与位移计算

当墙上的门窗洞口尺寸较大时,剪力墙已被洞口分割成彼此联系较弱的若干墙肢,于是在整个剪力墙截面上的正应力分布己不再成直线。

墙面上开有一排洞口的墙称双肢墙;当开有多排洞口时,称多肢墙。

双肢墙由于连系梁的连结,而使双肢墙结构在内力分析时成为一个高次超静定的问题。为了简化计算,一般可用解微分方程的办法计算。

1.基本假定

(1)将每一楼层处的连系梁简化为均匀连续分布的连杆,见图6-5;

图6-5 双肢剪力墙计算图

(2)忽略连系梁的轴向变形,即假定两墙肢在同一标高处的水平位移相等;

(3)假定两墙肢在同一标高处的转角和曲率相等,即变形曲线相同;

(4)假定各连系梁的反弯点在该连系梁的中点;

(5)认为双肢墙的层高h 、惯性矩1J 、2J ;截面积1A 、2A ;连系梁的截面积l A 和惯性矩l J 等参数,沿墙高度方向均为常数。

根据以上假定,可得双肢墙的计算简图,如图6-5(b )所示。图中连系梁的计算跨度2

0l h l l +=(l h 为连系梁的高度)。 2.内力及侧移计算

将连续化后的连续梁沿中线切开,见图6-5(c ),由于跨中为反弯点,故切开后在截面上只有剪力集度V (z )及轴力集度()z N l 。根据外荷载、V (z )及()z N l 共同作用下,沿V (z )方向的相对位移等于零的变形协调条件,可建立一个二阶常系数非齐次线性微分方程,考虑边界条件后,可求得微分方程的解,进而可求得双肢剪力墙在水平荷载作用下的内力和侧移。其具体的计算过程如下:

(1)计算几何参数。

计算连系梁的折算惯性矩l J

2

00301l A J J J l l l l μ+= (6-10) 计算连系梁的刚度特征值

3

2

2l a J D l = (6-11) 计算双肢剪力墙组合截面形心轴的面积矩S

1

111A A A aA S += (6-12) 计算未考虑轴向变形的系数2

1α ()21221

6J J h D H +=α (6-13) 计算整体系数2

α =2

α()hSa D H J J h D H 221266++ (6-14) 计算剪切参数1γ

()()()()

2122121221138.2A A H J J A A G H J J E ++≈++=

μγ (6-15) 计算等效抗弯刚度d EJ

()

12212212141γψα

αααα++-+J J E (均布荷载) d EJ = ()

122122

1

2164.31γψα

αααα++-+J J E (倒三角形荷载) (6-16)

()12212212131γψααααα++-

+J J E (顶点集中荷载)

其中 ??

? ??--+αααααααch sh ch 22211218 (均布荷载) αψ= ??

? ??--+αααααααααch sh ch sh sh 23222321160 (倒三角形荷载) (6-17) αα

αth 3233- (顶点集中荷载) (2)双肢剪力墙的内力计算

计算连系梁的约束弯矩()ξm

()ξm =()ξφα

α2210V (6-18) 式中()ξφ根据ξ和α查表得到。

计算连系梁的剪力li V

()

()n i h m V i i li ,,, 21==αξ (6-19) 计算连系梁端弯矩li M

2

0l V M li li ?

= (6-20) 计算墙肢的轴力ji N

()),,2,1(2,11n i j V N n k lk ji ===

∑= (6-21) 计算墙肢的弯矩ji M ()ξ∑-=n

i i Fi i m M M (6-22)

i i M J J J M 2111+=

; i i M J J J M 2

122+= (6-23) 计算墙肢的剪力ji V i i V J J J V 2111'''+=; i i V J J J V 2

122'''+= ()n i ,,2,1 = (6-24)

2

121'h GA EJ J J j j

i j μ+=

()2,1=j (6-25) (3)计算双肢剪力强的侧移?。

d

EJ H V 3

081 (均布荷载) =? d

EJ H V 3

06011 (倒三角形荷载) (6-26) d

EJ H V 3

031 (顶点集中荷载)

六、多肢墙的内力与位移计算

具有多于一排且排列整齐的洞口时,就成为多肢剪力墙。多肢墙也可以采用连续连杆法求解,基本假定和基本体系取法都和双肢墙类似。在每个连梁切口处建立一个变形协调方程,则可建立k 个微分方程。要注意,在建立第i 个切口处协调方程时,除了i 跨连梁内力影响外,还要考虑第i-1跨连梁内力和第i+1跨连梁内力对i 墙肢的影响。

将k 个微分方程叠加,可建立与双肢墙完全相同的微分方程,取得完全相同的微分方程解。双肢墙的公式和图表都可以应用,但必须注意下面几点区别:

(1)多肢墙中共有k+1个墙肢,要把双肢墙中墙肢惯性矩和及面积和改为惯性矩和及面积和,即用∑+=1

1k i i J 代替(21J J +),用∑+=11k i i A 代替(21A A +)。

(2)多肢墙中有k 个连梁,每个连梁的刚度i D 用下式计算:

320i i bi i a c J D = (i=1,2,…,k ) (6-27) 式中,i a 为第i 列连梁计算跨度之半;i c ——i 和i+1墙肢轴线距离之半。

计算连梁与墙肢刚度比参数1α时,要用各排连梁刚度之和与墙肢惯性矩之和,

∑∑=+=?=k

i i k i i

D J h H 1112

2

16α (6-28) (3)双肢墙的整体系数α表达式与双肢墙不同。多肢墙中计算墙肢轴向变形影响比较困难,因此T 值用近似值代替。整体系数α由下式计算:

T 212αα= (6-29)

(4)求解出基本未知量()ξm 后,按分配系数i η计算各跨连梁的约束弯矩()ξi m ,

()()ξηξm m i i = (6-30) ∑==k i i

i

i

i i D D 1??η (6-31)

????????? ??-++=B r B r i i i 15.11411

αα? (6-32) 式中,i r 为第i 列连梁中点距墙边的距离;B 为总宽。

七、剪力墙的分类判别式 以上讨论了按整体计算的剪力墙、小开口整体剪力墙、双肢墙、多肢墙等四种类型的剪力墙,它们因外形和洞口大小的不同,受力特点也不同,不但在墙肢截面上的正应力分布有区别,而且沿墙肢高度方向上弯矩的变化规律也不同。设计时应首先判断它属于哪一种类型,然后再用相应的计算方法求出它的内力及侧移。

剪力墙的整体性是划分剪力墙类型的重要标志之一。各类剪力墙的整体性可通过剪力墙的整体性系数α来体现。α值实际上反映了连系梁与墙肢之间刚度的比值,体现了整个剪力墙的整体性,可以利用α这一参数作为判别剪力墙类型的准则之一。但α的大小只反映了剪力墙整体性的好坏,它不能反映在墙肢层间是否会出现反弯点。 墙肢是否出现反弯点,与墙肢惯性矩的比值

J J n ,整体性系数α,层数n 等因素有关。各类剪力墙划分如下:

若剪力墙连系梁的刚度和墙肢宽度基本均匀,整体性系数α≥10,且墙肢惯性矩的比值J

J n ≤ξ(根据整体性系数α和层数n 查表得到)时,按小开口整体墙计算;当只满足α≥10,按壁式框架计算;当只满足

J J n ≤ξ时,按双肢墙计算。 若洞口面积与剪力墙立面总面积之比不大于0.15,且洞口净距及孔洞至墙边的净距大于洞口的长边尺寸时,一般可作为整体剪力墙考虑。

本章内容回顾

1.考虑到剪力墙平面内的刚度大,而在平面外的刚度小,因此可以把剪力墙(空间结构)化作平面结构处理,即剪力墙只承受其自身平面内的水平荷载,并按各片剪力墙的等效抗弯刚度分配水平力。

2.剪力墙按受力特性的不同可分为整体剪力墙、小开口整体剪力墙、双(多)肢墙和壁式框架等几种类型。不同类型的剪力墙,其相应的受力特点、计算简图和计算方法也不相同。连系梁与墙肢之间刚度的比值α与墙肢惯性矩的比值

J J n 是划分剪力墙的两个判别准则。

3.对于整体剪力墙,在水平力作用下截面仍保持平面,法向应力呈线性分布,可采用材料力学中有关公式计算内力及变形;对于小开口整体墙,在水平力作用下的内力及变形,仍采用材料力学中有关公式进行计算并加以局部弯曲修正;计算双肢剪力墙和多肢剪力墙时,将每一楼层的连梁假想为在层高内均布的一系列连续连杆,由连杆的位移协调条件建立墙的内力微分方程,从中求解出外力。

剪力墙类型及受力特点

剪力墙类型及受力特点 剪力墙结构是由一系列纵向、横向剪力墙及楼盖所组成的空间结构,承受竖向荷载和水平荷载,是高层建筑中常用的结构形式。由于纵、横向剪力墙在其自身平面内的刚度都很大,在水平荷载作用下,侧移较小,因此这种结构抗震及抗风性能都较强,承载力要求也比较容易 满足,适宜于建造层数较多的高层建筑。 剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本节着重讨论剪力墙在水平荷载作用下的内力及位移计算。 一、剪力墙的分类及受力特点 为满足使用要求,剪力墙常开有门窗洞口。理论分析和试验研究表明,剪力墙的受力特性与变形状态主要取决于剪力墙上的开洞情况。洞口是否存在,洞口的大小、形状及位置的不同都将影响剪力墙的受力性能。剪力墙按受力特性的不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)和壁式框架等几种类型。不同类型的剪力墙,其相应的受力特点、计算简图和计算方法也不相同,计算其内力和位移时则需采用相应的计算方法。 1.整体剪力墙 无洞口的剪力墙或剪力墙上开有一定数量的洞口,但洞口的面积不超过墙体面积的15%,且洞口至墙边的净距及洞口之间的净距大于洞孔长边尺寸时,可以忽略洞口对墙体的影响,这种墙体称为整体剪力墙(或称为悬臂剪力墙)。整体剪力墙的受力状态如同竖向悬臂梁,截面变形后仍符合平面假定,因而截面应力可按材料力学公式计算,应力图如图1(a) 所示,变形属弯曲型。 2.小开口整体剪力墙 当剪力墙上所开洞口面积稍大且超过墙体面积的15%时,通过洞口的正应力分布已不再成一直线,而是在洞口两侧的部分横截面上,其正应力分布各成一直线,如图1(b)所示。这说明除了整个墙截面产生整体弯矩外,每个墙肢还出现局部弯矩,因为实际正应力分布,相当于在沿整个截面直线分布的应力之上叠加局部弯矩应力。但由于洞口还不很大,局部弯矩不超过水平荷载的悬臂弯矩的15%。因此,可以认为剪力墙截面变形大体上仍符合平面假定,且大部分楼层上墙肢没有反弯点。内力和变形仍按材料力学计算,然后适当修正。 在水平荷载作用下,这类剪力墙截面上的正应力分布略偏离了直线分布的规律,变成了相当于在整体墙弯曲时的直线分布应力之上叠加了墙肢局部弯曲应力,当墙肢中的局部弯矩不超过墙体整体弯矩的15%时,其截面变形仍接近于整体截面剪力墙,这种剪力墙称之为 小开口整体剪力墙。 3.联肢剪力墙 洞口开得比较大,截面的整体性已经破坏,横截面上正应力的分布远不是遵循沿一根直线的规律,如图1(c)所示。但墙肢的线刚度比同列两孔间所形成的连梁的线刚度大得多,每根连梁中部有反弯点,各墙肢单独弯曲作用较为显著,但仅在个别或少数层内,墙肢出现

材料的抗弯刚度计算

内支撑的支锚刚度如何计算? 答:桩计算时采用的刚度为分配到每个桩上的刚度。软件计算中自动用交互的“支锚刚度”先除以交互的“水平间距”再乘以“桩间距”(如是地下连续墙乘1),换算成作用在每根桩或者单位宽度墙上的刚度,进行支护构件计算。 在单元计算中需要用户按照如下方法输入,在整体计算中软件可以自动计算。 ①方法一:可以输入按《基坑支护技术规程附录C》方法计算的刚度,此时在“水平间距”栏需输入“桩间距”(如果是地下连续墙输入1)。 《基坑支护技术规程附录C》对水平刚度系数kT计算公式为: 附件: 您所在的用户组无法下载或查看附件 式中: kT ——支撑结构水平刚度系数; ——与支撑松弛有关的系数,取0.8~1.0; E ——支撑构件材料的弹性模量(N/mm2); A ——支撑构件断面面积(m2); L ——支撑构件的受压计算长度(m); s ——支撑的水平间距(m); sa ——计算宽度(m),排桩用桩间距,地下连续墙用1。 ②方法二:可在“支锚的水平间距”和“桩间距”都输入实际的间距,此时交互的支锚刚度就应是整根支撑的刚度;即采用公式的前半部分, 这两个方法算出来的结果好像不一样吧,望楼主再发帖前先自己试验一下,不然会误导我们 E是混凝土的弹性模量,数值大小与混凝土强度等级有关,具体可以查混凝土结构设计规范相关条文。I值为构件截面惯性矩,L为构件计算长度,则EI/L则为构件线刚度。这也是结构力学中弯矩分配主要依据 材料的抗弯刚度计算,实际上就是对材料制成的构件进行变形(即挠度)控制的依据,计算方法的由来,应该是从材料的性能特征中得到的: 第一个特性决定材料的抗压强度和抗拉强度,当材料的抗拉强度决定构件的承载力时,因其延伸率很大,而表现出延性破坏特征,反之即为脆性破坏。如抗弯适筋梁和超筋梁,大小偏心受压。而抗剪构件,在桁架受力模型中,不存在强度正比关系(抗弯尽管也不是严格意义上的正比关系,但基本接近正比),而只是双线性关系,所以,其适筋时的延性也不如抗弯适筋梁,只就是概念设计中的强剪弱弯的由来;

剪力墙的内力分析

第十五部分——专题 剪力墙的内力分析 一、概述 剪力墙在钢筋混凝土高层建筑结构中有着广泛的应用,目前剪力墙常用的分析方法和结构计算模型,主要有以下几种: 剪力墙的分析方法可以归纳为三大类:数值计算方法;解析方法;半数值半解析方法。剪力墙计算模型: 1、解析法等效连续化法或微分方程法。将结构各层的受力构件沿高度方向进行 连续化,然后用微分方程来求解结构的内力和变形。解析法中应用最多的是等效夹层梁法,最早是应用于分析框架结构,剪力墙出现后被推广应用于联肢剪力墙。这种方法局限性很大,只能用于形状和开洞规则的剪力墙,且此方法对低层和多层建筑误差较大。 2、数值解法此法又称等效离散化法。把一个整体结构连续体离散化为大小和类 型不同的单元体,通过节点连接成整体来代替原有结构,使之满足整体的平衡条件和变形协调条件,从而可以通过位移法、力法和混合法等方法进行数值求解。由于这种方法通用性强,易于编制计算程序,又有较高的计算精度,在工程界广为应用。根据所采用的单元类型的不同,可分成微观模型和宏观模型两大类。 (1)微观模型随着计算机技术的发展和钢筋混凝土本构关系的深入研究,诞生于20世纪60年代的钢筋混凝土有限元方法被运用到分析剪力墙结构上,有限元方法还处于不断发展和完善之中,许多理论问题尚待深入研究,同时,庞大的自由度引起的数值分析上的困难和需要繁重的计算工作量,使得这一方法目前主要用于分析结构部件或局部结构以及试验的计算机模拟,而在分析和设计实际结构中应用较少。目前,用于剪力墙结构的微观模型主要有平面应力膜单元和壳单元。 (2)宏观模型这种模型相对比较简单,宏观模型是目前最主要的研究和使用的模型,已在工程设计中广泛应用。 a)等效梁模型用等效梁单元对剪力墙沿墙轴线进行离散。该单元的全部非性变形集中到两端的塑性铰上,可用两端的非线性弹簧表示,中间部分为弹性的,如图1所示。

基于等效刚度的大展弦比机翼结构分析方法

基于等效刚度的大展弦比机翼结构分析方法 刘东伟,王 宇 (南京航空航天大学航空宇航学院,江苏南京210016) 摘 要:通过等效刚度方法计算大展弦比机翼加筋壁板的刚度矩阵,建立与加筋板平面形状相同的等效板,并使等 效板具有与加筋壁板相同的力学性能,从而简化大展弦比机翼有限元模型,达到缩短建模二分析二后期优化流程所 需时间的目的三选取两个不同展弦比的机翼,分别建立绘制了桁条的详细有限元模型和等效刚度有限元模型三对 两个模型静力学二动力学和颤振计算结果进行对比,数据表明两个模型的静力变形二固有频率二振动模态和颤振分 析结果吻合度高,从而证明了等效刚度方法在大展弦比机翼结构有限元建模应用中的可行性三 关键词:机翼;大展弦比;复合材料;等效刚度 中图分类号:V214.1 文献标识码:A 文章编号:1671-654X (2018)06-0068-05 Structural Analysis Method Based on Equivalent Stiffness Model for Large Aspect Ratio Wing LIU Dong-wei ,WANG Yu (College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)Abstract :In order to simplify the finite element model of the large aspect ratio wing ,and shorten the time needed formodeling ,analysis ,and later optimizationprocess ,the equivalent stiffness method is used to cal-culate the stiffness matrix of wing stiffened panels with large aspect ratio.An equivalent plate with the same plane shape of stiffened plate is established.Application of the equivalent stiffness method makes the equivalent platehas the same mechanical properties as the stiffened panel.A detailed finite element model withactual structureand a finite element model of equivalent stiffness for large aspect ratio wing with different aspect ratio are established.The results of statics ,dynamics and flutter for two models are com- pared ,the data show that the static deformation ,natural frequencies ,vibration modes and flutter analysis results of the two models highly coincide with each other ,as a result ,it is proved that the equivalent stiff-ness method is feasible in the application of finite element modeling for the large aspect ratio wing struc-ture.Key words :wing ;high aspect ratio ;composite material ;equivalent stiffness 引言 复合材料是由两种或两种以上不同性质的材料组 成的一类新型材料,由于其特殊的物理构造,各种材料 可以在性能上互补,从而使复合材料的综合性能优于 原组成材料三因其相对于传统金属材料有强度高二刚 度大二质量轻等优点,被广泛应用于航空航天领域三现 代机翼设计中的复合材料应用可有效减轻结构重量, 因此复合材料在飞机结构设计中得到广泛应用三 在飞机机翼外形几何参数设计中,大展弦比的机 翼几何外形特点是机翼翼展大,且弦长短三大展弦比 机翼由于其诱导阻力小,升力系数大等特点,可以有效 提高飞机在亚音速状态下的机动性,增加航程和升限三近年来大展弦比机翼在高空长航时无人机上相继得到应用,如 全球鹰 , 捕食者 三在机翼初期设计阶段,需要对结构进行静力学二动力学和颤振计算,以进行机翼力学性能评估,并及时进行修改三因此需要建立相应的力学分析模型,目前适用于复合材料机翼的力学分析模型可概括为3类:1)等效梁模型[1];2)等效板模型[2-4];3)有限元模型[5]三等效梁模型是将机翼简化为梁模型三等效板模型是将机翼等效为与机翼相同平面形状和近似力学性能的一组梯形板上三有限元模型详细描述机翼结构特 收稿日期:2018-07-10 修订日期:2018-11-03 基金项目:国家自然科学基金项目资助(11602103);江苏省高校优势学科建设工程项目资助 作者简介:刘东伟(1994-),男,满族,河北承德人,硕士研究生,主要研究方向为飞机总体设计二多学科优化三第48卷 第6期航空计算技术Vol.48No.62018年11月Aeronautical Computing Technique Nov.2018 万方数据

刚度校核

刚度校核 l.轴的弯曲刚度校核计算 2.轴的扭转刚度校校计算 l.轴的弯曲刚度校核计算 常见的轴大多可视为简文梁。若是光轴,可直接用材料力学中的公式计算其挠度或偏转角;若是阶梯轴,如果对计算精容要求不高,则可用当量直径法作近似计算。把阶梯轴看成是当量直径为dv的光轴,然后再按材料力学中的公式计算。当量直径为 式中:l i——阶梯轴第i段的长度,mm; d i——阶梯轴第i段的直径,mm; L——阶梯轴的计算长度;m。; Z——阶梯轴计算长度内的轴段数。 当载荷作用干两支承之间时,L=l(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度)。 轴的弯曲刚度条件为: 挠度 偏转角 式中:[y]——轴的允许挠度,mm,见表15-5; [θ]——轴的允许偏转角,rad,见表15-5。

表15-5 轴的允许挠度及允许偏转角 2.轴的扭转刚度校校计算 轴的扭转变形用每米长的扭转角p来表示。圆轴扭转角P的计算公式为: 光轴 阶梯轴 式中:T——轴所受的扭矩,N·mm; G——轴的材料的剪切弹性模量,MPa,对于钢材,G=8.1*104MPa; I p——轴截面的极惯性矩,mm4,对于圆轴,I p= d4/32 L——阶梯轴受扭矩作用的长度,mm; T i、l i、I pi——分别代表阶梯轴第i段上所受的扭矩、长度和极惯性矩,单位同前; z——阶梯轴受扭矩作用的轴段数。 轴的扭转刚度条件为

?≤[?] ( °)/m 式中[?] 为轴每米长的允许扭转角,与轴的使用场合有关。对于一般传动轴,可取[?]=0.5-1( °)/m;对于精密传动轴,可取[?]=0.25-0.5( °)/m;对于精度要求不高的轴,[?]可大于1( °)/m。 表15-4 抗弯,抗扭截面系数计算公式 注:近似计算时,单,双键槽一般可忽略,花键轴截面可视为直径等于平均直径的圆截面。

剪力墙受力及特点

剪力墙类型及受力特点 剪力墙结构就是由一系列纵向、横向剪力墙及楼盖所组成得空间结构,承受竖向荷载与水平荷载,就是高层建筑中常用得结构形式。由于纵、横向剪力墙在其自身平面内得刚度都很大,在水平荷载作用下,侧移较小,因此这种结构抗震及抗风性能都较强,承载力要求也比较容易满足,适宜于建造层数较多得高层建筑。 剪力墙主要承受两类荷载:一类就是楼板传来得竖向荷载,在地震区还应包括竖向地震作用得影响;另一类就是水平荷载,包括水平风荷载与水平地震作用。剪力墙得内力分析包括竖向荷载作用下得内力分析与水平荷载作用下得内力分析。在竖向荷载作用下,各片剪力墙所受得内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙得内力与位移计算都比较复杂,因此本节着重讨论剪力墙在水平荷载作用下得内力及位移计算。 一、剪力墙得分类及受力特点 为满足使用要求,剪力墙常开有门窗洞口。理论分析与试验研究表明,剪力墙得受力特性与变形状态主要取决于剪力墙上得开洞情况。洞口就是否存在,洞口得大小、形状及位置得不同都将影响剪力墙得受力性能。剪力墙按受力特性得不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)与壁式框架等几种类型。不同类型

得剪力墙,其相应得受力特点、计算简图与计算方法也不相同,计算其内力与位移时则需采用相应得计算方法。 1.整体剪力墙 无洞口得剪力墙或剪力墙上开有一定数量得洞口,但洞口得面积不超过墙体面积得15%,且洞口至墙边得净距及洞口之间得净距大于洞孔长边尺寸时,可以忽略洞口对墙体得影响,这种墙体称为整体剪力墙(或称为悬臂剪力墙)。整体剪力墙得受力状态如同竖向悬臂梁,截面变形后仍符合平面假定,因而截面应力可按材料力学公式计算,应力图如图1(a)所示,变形属弯曲型。 2.小开口整体剪力墙 当剪力墙上所开洞口面积稍大且超过墙体面积得15%时,通过洞口得正应力分布已不再成一直线,而就是在洞口两侧得部分横截面上,其正应力分布各成一直线,如图1(b)所示。这说明除了整个墙截面产生整体弯矩外,每个墙肢还出现局部弯矩,因为实际正应力分布,相当于在沿整个截面直线分布得应力之上叠加局部弯矩应力。但由于洞口还不很大,局部弯矩不超过水平荷载得悬臂弯矩得15%。因此,可以认为剪力墙截面变形大体上仍符合平面假定,且大部分楼层上墙肢没有反弯点。内力与变形仍按材料力学计算,然后适当修正。 在水平荷载作用下,这类剪力墙截面上得正应力分布略偏离了直线分布得规律,变成了相当于在整体墙弯曲时得直线分布应力之上叠

肋型板的等效刚度

肋型板的等效刚度 应用刚度等效原理导出肋型板的等代无肋板厚度计算显式,方法适既适用于不同纵、横梁布置的板,也适用于板边各种支承情况,包括边界点支承的板。针对工程中肋型板不同的边界约束状况,给出挠曲试函数各种形式。计算过程涉及的数值积分简便易行,便于工程技术人员运用,与有限单元法相比,无需计算机程序。多个典型算例的结果表明,代换前后板上的挠度分布特征及扭转角分布特征与有限元法计算结果在2%~5%误差范围一致。 Key words:Cast-in-situ rib board,equivalent stiffness,the energy method 肋型板包括各种边界支承条件下的楼(屋)面梁板结构、井字楼盖。肋型板竖向刚度是设计中关注的问题之一。由于竖向荷载作用下梁肋和板协同工作,板的刚度、梁肋刚度及板边支承条件的差异均会对这一结构体系的组合刚度产生影响,从而对肋板作用效应产生影响。对于肋型板的作用效应,常规的计算用有限单元法完成[1][2][3][4],相对于无肋板而言,可供参考的计算结果并无现成的显式表述。我们从变形能等效原理出发,导出将各种肋形板等效为无肋板的等效刚度计算显式,适用于工程上应用的各类梁肋布置及各种边界支承肋型板的计算,旨在便于工程设计人员应用。 1.等变形能刚度代换 理论推理过程的基本假设是:具有相同平面尺寸的肋型板(图1a)与无肋板(图1b)在相同荷载q作用下具有相同的弹性变型能,根据虚功原理,a状态外力所做的功恒等于肋板变形后板内积畜的变形能: 因此可设a、b两状态的板有相同的挠曲试函数,即肋板与无肋板刚度相同。基于这一等刚度原则,a状态的变形能由板和x向梁肋及y向梁肋共同贡献: 其中:第一项面积分为周边简支或周边固支板的弹性变形能,第二、三项线积分分别为x向梁肋及y向梁肋的弯曲变形能,最后两项积分分别为x向梁肋及y向梁肋的扭转变形能。由于梁肋与板变形的协调性,梁肋的挠曲函数均由板的挠曲试函数唯一确定:x向梁肋挠曲函数为: 从上表可见,随梁高宽比h/b增加,按材料力学计算的IP显著偏大。在杆系结构计算软件PKPM中,人为引入抗扭刚度折减系数(如0.4)以修正过大的抗扭刚度。我们认为采用(e)式计算杆的抗扭刚度更适宜。 对于无梁肋的b状态,其弹性变形能 (3)式为本文导出的与肋型板(图1a)具有相等横向刚度的等厚度板(图1b)的厚度tb。tb在设定板的挠曲试函数后即可求得,所涉及的积分一般均为简单初等函数的定积分,运算过程并不冗繁。当板周边非完全简支或完全固支时

剪力墙等效抗弯刚度

《高层建筑结构与抗震》辅导文章五 剪力墙结构内力与位移计算 学习目标 1、了解剪力墙结构的分类,以及各种剪力墙的受力特点; 2、熟悉剪力墙的分类判别式。 3、掌握整体墙和小开口整体墙的内力及位移计算、掌握双肢墙的内力及位移计算。 学习重点 1、剪力墙的分类及分类判别式; 2、整体和小开口整体墙的内力及位移计算; 3、双肢墙的内力及位移计算。 剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本章着重讨论剪力墙在水平荷载作用下的内力及位移计算。 一、基本假定 剪力墙结构是一个比较复杂的空间结构,为了简化,剪力墙在水平荷载作用下计算时,作如下假定: (1)楼板在其自身平面内的刚度极大,可视其为刚度无限大的刚性楼盖; (2)剪力墙在其自身平面内的刚度很大,而在其平面外的刚度又极小,可忽略不计。因此可以把空间结构化作平面结构处理,即剪力墙只承受在其自身平面内的水平荷载。 基于以上两个假定,剪力墙结构在水平荷载作用下可按各片剪力墙的等效抗弯刚度分配水平力给各片剪力墙,然后分别进行内力和位移计算。例如图6-1(a)所示的剪力墙结构可分别按图6-1(b)和图6-1(c)的剪力墙考虑。同时,现行国家标准《高层建筑混凝土结构技术规程》(JGJ3-2002)为考虑纵、横墙的共同工作,将纵墙的一部分作为横墙的有效翼缘,横墙的一部分也可以作为纵墙的有效翼缘。 剪力墙的等效抗弯刚度是一个非常重要的概念,是指按剪力墙顶点侧移相等的原则,考虑弯曲变形和剪切变形后,折算成一个竖向悬臂受弯构件的抗弯刚度。

层刚度计算的三种计算方法

层刚度计算的三种计算方法?层刚度比的含义是什么? (一)地震力与地震层间位移比的理解与应用 ⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ⑵计算公式:Ki=Vi/Δui ⑶应用范围: ①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。 ②可用于判断地下室顶板能否作为上部结构的嵌固端。 (二)剪切刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2.计算公式见《高规》151页。 ②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2.其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。 ⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。 ⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。 (三)剪弯刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe不应大于2,抗震设计时γe不应大于1.3.计算公式见《高规》151页。

②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。 ⑵SATWE软件所采用的计算方法:高位侧移刚度的简化计算 ⑶应用范围:可用于执行《高规》第E.0.2条规定的工程的刚度比的计算。 (四)《上海规程》对刚度比的规定 《上海规程》中关于刚度比的适用范围与国家规范的主要不同之处在于: ⑴《上海规程》第6.1.19条规定:地下室作为上部结构的嵌固端时,地下室的楼层侧向刚度不宜小于上部楼层刚度的1.5倍。 ⑵《上海规程》已将三种刚度比统一为采用剪切刚度比计算。 (五)工程算例: ⑴工程概况:某工程为框支剪力墙结构,共27层(包括二层地下室),第六层为框支转换层。结构三维轴测图、第六层及第七层平面图如图1所示(图略)。该工程的地震设防烈度为8度,设计基本加速度为0.3g. ⑵1~13层X向刚度比的计算结果: 由于列表困难,下面每行数字的意义如下:以“/”分开三种刚度的计算方法,第一段为地震剪力与地震层间位移比的算法,第二段为剪切刚度,第三段为剪弯刚度。具体数据依次为:层号,RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层。 其中RJX是结构总体坐标系中塔的侧移刚度(应乘以10的7次方);Ratx1为本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均刚度80%的比值中的较小者。具体数据如下: 1,7.8225,2.3367,否/13.204,1.6408,否/11.694,1.9251,否 2,4.7283,3.9602,否/11.444,1.5127,否/8.6776,1.6336,否 3,1.7251,1.6527,否/9.0995,1.2496,否/6.0967,1.2598,否 4,1.3407,1.2595,否/9.6348,1.0726,否/6.9007,1.1557,否 5,1.2304,1.2556,否/9.6348,0.9018,是/6.9221,0.9716,是

谭继锦 元法课件之四 单元等效节点载荷

平面问题的有限元法 划分单元时,应注意以下几点: (1)单元类型的选择,主要取决于结构的几何形状,施加的荷载类型和要求的计算精度。 施加的荷载类型和要求的计算精度 (2)单元的大小(即网格的疏密),从有限元理论 上讲,单元划分越细,节点布置越多,计算结果精度越高。一般大型通用程序每百万节点自由度大约要用1G的工作空间和10G的磁盘空间。 (3)单元有疏有密,对结构的不同部位可采取不同 大小的单元。对边界曲折部位,应力或位移变化剧烈的重 要部位网格划分的密些如槽孔洞等应力集中 要部位,网格划分的可密些(如凹槽、孔洞等应力集中处)。 1

()不同厚度或不同材料处应取为单元的边界线而4)不同厚度或不同材料处,应取为单元的边界线,而且在该处附近的单元还应尽量划分的小一些,以尽可能反映出边界两侧的应力突变情况。 (5)预留载荷位置,在分布载荷集度变化处和应力集中作用处,应布置节点以利加载,其附近单元划分的小些,作用处应布置节点以利加载其附单元划分的小以反映此处的应力变化。 u x ααα=++123456y v x y ααα=++Questions: 1. 有限元求解方法? 2. 为什么定义位移模式? 3. αi 等系数如何求取? 2

由节点位移表达单元内任点位移的插值公式即由节点位移表达单元内任一点位移的插值公式,即位移模式的另一种形式: m m i i j j u N u N u N u N =++( i, j, m ) i i j j m m v N v v N v =++i u ?? 0 0 0i v N N N u ???? ?? {}0 0 0 i j m j i j m j u f v N N N v ?????? ==?????? ????????m m u v ?????? 3

剪力墙的分类

剪力墙结构是由一系列纵向、横向剪力墙及楼盖所组成的空间结构,承受竖向荷载和水平荷载,是高层建筑中常用的结构形式。由于纵、横向剪力墙在其自身平面内的刚度都很大,在水平荷载作用下,侧移较小,因此这种结构抗震及抗风性能都较强,承载力要求也比较容易满足,适宜于建造层数较多的高层建筑。 剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本节着重讨论剪力墙在水平荷载作用下的内力及位移计算。 一、剪力墙的分类及受力特点 为满足使用要求,剪力墙常开有门窗洞口。理论分析和试验研究表明,剪力墙的受力特性与变形状态主要取决于剪力墙上的开洞情况。洞口是否存在,洞口的大小、形状及位置的不同都将影响剪力墙的受力性能。剪力墙按受力特性的不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)和壁式框架等几种类型。不同类型的剪力墙,其相应的受力特点、计算简图和计算方法也不相同,计算其内力和位移时则需采用相应的计算方法。1.整体剪力墙 无洞口的剪力墙或剪力墙上开有一定数量的洞口,但洞口的面积不超过墙体面积的15%,且洞口至墙边的净距及洞口之间的净距大于洞孔长边尺寸时,可以忽略洞口对墙体的影响,这种墙体称为整体剪力墙(或称为悬臂剪力墙)。整体剪力墙的受力状态如同竖向悬臂梁,截面变形后仍符合平面假定,因而截面应力可按材料力学公式计算。 2.小开口整体剪力墙 当剪力墙上所开洞口面积稍大且超过墙体面积的15%时,通过洞口的正应力分布已不再成一直线,而是在洞口两侧的部分横截面上,其正应力分布各成一直线。这说明除了整个墙截面产生整体弯矩外,每个墙肢还出现局部弯矩,因为实际正应力分布,相当于在沿整个截面直线分布的应力之上叠加局部弯矩应力。但由于洞口还不很大,局部弯矩不超过水平荷载的悬臂弯矩的15%。因此,可以认为剪力墙截面变形大体上仍符合平面假定,且大部分楼层上墙肢没有反弯点。内力和变形仍按材料力学计算,然后适当修正。 在水平荷载作用下,这类剪力墙截面上的正应力分布略偏离了直线分布的规律,变成了相当于在整体墙弯曲时的直线分布应力之上叠加了墙肢局部弯曲应力,当墙肢中的局部弯矩不超过墙体整体弯矩的15%时,其截面变形仍接近于整体截面剪力墙,这种剪力墙称之为小开口整体剪力墙。 3.联肢剪力墙 洞口开得比较大,截面的整体性已经破坏,横截面上正应力的分布远不是遵循沿一根直线的规律。但墙肢的线刚度比同列两孔间所形成的连梁的线刚度大得多,每根连梁中部有反弯点,各墙肢单独弯曲作用较为显著,但仅在个别或少数层内,墙肢出现反弯点。这种剪力墙可视为由连梁把墙肢联结起来的结构体系,故称为联肢剪力墙。其中,仅由一列连梁把两个墙肢联结起来的称为双肢剪力墙;由两列以上的连梁把三个以上的墙肢联结起来的称为多肢剪力墙。 当剪力墙沿竖向开有一列或多列较大的洞口时,由于洞口较大,剪力墙截面的整体性已被破坏,剪力墙的截面变形已不再符合平截面假设。这时剪力墙成为由一系列连梁约束的墙肢所组成的联肢墙。开有一列洞口的联肢墙称为双肢墙,当开有多列洞口时称之为多肢墙。4.壁式框架 洞口开得比联肢剪力墙更宽,墙肢宽度较小,墙肢与连梁刚度接近时,墙肢明显出现局部弯矩,在许多楼层内有反弯点。剪力墙的内力分布接近框架,故称壁式框架。壁式框架实

材料力学的基本计算公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横 截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律

8.受多个力作用的杆件纵向变形计算公式? 9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性材 料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关系 式 16.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r)

18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆 (b)空心圆 20.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半 径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关 系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件? 或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

27.平面应力状态下斜截面应力的一般公式 , 28.平面应力状态的三个主应力 , , 29.主平面方位的计算公式 30.面内最大切应力 31.受扭圆轴表面某点的三个主应力,, 32.三向应力状态最大与最小正应力 , 33.三向应力状态最大切应力 34.广义胡克定律

梁的刚度计算

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤=γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算

v w f It ≤=τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。腹板计算高度边缘的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以1∶(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

最新剪力墙等效抗弯刚度

剪力墙等效抗弯刚度

《高层建筑结构与抗震》辅导文章五 剪力墙结构内力与位移计算 学习目标 1、了解剪力墙结构的分类,以及各种剪力墙的受力特点; 2、熟悉剪力墙的分类判别式。 3、掌握整体墙和小开口整体墙的内力及位移计算、掌握双肢墙的内力及位移计算。 学习重点 1、剪力墙的分类及分类判别式; 2、整体和小开口整体墙的内力及位移计算; 3、双肢墙的内力及位移计算。 剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本章着重讨论剪力墙在水平荷载作用下的内力及位移计算。 一、基本假定 剪力墙结构是一个比较复杂的空间结构,为了简化,剪力墙在水平荷载作用下计算时,作如下假定: (1)楼板在其自身平面内的刚度极大,可视其为刚度无限大的刚性楼盖; (2)剪力墙在其自身平面内的刚度很大,而在其平面外的刚度又极小,可忽略不计。因此可以把空间结构化作平面结构处理,即剪力墙只承受在其自身平面内的水平荷载。 基于以上两个假定,剪力墙结构在水平荷载作用下可按各片剪力墙的等效抗弯刚度分配水平力给各片剪力墙,然后分别进行内力和位移计算。例如图6-1(a)所示的剪力墙结构可分别按图6-1(b)和图6-1(c)的剪力墙考虑。同时,现行国家标准《高层建筑混凝土结构技术规程》(JGJ3-2002)为考虑

纵、横墙的共同工作,将纵墙的一部分作为横墙的有效翼缘,横墙的一部分也可以作为纵墙的有效翼缘。 剪力墙的等效抗弯刚度是一个非常重要的概念,是指按剪力墙顶点侧移相等的原则,考虑弯曲变形和剪切变形后,折算成一个竖向悬臂受弯构件的抗弯刚度。 图6-1 剪力墙结构计算图 二、剪力墙的分类 为满足使用要求,剪力墙常开有门窗洞口。理论分析和试验研究表明,剪力墙的受力特性与变形状态主要取决于剪力墙上的开洞情况。洞口是否存在,洞口的大小、形状及位置的不同都将影响剪力墙的受力性能。剪力墙按受力特性的不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)和壁式框架等几种类型。 1.整体剪力墙 无洞口的剪力墙或剪力墙上开有一定数量的洞口,但洞口的面积不超过墙体面积的15%,且洞口至墙边的净距及洞口之间的净距大于洞孔长边尺寸时,可以忽略洞口对墙体的影响,这种墙体称为整体剪力墙。 2.小开口整体剪力墙 当剪力墙上所开洞口面积稍大且超过墙体面积的15%时,在水平荷载作用下,这类剪力墙截面上的正应力分布略偏离了直线分布的规律,变成了相当于在整体墙弯曲时的直线分布应力之上叠加了墙肢局部弯曲应力,当墙肢中的局部弯矩不超过墙体整体弯矩的15%时,其截面变形仍接近于整体截面剪力墙,这种剪力墙称之为小开口整体剪力墙。 3.联肢剪力墙 当剪力墙沿竖向开有一列或多列较大的洞口时,由于洞口较大,剪力墙截面的整体性已被破坏,剪力墙的截面变形已不再符合平截面假设。这时剪力墙

抗弯刚度概念

抗弯刚度概念 是指物体抵抗其弯曲变形的能力。早期用于纺织。抗弯刚度大的织物,悬垂性较差;纱支粗,重量大的织物,悬垂性亦较差,影响因素很多,有纤维的弯曲性能、纱线的结构、还有织物的组织特性及后整理等。抗弯刚度现多用于材料力学和混凝土理论中,其英文名称为:bending rigidity。以材料的弹性模量与被弯构件横截面绕其中性轴的惯性矩的乘积来表示材料抵抗弯曲变形的能力。 编辑本段抗弯刚度计算公式EI中EI的取值 E是弹性模量,即产生单位应变时所需的应力,不同材料弹性模量不同,可以从材料手册上查得I是材料横截面对弯曲中性轴的惯性矩,各常规型钢惯性矩也可以从材料手册上查得,<石油化工设备设计便查手册>中也可查到。 编辑本段抗弯刚度的计算 材料的抗弯刚度计算,实际上就是对材料制成的构件进行变形(即挠度)控制的依据,计算方法的由来,应该是从材料的性能特征中得到的:第一个特性决定材料的抗压强度和抗拉强度,当材料的抗拉强度决定构件的承载力时,因其延伸率很大,而表现出延性破坏特征,反之即为脆性破坏。如抗弯适筋梁和超筋梁,大小偏心受压。而抗剪构件,在桁架受力模型中,不存在强度正比关系(抗弯尽管也不是严格意义上的正比关系,但基本接近正比),而只是双线性关系,所以,其适筋时的延性也不如抗弯适筋梁,只就是概念设计中的强剪弱弯的由来;第二个是材料的离散性较大的特性决定了为了满足相同的安全度,就需要更大的强度富裕(平均强度与设计强度之比),这一点在七四规范中反应在安全系数K中(抗弯1.4,抗压,抗剪是1.55),新规范在公式中已经不见,但可从背景材料的统计回归上找到由来;第三个特性即材料的蠕变性能是塑性内力重分布的条件之一,正如一位学者所说,合理设计的材料结构能按设计者的意图调节其内力。带裂缝工作的构件其塑性铰不是一点而是一个区域。第四个特性在结构的概念设计中,有一条很重要,是在罕遇地震时,结构不存在强度的富裕而只有抵抗变形能力的好坏之分,即结构都要进入塑性变形阶段(或弹塑性阶段)。设计时,让塑性铰出现在什么地方;让多少构件适量破坏以吸收地震输入能量,而地震之后又容易修复;那些关键构件是最后防线等等,这才是抗震设计的精髓,同样是抗弯刚度计算方法的由来;第五个特性是根据这个思路,就不难理解抗震规范中的许多要求了。比如说,短柱有典型的剪切破坏特征,配箍率和轴压比直接影响到柱的延性。框支剪力墙结构因变形过于集中而影响到抗震性能,转换板结构刚度突变最大,在高烈度区尽量少用,这也是抗弯刚度计算方法的由来。 抗弯刚度和抗侧刚度区别 抗弯刚度受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。各向同性材料的刚度取决于它的弹性模量E和剪切模量G(见胡克定律)。结构的刚度除取决于组成材料的弹性模量外,还同其几何形状、边界条件等因素以及外力的作用形式有关。分析材料和结构的刚度是工程设计中的一项重要工作。对于一些须严格限制变形的结构(如机翼、高精度的装配件等),须通过刚度分析来控制变形。许多结构(如建筑物、机械等)也要通过控制刚度以防止发生振动、颤振或失稳。另外,如弹簧秤、环式测力计等,须通过控制其刚度为某一合理值以确保其特定功能。在结构力学的位

梁的刚度计算

1 ?梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求 在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段, 以双轴对 称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 M x x W nx 双向弯曲时 M x 式中:M 、M ---- 绕x 轴和y 轴的弯矩(对工字形和 H 形截面,x 轴为强轴,y 轴 为弱轴); W W ――梁对x 轴和y 轴的净截面模量; x , y ――截面塑性发展系数,对工字形截面, x 1.05, y 1.20 ;对箱 形截面,x y 1.05 ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其 厚度t 之比大于13._ 235/ f y ,但不超过15, 235/ f y 时,应取x 1.0。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取 x y 1.0 o (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板 上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。 在主 平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极 限状态。因此,设计的抗剪强度应按下式计算 (5-3) (5-4) x W nx y W ny

VS It w 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ――中和轴以上毛截面对中和轴的面积矩; I ――毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁 的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截 面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承 加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。 腹板计算高度边缘 的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以 1 :(在h y 高度 范围)和1 : 1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局 部承压强度可按下式计算 F c t w 1 z 式中:F ——集中荷载,对动力荷载应考虑动力系数; 集中荷载增大系数:对重级工作制吊车轮压, 二;对其他荷载, l z ——集中荷载在腹板计算高度边缘的假定分布长度,其计算方法如下 跨中集中荷载 l z = a+5h y +2h R 梁端支反力 I z = a++ai a --- 集中荷载沿梁跨度方向的支承长度,对吊车轮压可取为 50mm (5-5) (5-6)

相关文档
最新文档