福岛核事故分析-英文

福岛核事故分析-英文
福岛核事故分析-英文

How Is Japan's Nuclear Disaster Different?

王小亮学号:1090230113 班级:0902301

Abstract:There are some key differences that set the current Fukushima situation apart from the 1979 Three Mile Island emergency and the 1986 Chernobyl nuclear disaster.

In terms of reactor type, Japan's Fukushima Daiichi nuclear power complex is made up of six boiling-water reactors, or BWRs—a type of "Light Water Reactor." Whereas the Three Mile Island used another type of Light Water Reactor known as a pressurized-water reactor, or PWR. In a PWR, the water is kept under pressure. This means the temperature can be higher than the boiling point of water without generating a significant amount steam (a less efficient coolant). So the reactor core operates at a higher temperature in these systems, and heat can be transferred more efficiently. Boiling-water reactors operate at lower temperatures, and they tend to be simpler, with fewer parts. Chernobyl's reactors were a type called RBMK, which also used water for the coolant. But unlike the Light Water Reactors, the RMBK used graphite as a moderator.

As a matter of fact, BWR or PWR technologies are equally safe. Both types of reactors have a kind of self-regulation or "negative feedback" loop: As the reactor gets hotter, the fission reaction slows down, decreasing power. The RMBK design, on the other hand, "could go into positive feedback," where higher temperature begets more power, which in turn increases the temperature, and so on.

In the aspect of accident causes, the tsunami appears to be the immediate culprit in the Fukushima disaster, since the plants shut down as they were designed to do following the earthquake. While the "operator error" was the fundamental cause of the Three Mile Island disaster accident, because emergency cooling systems were shut down , with direct consequences. At the Chernobyl reactor in Ukraine, an "ill-conceived, badly executed safety test" initiated the disaster. A sudden surge of power triggered a steam explosion that ruptured the reactor vessel. This allowed the further violent

fuel-steam interactions that destroyed the reactor core and severely damaged the

reactor building.

As regards the radiation containment, like the Three Mile Island plant, the Fukushima reactors have three barriers designed to prevent radiation leakage, including metal cladding surrounding the nuclear fuel, a reactor pressure vessel, and the primary containment vessel. Chernobyl just lacked a containment vessel. Once radiation is released into the environment, it can contaminate vast areas.

Finally, it’s necessary to conduct crisis communication during a nuclear crisis between countries. And the communication must extend beyond industry. Japan just didn’t perform good enough and was facing harsh criticism. For example, Naoto Kan learned about an explosion from TV, rather than receiving a call from Tepco. He was such startled by that and demanded to know the reason. There are some similar problems like the above. As the Three Mile Island emergency unfolded, officials attempted to reassure the public that the "danger was over," even as efforts to cool the reactor and stabilize the plant proved ineffective. And in Chernobyl, information hardly flowed at the speed of Twitter. And Chernobyl nuclear accident was considered a direct consequence of Cold War isolation and the resulting lack of any safety culture.

原文

How Is Japan's Nuclear Disaster Different? Fukushima Daiichi may be no Chernobyl, but it has overshadowed Three Mile Island.

The control room at Chernobyl's Reactor No. 4 is shown here. Reactor design, wind patterns, communication and other factors can cause differences in the severity of nuclear accidents.

Photograph by Gerd Ludwig, National Geographic

Josie Garthwaite

For National Geographic News

P ublished March 16, 2011

This story is part of a special series that explores energy issues. For more, visitThe Great Energy Challenge.

For decades, Three Mile Island and Chernobyl have served as shorthand for the nightmare of nuclear power generation gone awry. In the wake of Japan's deadly earthquake and tsunami last week, the still-unfolding disaster of Fukushima Daiichi has come closer than any nuclear crisis in history to making it a fearsome trio. (Related Story: "Japan Tries to Avert Nuclear Disaster")

It remains to be seen how much damage will be caused by the crisis at the Fukushima nuclear power complex, where four of the six reactors have seen a range of woes including three explosions in four days, damage to two containment vessels, possible overheating from spent fuel rods, and mounting peril for the last remaining 50 workers due to dangerous spikes in radiation emissions.

Yet it is already possible to outline key differences that set the current Fukushima situation apart from the 1979 Three Mile Island emergency near Harrisburg, Pennsylvania, and the disaster in Chernobyl, Ukraine, that unfolded seven years later. Reactor Type

Japan's Fukushima Daiichi nuclear power complex, which began operating in the 1970s, is made up of six boiling-water reactors, or BWRs—a type of "Light Water

Reactor." (Using ordinary water, it is distinguished from "heavy water reactors," which use deuterium oxide, or D2O, instead of H2O.) Three Mile Island used another type of Light Water Reactor known as a pressurized-water reactor, or PWR.

Both of these reactors use water for two purposes. It acts as a coolant, carrying heat away from the nuclear fuel, and as a "moderator," slowing down the release of neutrons during fission reactions, explained Neil Wilmshurst, vice president of the nuclear sector at the U.S. Electric Power Research Institute, the industry's nonprofit research organization.

In a PWR, the water is kept under pressure. This means the temperature can be higher than the boiling point of water without generating a significant amount steam (a less efficient coolant), said Wilmshurst. So the reactor core operates at a higher temperature in these systems, and heat can be transferred more efficiently.

Boiling-water reactors operate at lower temperatures, and they tend to be simpler, with fewer parts, said Wilmshurst.

Chernobyl's reactors were a type called RBMK (for the Russian, "reaktor bolshoy moshchnosty kanalny"), which also used water for the coolant. But unlike the Light Water Reactors, the RMBK used graphite as a moderator. According to the World Nuclear Association, an industry trade group based in London, no other power reactor in the world combines a graphite moderator and water coolant as Chernobyl did, although Russia does have several RBMK reactors in operation.

Most nuclear reactors in the United States today use either BWR or PWR technology, which Wilmshurst and EPRI say are "equally safe." Both types of reactors have a kind of self-regulation or "negative feedback" loop: As the reactor gets hotter, the fission reaction slows down, decreasing power, said Wilmshurst. The RMBK design, on the other hand, "could go into positive feedback," where higher temperature begets more power, which in turn increases the temperature, and so on.

Accident Cause

At this point in the Fukushima disaster, Wilmshurst said, the tsunami appears to be the immediate culprit, since the plants shut down as they were designed to do following the earthquake. When the tsunami hit an hour later, it damaged the site infrastructure, he said. So while the earthquake had cut the reactors' external power supply, which is needed to keep coolant pumps doing their job, the tsunami killed the diesel backup generators needed to provide power for the cooling system. Batteries provided power for only up to eight hours. Mobile generators were brought in to take over.

(Related Photos: "Japan Tsunami: 20 Indelible Images")

Still, it's too early to know for sure what sequence of events led to what outcome, said David Lochbaum, who directs the Union of Concerned Scientists' Nuclear Safety Program and has worked at three nuclear plants in the United States similar to the General Electric plants in Japan.

According to the 1979 Kemeny Commission report on Three Mile Island—the definitive document of that disaster—"equipment failures initiated the event," but "operator error" was the "fundamental cause of the accident." Emergency cooling systems were shut down, with dire consequences. Three Mile Island would have been a "relatively insignificant incident," the commission found, if the plant operators (or those who supervised them) had kept the emergency cooling systems on through the early stages of the accident.

At the Chernobyl reactor in Ukraine, an "ill-conceived, badly executed safety test" initiated the disaster, said Wilmshurst. A sudden surge of power triggered a steam explosion that ruptured the reactor vessel, according to a recent report from the United Nations. This allowed "further violent fuel-steam interactions that destroyed the reactor core and severely damaged the reactor building."

Understanding the Problem

The level of access to information about what is going on inside a reactor has increased in the decades since Three Mile Island and Chernobyl.

As Peter Bradford, who served on the U.S. Nuclear Regulatory Commission at the time of Three Mile Island, said this week, "At Three Mile Island, much of what we thought we knew on the third day turned out to be incorrect." The extent of fuel melting, and even the fact that a hydrogen explosion had occurred in the containment on the first day, he said, did not become clear for years. "There was all kinds of information . . . we didn't know," he said.

Related Story: "Eyeing Japan, Countries Reassess Nuclear Plans"

During the first few minutes of the accident at Three Mile Island, more than 100 alarms went off, and no system was in place to filter out the important signals from the insignificant ones, according to the 1979 Kemeny report. "Overall, little attention had been paid to the interaction between human beings and machines under the rapidly changing and confusing circumstances of an accident," the commissioners wrote.

By contrast, said Bradford, the level of computerization and information transfer available today could give Japanese officials much more insight to what happens in the four troubled reactors at Fukushima—at least in theory. "They've got so much more going on in terms of the earthquake and the tsunami that we didn't have at TMI, that I'm sure that the situation is every bit as confused," Bradford said.

Radiation Containment

Like the Three Mile Island plant, the Fukushima reactors have three barriers designed to prevent radiation leakage, including metal cladding surrounding the nuclear fuel, a reactor pressure vessel, and the primary containment vessel. Chernobyl lacked a containment vessel, said Wilmshurst.

Once radiation is released into the environment, it can contaminate vast areas. "Contamination levels are not linear," said Lochbaum. "Further away you don't necessarily get lower doses," he explained. Among other factors, prevailing winds can influence what areas are affected. In the Chernobyl accident, some areas 100 miles away from the facility had radiation levels higher than areas just 10 or 20 miles away.

(Related: "Nuclear Reactors, Dams at Risk Due to Global Warming")

"The Chernobyl pattern was quite erratic," said Lyman. Radiation was released "very, very high because of the nature of the reactor and graphite fire." Weather changed over a prolonged emission period, as a graphite fire burned for 10 days. So radioactive gases and particles were picked up by wind and carried high in the atmosphere over long distances before raining down on communities far from the source, he said. Ultimately, the radiation released as a result of Three Mile Island was not high enough to present detectable health effects in the general population. That accident rated as a level 5 of 7 on the International Nuclear Event Scale, an "accident with wider [than local] consequence."

At Chernobyl, a level 7 "major accident," radiation exposure affected thousands of people.

Fukushima Daiichi has been elevated to level 4—"accident with local consequences. But it remains to be seen how much higher on the scale this incident will go. In Tokyo, 180 miles away from the plant, peak radiation levels were recorded at 23 times above normal at one point on Tuesday, but they reportedly dropped to about 10 times abo ve normal later in the day.

Exposure in Perspective

In the United States, the average radiation dose from natural background

andman-made sources, such as medical procedures and consumer products, is 620 millirems (mrem) per year, according to the NRC.

One millisievert (mSv) is equal to 100 millirems. The Japanese Ministry of Health Labor and Welfare on Wednesday lifted the maximum allowable exposure for nuclear workers to 250 mSv, from 100 mSv, the Associated Press reported. According to

the Nuclear Energy Institute, radioactivity at the plant hit a dose rate of 1,190 mrem per hour Tuesday evening, but dropped to 60 mrem per hour six hours later.

The Chernobyl accident caused acute radiation sickness in 134 of the 600 workers who were at the site on the morning of the initial explosion and received high doses of radiation—80,000 to 1.6 million mrem, according to the UN reportand the U.S. Nuclear Regulatory Commission. Of this group 28 people died within three months. Two others died due to injuries from the fire and radiation. And eventually as many as 4,000 people are expected to die as a result of radiation exposure from the Chernobyl plant, according to the World Health Organization.

From a public health perspective, Chernobyl's greatest impact was an epidemic of thyroid cancer (more than 6,000 cases so far) among children and adolescents exposed to radiation, often by drinking contaminated cow's milk.

Crisis Communication

The global nuclear power industry today, said Wilmshurst, has "come together" to share information in an effort to help resolve the dangers at Fukushima. There is significantly more communication within the industry now than there was during the disasters at Three Mile Island and Chernobyl, he said.

Communication during a nuclear crisis, of course, must extend beyond industry, and in this area plant operator Tokyo Electric Power (Tepco) is facing harsh criticism. On Tuesday the director general of the International Atomic Agency, Yukiya Amano, called for Japanese counterparts to facilitate stronger communication. According to the Kyodo News Agency, Prime Minister Naoto Kan admonished Tepco executives in a meeting Tuesday after he learned about an explosion from TV, rather than receiving a call from Tepco. He reportedly demanded to know, "What the hell is going on?"

(Related Story: "Japan Quake Not 'The Big One'?")

As the Three Mile Island emergency unfolded, officials attempted to reassure the public that the "danger was over," even as efforts to cool the reactor and stabilize the plant proved ineffective. And in Chernobyl, information hardly flowed at the speed of Twitter. In the view of the London-based World Nuclear Association, an industry group, Chernobyl "was a direct consequence of Cold War isolation and the resulting lack of any safety culture."

The U.S. Environmental Protection Agency wrote in a 1986 journal article on the accident that, "Chernobyl was a secret disaster at first." In fact, the earliest evidence for the international community that a major nuclear accident had occurred came from Sweden, where the discovery of radioactive particles on nuclear plant workers' clothing instigated a search for the source of radioactivity. The following day, the Soviet news agency confirmed the accident at Chernobyl plant but did not offer details, according to the EPA account. "The resulting information vacuum fueled rumors of all kinds, from fatality estimates to speculation about fires in adjoining reactors."

As the crisis in Japan intensifies, officials have come under fire for statements that in hindsight seem to underestimate the escalating threat. Arjun Makhijani, president of the Institute for Energy and Environmental Research, criticized Japanese authorities for "working from a standard nuclear industry playbook whose byline seems to be,

'What, me worry?'"

Makhijani is calling for "a frank appraisal of what is known and not known and the potential range of damage and consequences." This would afford the public more confidence in the pronouncements. As it is, he said, "verbal reassurances about low

radiation levels stand in stark contrast to repeated increases in the radius of evacuations."

As the Wall Street Journal reports, Japan's government has complained about the slow release of information from Tepco. Edwin Lyman, a physicist in the Union of Concerned Scientists Global Security Program and former president of the Nuclear Control Institute, commented in a call with reporters Tuesday that Tepco's briefings are becoming "less and less transparent."

"There's clearly a kind of erratic quality to the information coming out by the Japanese," Lyman, said. But this could be explained, he said, by the fact that they're still struggling to find out what's going on. "There's a staggering amount of confusion on the ground," added Union of Concerned Scientists nuclear expert Ellen Vancko.

"Our concern is that industry in United States and elsewhere doesn't try to whitewash this," said Lyman. Fukushima Daiichi, he said, is "one of most serious accidents that has occurred in history of nuclear power."

日本核电事故分析报告

日本福岛核电站核事故分析报告近几天因日本福岛核电站多个反应堆因地震而出现运转故障,导致部分放射性物质泄漏蔓延,对日本本土和周边国家形成了较大的影响,就此从时间历程和技术分析2个方面对上述事件进行分析。 一事件回顾 1.1 地震事件 日本最新发生的地震简要信息如下: ·时间:北京时间3月11日13时46分 ·地点:日本东北部宫城县以东太平洋海域 ·震级:里氏9.0级震源深度:10公里 ·余震:11-13日共发生168次5级以上余震 ·伤亡:截至3月17日,已造成5429人遇难9594人失踪 ·核电站事故:日本福岛第一核电站的6个机组当中,1号至4号均发生氢气爆炸。5、 6 号机组正在进行定期维修。 ·火山喷发:新燃岳火山13日下午喷发。 因日本的抗震技术非常发达,日本人民的抗震经验丰富,因此单就地震而言,对日本的损伤是有限的,最不济危害也局限在日本一国,对周边国家和地区没有太大的影响。目前主要的问题纠结在福岛核电站的核泄漏问题上面。 1.2 福岛核电站核泄漏事故 1.2.1 电站简介[1] 福岛核电站(Fukushinia Nuclear Power Plant)位于北纬37度25分14秒,东经141度2分,地处日本福岛工业区。福岛核电站是目前世界世界最大的核电站,由福岛一站(daiichi)、福岛二站(daini)组成,共10台机组(一站6台,二站4台),均为沸水堆。 福岛一站1号机组于1967年9月动工,1970年11月并网,1971年3月投入商业运行,输出电功率净/毛值为439/460兆瓦,负荷因子为49.9%。2号~6号机组分别于1974年7月、1976年3月、1978年10月、1978年4月、1979年10月投入商业运行,输出总功率分别为784、784、784、784、1100兆瓦,负荷因子分别为52.8%、61.2%、72.1%、68.5%和69.7%。福岛二站4台机组的输出电功率净/毛值均为1067/1100兆瓦。二站1号机组于1975年11

切尔诺贝利核事故的原因及影响分析

切尔诺贝利核事故的原因及影响分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

切尔诺贝利核事故的原因及影响

摘要 由于燃料多卜勒效应和控制棒的插入暂时补偿了汽泡正反应性效应,堆功率略降,出现了第一个峰值。之后,燃料碎化引起汽泡骤然增加,汽泡正反应性效应造成功率急剧上升;堆内压力管内压力上升,使得逆止阀关闭,主回路流量剧减,这进一步恶化了堆内状况.事后通过模拟计算得到的功率峰值在4秒钟内达到满功率的100倍。据四号机组外工作人员说,大约在1点24分左右,相继听到两声爆炸声,接着熊熊大火在破坏了的四号机组反应堆厂房燃起。 关键字:切尔诺贝利核事故原因影响 1.切尔诺贝利核电站的概况 1.1切尔诺贝利核电站所在地概况 切尔诺贝利核电厂位于乌克兰普里皮亚季镇附近,该镇是电厂人员的生活区;西北距切尔诺贝利市18km,距离乌克兰和白俄罗斯边境16km。核电厂在乌克兰首都基辅以北,相距110km。 核电厂周围地势平坦、是一望无垠的平原,核电厂的东面是乌克兰最大的河流第聂伯河,核电厂的主厂房离第聂伯河大约100m,核电厂的冷却水取自该河。 第聂伯河一般分为3部分:基辅以上为上游,基辅至扎波罗热为中游,扎波罗热至河口为下游。上游盆地主要位于森林地区,这里大多是

泥煤一灰壤土壤。上游的特点是空气湿润、湿地多。此地区支流密布,流量大(占区域流量的4/5 )。中游是黑土森林大草原地区,分水岭和河谷满布森林。下游盆地位于黑壤大草原地区。上第聂伯河流域的年降水量为560一610mm。第聂伯河流入黑海。 第聂伯河上建有8级水利枢纽工程,实行航运、发电、灌溉、供水、防洪等综合利用,在库区内有水产养殖,第聂伯河承担着对沿岸城市供水的任务。 1.2反应堆概况 该电站共有4套机组。第1,2号机组于1977年投产,第3,4号机组于1983年11月投产。4套机组均为1000MWe(3200MWt)的石墨慢化压力管式沸水堆(РБМК-1000)。这种堆用1700t石墨砌块作为慢化体,有 1 661根平行的压力管垂直穿过石墨慢化体,燃料组件即插在这些垂直压力管内。还有211根控制保护系统管道分布在石墨砌体中。堆芯等效直径为11. 8 m,高7m,总计装有约190t含2%铀235的低加浓二氧化铀燃料。反应堆备有应急堆芯冷却系统、应急供电系统和一系列安全连锁装置。 从安全角度看,РБМК型反应堆最大的问题在于其空泡正反应性系数。此外,堆的反应性余量不足,控制棒从最高位置开始下落时有一个反应性增长区,以及反应堆没有有效的围封(安全壳)等,都是在设计上直接与此次事故有关的缺陷。 РБМК反应堆是石墨慢化压力管沸水型反应堆.它由轻水冷却,并

从福岛核电站事故分析看安全文化(最新版)

从福岛核电站事故分析看安全 文化(最新版) The core of safety culture is people-oriented, which requires the implementation of safety responsibilities in the specific work of all employees. ( 安全文化) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

从福岛核电站事故分析看安全文化(最新 版) 日本正遭遇二战以来最大的灾难,这次地震由于其史无前例的强烈震级和同时伴随的强次生灾害揪住了全球民众的心。这其中,福岛第一核电站事故1、2、3、4号机组所发生的事故,由于其可能对周边产生的恶劣影响和对人心理产生的恐慌,引起了越来越强烈的关注。根据诸多业内人士对核电站事故以及事故应急处理的分析,我们看到:福岛第一核电站事故看起来是天灾(地震引发海啸造成装置失效),但其实也有许多人为因素,也就是说,还是有人做了不应该做的事情,有人没做应该做的事情。 下面我结合专业人士eagle506的技术分析谈一谈这其中的

文化因素。 1、关于应急处置 2011年3月11日下午,地震发生,反应堆安全停堆,按理应该马上向堆芯补水,保证堆芯冷却防止超压,但地震摧毁了电网,厂外电源不可用,这时应该发动应急柴油机,但海啸来了,柴油机房被淹,不过核电厂还备有蓄电池,虽然容量较小,但是在事故后8小时内还是为压力容器的冷却做了一些贡献的。电池眼看就要耗尽,为了保住压力容器,必须要卸压,防止压力容器超压爆炸。而且操作员也确实是这样做的。 但是,12日早,日本首相菅直人要来视察。 如果卸压,环境中的放射性会升高,虽然菅直人是空中视察,但这对没有穿防护服的日本首相来说仍然不是什么好事,所以,根据日本某些论坛的说法(没有得到官方证实),卸压的事由于此次视察暂时中断。但余热不等人,安全壳内温度压力仍在上升。 菅直人走后,操作员开始继续释放压力容器内部的压力。此时压力容器内的温度约为550摄氏度,堆芯已经裸露并产生大

福岛核事故调查报告

Fukushima a disaster 'Made in Japan' 05 July 2012 The faults of every player in last year's Fukushima crisis have been laid out by a parliamentary commission. No organisation was singled-out as responsible - but rather Japanese culture itself. The report published today comes from Japanese Diet's Fukushima Nuclear Accident Independent Investigation Commission, one of three bodies investigating the circumstances of the accident. The 88-page executive summary elaborated in detail the organisational, cultural and technical failings that allowed the accident to occur, as well the issues that stymied the country's response. While it must be remembered that the Fukushima accident was directly cause by the enormous Tohoku earthquake and tsunami of 11 March 2011, the commission report pointedly dubbed it 'man-made'. Chairman Kiyoshi Kurokawa's foreword explained: "What must be admitted – very painfully – is that this was a disaster 'Made in Japan.' Its fundamental causes are to be found in the ingrained conventions of Japanese culture: our reflexive obedience; our reluctance to question authority; our devotion to 'sticking with the program'; our groupism; and our insularity." The mindset of government and industry led the country to avoid learning the lessons of the previous major nuclear accidents at Three Mile Island and Chernobyl, wrote Kurokawa. "The consequences of negligence at Fukushima stand out as catastrophic, but the mindset that supported it can be found across Japan. In recognizing that fact, each of us should reflect on our responsibility as individuals in a democratic society." Opportunities missed Long before the natural disasters, the report said, improvements had

日本福岛核电站事故带给我们的反思

日本福岛核电站事故带给我们的反思 又到了一年一度的“安全生产月”,今年安全生产月活动的主题是“安全责任,重在落实”。活动主要以认真吸取今年“3.11”日本福岛核电站事故和陕西华电蒲城发电有限责任公司“3.16”人身事故的经验教训为目的,使职工牢固树立“安全第一,预防为主”的观念,为促进我厂的安全生产工作贡献自己的力量。2020年3月11日下午,日本东部海域发生里氏9.0级大地震,并引发海啸。福岛第一核电站的6台机组有4台发生爆炸,核电站泄漏的放射性物质在日本地区扩散,这起事故不仅使日本经济受到重创,对整个世界经济的冲击和环境污染带来的危害都是不可估量的。福岛核电站事故爆发至今,时间已经过去近三个月,日本政府面对大量泄漏的高放射性污水束手无策,反应堆的彻底冷却隔离也遥遥无期。根据泄漏情况,国际原子能机构已将此次事故升定为7级,即意味着本次事故造成了场外泄漏,对环境产生了重大影响。事件发生后,世界各国舆论都对核电的未来和核电安全产生了疑问:核电--我们可能放弃吗?从能源的供应结构来看,目前世界上消耗的能源主要来自煤、石油、天然气三大资源,不仅利用率低,而且对生态环境造成严重的污染。为了缓解能源矛盾,除了应积极开发水能、太阳能、风能、潮汐能等再生能源外,核能是被世界公认的唯一可大规模替代常规能源的既清洁又经济的现代能源。我国目前核电占所有电力装机的比例不足2%,不仅远远低于其他主要发达国家的水平,就连处于同一起跑线的印度和巴西的核电比例都比我们高,因此对于中国来说,核电发展的空间非常大。不过即使核电优势如此明显,但是其唯一的劣势却是致命的。此次福岛核电站泄露事件的快速传播,更是加深了民众对于核电的恐惧,其实福岛事件有其偶然性和必然性:其一,天灾罕见,9级大地震,20米高的海啸,有史以来的案例屈指可数;其二,

福岛核事故的调查报告(DOC 59页)

国际原子能机构国际事实调查专家组针对日本东部大地震和海啸引发的福岛第一核电站核事故调查报告

目录 总结 (4) 1、介绍 (13) 1.1 背景 (13) 1.2 调查目的 (23) 1.3 调查范围 (23) 1.4 调查的开展 (24) 2、导致福岛第一核电站的事故序列 (25) 2.1 福岛第一核电站 (25) 2.2 福岛第二核电站 (36) 2.3 东海核电站 (37) 3、主要成果、结论和经验教训 (38) 3.1 引言 (38) 3.2 背景 (39) 3.3 国际原子能机构基本原则:总述 (42) 3.3.1 基本安全原则3:核安全的领导和管理 (42) 3.3.2 基本原则8:事故预防 (43) 3.3.2.1 自然外部事件 (43) 3.3.2.2 严重事故 (46) 3.3.3 基本原则9:应急准备和响应 (50)

3.3.3.1 场外应急准备以保护公众和环境 (50) 3.3.3.2 场内应急计划以保护工作人员 (52) 3.4 国际原子能机构安全标准 (53) 3.5 国际原子能机构安全活动 (54) 3.4.1 恢复路线图 (55) 3.4.2 外部危机 (55) 3.4.3 场外应急响应 (56) 3.4.4 严重事故情况下的大规模辐射防护组织 (56) 3.4.5 后续IRRS审查 (56) 4、致谢 (59)

总结 2011年3月11日,日本东部发生9级大地震,地震引发一系列巨大海啸,袭击了日本东部沿海。最大浪高是在宫古岛的姉吉,达到38.9米。 地震和海啸给日本大片地区造成打击,15391人死亡,此外还有8171人下落不明。大部分人口流离失所,他们生活的村镇被破坏或夷为平地。许多基础设施也由于这次侵袭而瘫痪。 除了工业之外,许多核电站设施也由于严重的地振动和大范围的海啸而受到影响,包括东海、东通、女川、以及东电公司的福岛第一和第二核电站。这些核电站在设计上都安装有自动停堆系统,在检测到地震时实现了机组成功停堆。但是,巨大的海啸对这些核设施造成不同程度的影响,并导致东电公司的福岛第一核电站发生严重事故。 虽然地震发生时,所有的厂外供电都已经丧失,但东电公司福岛第一核电站的自动系统在检测到地震时成功地将所有控制棒插入三个正在运行的反应堆,所有可用的应急柴油发电机也按设计处于运转状态。第一波海啸浪潮在地震发生后46分钟到达福岛第一核电站。 海啸浪潮冲破了福岛第一核电站的防御设施,这些防御设施

福岛核泄漏事故

福岛核泄漏事故、全球干旱全球能源危机正在加剧 阿拉伯国家政治动荡、福岛核泄漏事故、全球干旱,这三件事加起来对能源界意味着什么?我想,任何曾预言未来几年能源供应将不会出现问题的人都将大失所望,因为能源供应正面临着一个严酷的未来。 能源供应面临危机 由于油价再次高升以及全球范围内的经济危机,石油需求的脚步得以放缓。在5月石油市场报告中,国际能源署下调了今年全球石油消耗总量的预期,削减了每日19万桶,为每日8920万桶。得益于这次的下调,全球油价也许不会继续攀升至之前所预测的高度。但是,油价在今年保持高位仍是毋庸置疑的。人们正承受着自2008年油价暴增后的又一次高油价压力。 坏消息是,全球正面对着一个又一个的能源问题,而且这些问题还在不断加剧。易于开采的石油、天然气及煤炭已经越来越少,地缘政治对能源供应的影响再次显现。这些问题现在一股脑的摆在了人们面前,更是为全球能源供应前景蒙上了一层阴影。 随着经济快速发展,能源需求的增长速度实在太过惊人。要满足这样的能源需求已经是十分艰巨的任务,自然没有多少余地去挑选能源。不论是高度工业化的发达国家还是处在经济快速增长期的发展中国家,能源需求量都在与日俱增。另外,我们还得面对能源安全挑战以及燃料价格继续增长等可能出现的问题,这更是增加了能源供应的压力。 2011年的上半年对于能源界来说是一个“多事之秋”,三件重大事件已经改变了目前的能源供应格局,同时也将影响到我们的能源未来。 政治动荡影响能源供应 第一个,也是目前最让人头疼的问题就是部分阿拉伯国家的政治动荡。目前这种动荡正在持续,并有在阿拉伯国家中蔓延之势。能源和政治历来是分不开的,尤其是在拥有丰富能源储备的国家。由于不是主要石油生产国,突尼斯和埃及的政变没有给能源领域带来太多影响,但这股政治上的冲击波却波及了其他重要的石油生产国,包括利比亚、也门以及沙特。虽然也门以及沙特政府仍在努力维持国内的政局稳定,但饱受战火洗礼的利比亚石油产量已从过去的每日170万桶降至几乎为零。 尽管所有人都知道,石油不可能一直占领能源市场,未来必将会被其他能源取代。但就目前来说,石油仍是世界经济的命脉,石油供应不稳定带来的后果是任何国家都无法承受的。阿拉伯国家动荡带来的石油产量下降必须得到弥补,但是用什么来弥补呢?即便对像沙特这样的石油生产大国来说,增产都不是一件容易的事情。想要增产,政府就得投入大量资金,用以开发更多石油资源。而在易于开采的石油资源已经越来越少的今天,增产只能通过开发那些难以开发的石油资源来实现。但是,这就意味着更高的成本以及更多的基础设施需求。 《华尔街日报》不久就指出,想要满足日益增长的石油需求,必须有赖于沙特等主要石油生产国开发更多过去较少开发的石油资源,如重油等。当然就像我前面提到的,这需要投入大量资

从福岛核电站事故分析看安全文化

从福岛核电站事故分析看安全文化 日本正遭遇二战以来最大的灾难,这次地震由于其史无前例的强烈震级和同时伴随的强次生灾害揪住了全球民众的心。这其中,福岛第一核电站事故1、2、3、4号机组所发生的事故,由于其可能对周边产生的恶劣影响和对人心理产生的恐慌,引起了越来越强烈的关注。根据诸多业内人士对核电站事故以及事故应急处理的分析,我们看到:福岛第一核电站事故看起来是天灾(地震引发海啸造成装置失效),但其实也有许多人为因素,也就是说,还是有人做了不应该做的事情,有人没做应该做的事情。 下面我结合专业人士eagle506的技术分析谈一谈这其中的文化因素。 1、关于应急处置 2011年3月11日下午,地震发生,反应堆安全停堆,按理应该马上向堆芯补水,保证堆芯冷却防止超压,但地震摧毁了电网,厂外电源不可用,这时应该发动应急柴油机,但海啸来了,柴油机房被淹,不过核电厂还备有蓄电池,虽然容量较小,但是在事故后8小时内还是为压力容器的冷却做了一些贡献的。电池眼看就要耗尽,为了保住压力容器,必须要卸压,防止压力容器超压爆炸。而且操作员也确实是这样做的。 但是,12日早,日本首相菅直人要来视察。 如果卸压,环境中的放射性会升高,虽然菅直人是空中视察,但这对没有穿防护服的日本首相来说仍然不是什么好事,所以,根据日本某

些论坛的说法(没有得到官方证实),卸压的事由于此次视察暂时中断。但余热不等人,安全壳内温度压力仍在上升。 菅直人走后,操作员开始继续释放压力容器内部的压力。此时压力容器内的温度约为550 摄氏度,堆芯已经裸露并产生大量氢气。所以,含有氢气的蒸汽,通过卸压水箱简单的降温和过滤就被排放到厂房大气中。 下午三点左右,随着一声巨响,反应堆厂房顶盖被爆炸完全摧毁,只剩下钢结构。。。 这是很典型的一个例子。起初是低估了事故的后果,后来关键时刻,没有恪守安全第一的原则,由于首相的视察中断了正在进行的卸压操作,最终导致了反应堆厂房爆炸。如果时光可以倒流,我们知道,应该本着“以人为本,安全第一”的原则,作最坏的打算,做最周全的准备,而在应急处置的关键时刻,应该拒绝首相的视察,全力以赴投入到抢险工作中。但是很遗憾,时光不能重来。 2、关于采取何种措施的问题 在整个过程中,操作员一直在采取比较保守的冷却方式。虽然有机会,但是直到爆炸发生也没有向堆芯内注入硼水,而是用清水代替。一方面是不希望反应堆就此报废,一方面是对反应堆的承受能力抱有侥幸心理。客观的说,操作人员在最大限度的保护反应堆,但是没有在最大限度上保护公众的安全。 我们知道:安全文化最核心的理念就是“以人为本,安全第一”、“安全

日本福岛核泄漏事故经过以及对中国的影响

日本福岛核泄漏事故经过以及对中国的影响 2011年3月11日13时46分,日本近海发生9.0级地震,随之导致的海啸和核泄漏危机使这个国家陷入了前所未有的灾难之中。地震海啸纯属天灾无法避免,然而核泄漏危机却可以说是真正的人祸。 福岛第一核电站位于福岛工业区,同在该工业区内的有福岛第二核电站。两个核电站统称为福岛核电站。第一核电站共有6个反应堆,第二核电站拥有4个反应堆。经受地震及海啸袭击后,第一核电站6个反应堆均出现程度不等的异常情况。 核泄漏原因之一:技术缺陷、设备老化、选址不科学等因素是此次日本核泄漏事故不断发酵的原因。 福岛第一核电厂1号反应炉1971年开始运转,运行时间将近40年,严重老化。据悉,日本很多核电设备不少已是“超期服役”,使用寿命接近或超过25至30年的最长年限。据日本媒体报道,今年2月7日,东京电力公司完成了对于福岛第一核电站1号机组的分析报告,报告称机组已经服役40年,出现了一系列老化迹象,包括反应堆压力容器的中性子脆化、热交换区气体废弃物处理系统出现腐蚀等。抗震标准老化也为事故埋下了隐患。日本早期核电站设计抗震标准为里氏6.5级。2006年日本修改了核电站抗震标准,将这一标准提高到抗震能力最大为里氏7.0级。但目前日本国内55座核电站中,只有静冈县的滨冈核电站达到了最新抗震标准。据东京电力公司文件显示,对第一和第二核电站的地震测试假设,最高只有7.9级,换言之,该核电站的安全设计水平,远未达到抵御9级地震的标准。 11日下午,日本东北部海域发生9级强震,并引发强烈海啸,当天日本电力公司宣布,其在日本北部女川町工厂的三座核反应堆自动关闭。然而,几天后相继传来核电站爆炸和反应堆受损的消息。部分专家通过媒体上描绘的各个节点的场景为记者勾勒出福岛核电站核泄漏的大致过程: 由于核裂变的链式反应在地震之初就已自动停止,所以在核反应堆内的燃料棒不会发生像原子弹那样的核爆炸。所谓堆芯熔化,是指核反应堆温度上升过高,造成燃料棒熔化并发生破损事故。失去冷却水后,堆芯水位下降,燃料棒露出水面,燃料中的放射性物质产生的热量无法去除,随后温度持续上升会导致这种情况。 据日本媒体报道,操作人员尝试打开阀门,释放反应堆容器内的蒸气以让反应堆内的压力下降,爆炸声响起,厂房轰然倒塌。有专家分析,反应堆堆芯附近蒸汽外泄后产生的氢气和周围空气中的氧气发生反应引发爆炸,这场爆炸有可能导致护罩安全壳局部受损,从而导致铀燃料能够对外放射。无法有效对堆芯降温正是这次事故的关键所在。由于发电机在地震中遭到损毁,冷却水循

福岛核事故原因分析

福岛核事故原因分析 作者:苏秀彬 日本是一个资源极度贫乏的国家,据统计,日本全国有18座核电站,总共60座核反应堆,大都是属于沸水反应堆。由于沸水反应堆发电量高,没有二回路循环系统,相比压水反应堆,输出功率大,造价性对低廉,一直受到日本核电工业的青睐,日本新设计的第四代反应堆也是采用沸水反应堆。 福岛核电站位于北纬37度25分14秒,东经141度2分,地处日本福岛工业区。它是目前世界最大的核电站,由福岛一站、福岛二站组成,共10台机组(一站6台,二站4台),均为沸水堆,受日本大地震和海啸影响,福岛第一核电站受损极为严重,其中1号-4号机组损毁最为严重。目前,福岛第一核电站事故等级为最高级7级。 日本福岛第一核电站 沸水堆又叫轻水堆,由压力容器及其中间的燃料元件、十字形控制棒和汽水分离器等组成。沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。

福岛第一核电站结构设计图 通常,为了安全起见,反应堆冷却系统有三种供电方式。分别为电网供电,柴油机供电和汽轮机发电供给。大地震摧毁了核电站的外部电力供应,循环冷却系统在没有电力供应的情况下停止运转,此时核电站紧急启动了柴油发电机组,来维持循环冷却系统的运行,但不幸的是海啸来了,海水灌入摧毁了发电机组。发电机组损坏之后,核电站启动了备用电池,这种备用电池大概能维持循环冷却系统8小时运行所需要的电力。在这8个小时内,需要找到另外一种供电措施。通过卡车运来了移动式柴油发电机,更不幸的事情发生了,运过来的柴油发电机竟然因为接口不兼容无法连接,8小时过后循环冷却系统停止运转。 我们知道:福岛第一核电站一号 但是停堆之后,反应堆中的放射性物 质仍然有少量在继续衰变,放出衰变 能。这个能量大约占反应堆总输出功 率的1%左右。那么这样计算来看, 停堆之后反应堆仍然有4.6万千瓦的 输出,但是输出功率只占反应堆总功 率的33%左右,也就是说实质上,停 堆之后的福岛一号反应堆中总放射 性衰变能在13.8.万千瓦左右。 由于没有了冷却循环,反应堆压 力容器中的冷却水在不断地吸收这 些衰变能,变成蒸汽,液面下降,同

福岛事故的全过程

为什么福岛核电站未能逃脱核泄漏厄运 2012年03月10日07:35新华网 字号:T|T 为什么福岛核电站未能逃脱核泄漏厄运 日本NHK电视台“复原”事故全过程 2011年12月16日,日本政府发布了福岛核电站核泄漏事故的平息报告。关于这个事故的核心部分还有许多谜团。为接近或解开这些谜团,日本NHK电视台独家采访了100多名现场工作人员和指挥人员等,收集了大量第一手资料、图片和录像录音,听取了许多专家的意见,努力再现当时的情景,尽可能还原事故的真相…… 事件回放 2011年3月11日下午14时45分,日本福岛核电站中央控制室,一切工作正常运行,值班人员11人,都在岗位上。14时46分,发生了日本历史上最大的9级地震。核电站自动感应系统立即停止了原子炉的运行,燃料棒自动上升,反应堆停止工作。这一过程,仅仅用了两秒钟。 此次地震,首先造成福岛核电站周围高压输电线塔的大量震塌,从而使得福岛核电站中央控制室外部供电全部中断。核电站马上启动应急电源柴油发电机,很快恢复了中央控制室的供电。此时,现场技术人员根据日本原子能发电站操作规程,立即启动原子炉冷却系统。冷却系统正一步一步顺利进入正常运行状态。 地震发生51分钟后,突然,中央控制室一片漆黑。现场指挥者和所有人员不知道发生了什么情况。原来,强震引发的高达10米以上的海啸巨浪,袭击了设计能力只能抵御3米海啸大浪的福岛核电站。首先被淹的是南部建筑物,接着一号机组遭到侵袭,压力超过50吨的海水冲毁了第一道防护门,海水马上进入室内,应急电源柴油发电机完全进水,停止工作;海水进一步侵入位于地下室的蓄电池房。 蓄电池是使原子炉处于被冷却状态的最后一根救命稻草。但遗憾的是,当时所有蓄电池彻底被淹,核电站立刻陷入丧失所有电源的最险恶的境地。 2011年12月11日,当时的现场最高负责人、福岛第一原子能发电站站长福良昌敏第一次公开接受NHK独家采访时说,当时的情况真的是无能为力,不能做任何事情…… 那么,核泄漏真的无法避免吗? 第一次机会出现

福岛核电站泄露原因和影响

专家独家解读福岛核电站泄漏原因和影响 3月15日16点45分,新浪网、中国网邀请中国社会科学院美国研究所研究员、军控与防扩散中心秘书长洪源、日本企业研究院院长陈言做客,谈日本核辐射所产生的影响。 北京时间2011年3月11日13时46分,日本发生9.0级强震,随后,福岛核电站反应堆因爆炸起火泄漏放射性物质。据日本媒体报道,日本首相菅直人当地时间15日上午11时在首相官邸发表告国民书,指出福岛第一核电站的核泄漏问题趋向严重,要求在核电站20公里至30公里范围内的居民也要做好防止核辐射的准备。面对核辐射,民众需要采取哪些防护措施?此次地震会给日本的核能源政策和经济带来什么样的影响?核问题专家洪源和日本经济问题专家陈言在访谈中一一进行了解答。 主持人尹俊:各位网友大家好。最近日本的大地震引发了核泄漏,今天演播室请到两位专家和大家聊聊相关话题,今天聊的是日本的核辐射所带来的影响与警示,给大家介绍一下两位嘉宾,第一位中国社科院研究员同时也是军控与防扩散中心秘书长洪源,洪老师欢迎您。 主持人尹俊:一位对核技术有所了解,另外一位对日本有所了解,今天请到两位谈一下日本最新事态的发展。核泄漏的危险是大家目前比较关心的话题。现在确认的情况是风向为西风,其扩散范围已经扩大到太平洋。这次核泄漏影响有多大,请洪先生分析一下。 洪源:首先从污染源上看待这个事情,过去的几天,国际原子能组织把它定义为四级核事故,把1986年前苏联切诺贝利核事故定为7级,最高一级,现在1、2、3、4号四个反应堆出现问题,尤其是以2号反应堆出现问题最为严重,从这个情况来看,现在已经远远超出了4级,已经是5级的事故,原来1979年美国的三里岛核电站的事件,从现在的情况来看已经越过三里岛核电站,到今天为止的情况应该是超过了三里岛核电站,但是不及比切尔诺贝利核事故。我个人意见可能是6级是比较合适,也可能是5级,但是4级肯定是已经过去的情况了。 扩散源从过去的情况来看,把一些蒸汽放到大气中,蒸汽中含有一些日本政府说是微量的放射性元素,在这种情况下,我们又测出了铯137和碘131放射性同位素,放射性同位素存在于核燃料棒反应内部,从这个情况来看,已经出现了事实上的泄漏。 另外,海水对反应炉的内壁进行减热和冷却的作用,由于不可能保证完全没有泄漏,可能有少部分泄漏到了海水中。迄今为止,2号反应堆又发生了爆炸,日本政府承认有熔融现象,熔融之后,如果整个容器底部被烧穿的话,事故的严重性比切尔诺贝利核电站只差一个等级了。这是从污染源情况来看。 福岛大概是北纬38度,这个地区上空的七千到一万五千米的高空,是属于地球的西风带,风从西向东刮,环绕整个地球。如果熔融的部位暴露在空气中,包括三百多度以上的蒸汽和挥发物,有的是熔融以后超过了2100度、2300度、2700度,这些温度散见于日本的报道中。这种温度很可能把核物质和沾染的物质带向高空,就进入了西风带大气环流。从北纬35度到北纬60度,都属于西风带,这个范围很广,核物质和沾染的物质同时也被整个西风带的广袤地带稀释了。同时有沾染,同时也稀释了,这是一个矛盾体的两个方面。 另外七千米以下是对流层,在对流层的中下部是气流,它随着地形开始不断地进行变化,在这个变化过程中,迄今为止,都是从西北向东南刮着西北风,在西北风控制下,福岛的风主要是刮向太平洋,甚至是刮向了东京。像今天下午,福岛刮的是北风,在东京已经是辐射超标了大概20倍。 主持人尹俊:距离20公里—30公里的人呆在家里别出来。 洪源:东京是230公里已经超标了20倍,而且美国的华盛顿号航空母舰在下风口160公里。 主持人尹俊:日本核电发展几十年了,为什么在这次地震和海啸发生后,接二连三地发生问题。这是不是意味着日本核电事业存在一定的问题?日本是否有能力把这几个核电站问题给解决了? 陈言:日本从上个世纪50年代开始立法发展核电站,到60年代包括这次出事的福岛核电站,就开始一一建设起来了。这些技术相对于现在的日本核电技术属于略微老一些的,和最新的日本更安全的技术比起来,具有一定的技术上的缺陷,这一点可以从这次核电站事件中清楚地看出来。 还有一点,这次核电站出问题,和很多自然因素非常巧合地赶在了在一起。 主持人尹俊:设计的时候没有发生8.8级以上的考虑吗? 陈言:设计的时候没有考虑到发生9级的地震,在日本一千年历史中,7级地震是比较容易考虑到的,

福岛核电站爆炸感想

关于日本福岛核电站事故的感想 2011年3月11日下午,日本东部海域发生里氏9.0级大地震,并引发海啸。位于日本本州岛东部沿海的福岛第一核电站停堆,且若干机组发生失去冷却事故,3月12 日下午,一号机组发生爆炸。3月14日,三号机组发生两次爆炸。日本经济产业省原 子能安全保安院承认有放射性物质泄漏到大气中,方圆若干公里内的居民被紧急疏散(疏散范围一直在扩大)。 日本福岛第一核电站位于福岛县双叶郡大熊町沿海。福岛第一核电有6台机组,1号机组439兆瓦,为BWR-3型机组,1970年下半年并网发电,1971年投入商业运行;2号至5号机组为BWR-4型,784兆瓦,1974-1978年投产;6号机组为BWR-5型,1067兆瓦,1979年投产。六台机组在同一厂址,全是沸水堆,均属于东京电力公司。以上叙述看似数据罗列,但是为事故埋下了第一个伏笔:一号机已经运行整40年了,退休正当时。 此事故给我们带来了很多教训: 1、关于采取何种措施的问题。在整个过程中,操作员一直在采取比较保守的冷却方式。虽然有机会,但是直到爆炸发生也没有向堆芯内注入硼水。一方面是不希望反应堆就 此报废,一方面是对反应堆的承受能力抱有侥幸心理。客观的说,操作人员在最大限 度的保护反应堆,但是没有在最大限度上保护公众的安全。有人说这次事故是东京电 力公司见利忘义的人祸,从这个角度讲,不无道理。 2、关于退役年限的问题。到今年3月26日,福岛第一核电站一号机组即将迎来他的 商运40周年纪念日。按说,四十年也就意味着核电站的寿终正寝,但是东京电力公司考虑到经济利益,决定一号机组延寿二十年。而且讽刺的是,今年2月份,刚刚拿到 了延寿批准。虽然事故发生在40年寿命之内,和延寿无关,但此次事故为正在延寿或即将延寿的核电站敲响了警钟。因为毕竟,由于设备老化问题,一号机组近几年事故 不断。 3、关于在役核电站冷却方式改进的问题。目前在役二代核电站,包括在建的三代EPR 和已经投产的三代ABWR,事故后无一例外都需要应急柴油机来做安全保障。而现役 核电站,包括中国的二代加,柴油机都是低位布置,甚至把油箱还放在地下,大都无 法抵御海啸袭击。且不说海水退后电缆的绝缘问题,单是一台进了水的柴油机就够人 头疼的了。而柴油机不可用,往往也意味着离堆芯过热超压不远了。虽然把现役的电 厂都改成非能动在技术上完全不可能,但是可以考虑增加其他冷却措施,或是增加备 用电源。 4、关于辐射监测的问题。不知和中国一山之隔的海参崴有没有辐射监测站,但是,离中国直线距离最近的吉林延边和黑龙江牡丹江好像是没有的。长春和沈阳有,但如果 大城市监测到似乎有点晚了。朝鲜核电站投产似乎也不远了,某些边境增加辐射监测 点还是很有必要的。

新能源行业:福岛核电事故影响分析

新能源行业:福岛核电事故影响分析 3月11日,日本本州东海岸附近海域发生里氏9.0级地震,地震导致日本福岛第一核电站和第二核电站发生事故。截至3月13日,福岛第一核电站1号机组厂房12日发生氢气爆炸,并出现核泄漏情况。目前核电站事故仍处于危险状态。 分析与判断 (一)事故将引发核电安全性问题讨论 此次福岛核电事故是由于地震导致核电厂外电网全部瘫痪,而自身应急的柴油发电机也因海啸冲击不能正常使用。失去外部电力供应后,核电站内的冷却设备不能有效运转,反应堆中的核燃料失去强迫冷却的手段,燃料中放射性物质产生的热量无法顺利导出。高温导致燃料棒溶化,并出现核泄漏的情况。目前事故仍处于危险状态。 核电具有经济性和清洁性等巨大优势,成为各国电力供给中的重要组成部分。但是核电的安全性问题一直存在争议。历史上发生的“美国三里岛核电事故”和“苏联切尔诺贝利核电事故”均对全球的核电发展产生了重大影响。核电事故发生后均引发了一些民众对核电安全性的质疑,并间接导致欧美一些国家政府重新审视核电发展规划。美国因为三里岛事件,在30 年时间内没有新建一座核电站。虽然此次福岛核电事故是由于自然灾害引起(与“美国三里岛核电事故”和“苏联切尔诺贝利核电事故”起因有所不同),但是如果事故最终未能得到有效控制,并形成较大灾害,则关于核电安全性问题的讨论将不可避免。 福岛核电事故发生后,我国政府有关部门也在密切关注中。12日上午,国家环境保护部副部长张力军在回答记者关于“福岛核电事件是否让中国重新审视自己的核电发展策略”的提问时强调,“我们会吸取日本方面的一些教训,在我国核电的发展战略上和发展规划上进行适当地吸收。但是我国发展核电的决心和发展核电的安排是不会改变的。”这是截至目前,最高级别的政府官员对于福岛核电事故对我国核电发展影响的正式表态。 从长期看我国发展核电的决心和发展核电的安排不会改变,但是福岛核电事故在短期内将再次引发对核电安全性问题的讨论。此事故对核电行业而言是负面的。 (二)事故将促使核电安全标准的提升,推动核废料处理发展 1、事故处置 福岛核电事故处置将涉及到核电冷却、防辐射防护材料和装备的使用,抗辐射药物的使用等方面。

日本国会福岛核事故独立调查委员会正式报告

日本国会 福岛核事故独立调查委员会 正式报告 环保部核与辐射安全中心政策法规研究所译校 2012.7

日本国会福岛核事故独立调查委员会(NAIIC) 主席:Kiyoshi Kurokawa 医学博士,国家政策研究院专业会员,日本科学理事会前总裁 成员: Katsuhiko Ishibashi 地震学专家,神户大学名誉教授 Koichi Tanaka 化学专家,岛津公司 Kenzo Oshima 日本国际协力事业团主席顾问,前日本驻美国大使Mitsuhiko Tanaka 科学记者 Hisako Sakiyama 医学博士,国立放射线综合研究所前主席 Shuya Nomura 中央大学法学院教授,律师 Masafumi Sakurai 律师,名古屋公共检察官办公室前首席检察官;国防部督察长办公室前法律合规总督察 Reiko Hachisuka 福岛Okuma镇商会主席 Yoshinori Yokoyama 社会学家,东京大学执行管理项目主任 委员会顾问Itsuro Kimura Tatsuhiko Kodama Tatsuo Hatta 审查者 Takao Iida Makoto Saito Jun Sugimoto Isao Nakajima Takeshi Matsuoka 行政办公室 Toru Anjo 主任 Sakon Uda 调查常务主任

目录 主席致辞 (1) 概述 (3) 委员会的使命 (3) 事故 (6) 结论和建议 (10) 调查结果概要 (21) 1 事故可以避免吗 (22) 2 事故的扩大 (25) 3 事故的应急响应 (28) 4 危害的扩散 (34) 5 事故防范和响应的组织问题 (39) 6 法律体系 (43) 附录 (45) 福岛核事故人员疏散调查 (45) 对福岛核电站工作人员的调查 (62) 委员会会议报告 (74) 术语表 (93)

福岛事故分析

事故背景 2011年3月11日下午,日本东部海域发生里氏9.0级大地震,并引发海啸。位于日本本州岛东部沿海的福岛第一核电站停堆,且若干机组发生失去冷却事故,3月12日下午,一号机组发生爆炸。3月14日,三号机组发生两次爆炸。日本经济产业省原子能安全保安院承认有放射性物质泄漏到大气中,方圆若干公里内的居民被紧急疏散(疏散范围一直在扩大)。 1 日本福岛核电站概况 日本福岛第一核电站(福島第一原子力発電所)位于福岛县双叶郡大熊町沿海。福岛第一核电有6台机组,1号机组439兆瓦,为BWR-3型机组,1970年下半年并网发电,1971年投入商业运行;2号至5号机组为BWR-4型,784兆瓦,1974-1978年投产;6号机组为BWR-5型,1067兆瓦,1979年投产。六台机组在同一厂址,全是沸水堆,均属于东京电力公司。 (以上叙述看似数据罗列,但是为事故埋下了第一个伏笔:一号机已经运行整40年了,退休正当时。) 图中从右至左依次为1至4号机组,5、6号机组在北侧稍远。 另有福岛第二核电站,这两天爆炸的是福岛第一核电站,与第二核电站无关,不表。 2 沸水堆预备知识 考虑到中国大陆上只有压水堆(PWR)和重水堆(CANDU),(注意是中国大陆,台湾的是沸水堆,台湾在建的龙门电厂是更先进一点的ABWR),在此简单介绍一下沸水堆(BWR)。 沸水堆和压水堆都属于轻水堆,都是靠H2O做慢化剂和冷却剂。都是用低浓缩铀做燃料。目前全球400多台核电机组中,两百多压水堆,近一百台沸水堆。 下图是福岛一号核电站一号机的原理图: 沸水堆基本运行过程: 来自汽轮机系统的给水(深蓝色的管子)进入反应堆压力容器后,沿堆芯围筒与容器内壁之间的环形空间下降,在喷射泵(白箭头的起点)的作用下进入堆下腔室,再折而向上流过堆芯,受热并部分汽化。汽水混合物经汽水分离器分离后(汽水分离的过程跟压水堆蒸汽发生器差不多),蒸汽(浅蓝色管道)通往汽轮发电机(几个黄色块分别为高压缸,三个低压缸,发电机,和AP1000一样),做功发电。蒸汽压力约为7MPa,干度不小于99.75%。汽轮机乏汽冷凝后经净化、加热再由给水泵送入反应堆压力容器,形成一闭合循环。再循环泵(堆芯两边的两个泵)的作用是使堆内形成强迫循环,其进水取自环形空间底部,升压后再送入反应堆容器内,成为喷射泵的驱动流。目前日立和GE开发的ABWR(Advanced BWR先进沸水堆)用堆内循环泵取代再循环泵和喷射泵。 和压水堆类似,沸水堆也有几道安全屏障:一、燃料包壳,与AP1000的锆铌合金不同,他用的是锆-2。二、压力容器。这个和压水堆一样。三、干井,也有叫首层安全壳的。也就是上图中黑色的梨形外壳。 也有把外面的方形水泥壳当成第四道边界的,其实水泥壳只是防风吹雨打的,能够起一点作用,但不是很大。 和压水堆相比,沸水堆有以下特点: 1、控制棒从堆芯下方插入 由于堆芯上方有汽水分离器,而且上部是蒸汽为主,中子慢化不充分。但问题是不能像压水堆那样失电后靠重力落棒,未能停堆的预期瞬态事故概率增加,对控制棒驱动机构的可靠性要求更高。 控制棒在正常运行时是电驱动或机械驱动,失电时由备用液压把控制棒顶上去。每组控制棒,或者每两组控制棒有单独的液压驱动装置。 这不是沸水堆最大的特点,但在这里有必要列在第一条。因为网上有的分析提到了无法落棒等,没有那回事。根据IAEA官网上的新闻,反应堆在当时自动停堆了(All four units automatically

福岛核电站事故及影响分析

核能与核电原理课程论文论文题目:福岛核电站事故及影响分析

目录 1.事故分析 (1) 1.1背景 (1) 1.1.1福岛核电站 (1) 1.1.2东日本大地震 (1) 1.2事故概况 (1) 1.3原因分析 (3) 1.3.1核电站选址问题 (3) 1.3.2地震、海啸的双重打击 (3) 1.3.3早期沸水堆的设计缺陷 (4) 1.3.4沸水堆延期运行 (4) 1.3.5极端事件风险评估和应急准备不足 (4) 1.3.6操作人员人为失误 (4) 1.3.7核安全意识较淡薄 (5) 1.3.8IAEA调查报告中的原因分析 (5) 1.3.9东电公司对于原因的总结 (5) 2.影响分析 (6) 2.1具体影响 (6) 2.1.1对电站自身的影响 (6) 2.1.2对环境的影响 (6) 2.1.3辐射对公众健康的影响 (7) 2.1.4对社会经济的影响 (7) 2.2对中国核电发展的影响 (7) 2.3对世界核电发展的影响 (8) 3.经验教训 (9) 3.1核安全教训 (9) 3.2对中国核电发展的启示 (10) 3.2.1加快推进核安全立法 (10) 3.2.2完善监管体系 (10) 3.2.3健全核事故应急体系 (11) 3.2.4深入探索“纵深防御”的安全理念 (11) 3.2.5构建社会核安全信念 (11) 4.新能源认识 (12) 参考资料 (13)

1.事故分析 1.1背景 1.1.1福岛核电站 福岛核电站(Fukushima Nuclear Power Plant)是世界上最大的核电站之一,由福岛一站、福岛二站组成,共10台机组(一站6台,二站4台),均为沸水堆。 福岛一站1号机组于1971年3月投入商业运行,二站1号机组于1982年4月投入商业运行。福岛核电站的核反应堆都是单循环沸水堆,只有一条冷却回路,蒸汽直接从堆芯中产生,推动汽轮机。 1.1.2东日本大地震 2011年3月11日国际协调时间05:46(日本时间14:46),日本发生东北大地震,震级达9.0级。地震引发了剧烈的地振动和海啸,造成重大灾害,导致15391死亡,8171人至今仍失踪。此次大地震造成重大灾害,被称之为东日本大地震。强烈的地表震动和海啸袭击了日本东北部海岸的5个核电站,包括东通、女川、福岛第一、福岛第二和东海。地震引发的一系列事件导致了福岛第一核电站核事故。 1.2事故概况 3月11日 日本东北部近海发生里氏9.0级地震,福岛第一核电站1至3号机组自动暂停运作(4号至6号机组处在关闭状态)。第二核电站的全部4个机组“停堆”,核电站的应急柴油发电机启动以维持冷却水循环。但不幸的是,在一个小时后,海啸带来的洪水淹没了柴油发电机,导致水泵缺乏电力供应,第一核电站的1、2号机组和第二核电站的1、2、4号机组丧失冷却功能。日本首相菅直人宣布核紧急情况,指示居住在核电站周边半径3公里区域内的居民疏散。 3月12日 福岛第一核电站1号机组从凌晨起释放蒸汽,避免安全壳因压力过大损坏。这一措施导致了微量核泄漏,10时测得的福岛第一核电站正门核辐射浓度是7时40分的73倍。菅直人下令,12日凌晨5点44分起,建议居民疏散范围从第一核电站半径3公里以内扩大至10公里。13时许,1号机组附近探测到放射性元素铯137,这表明核燃料棒的锆合金外壳已开始熔毁,“堆芯熔化”险情首次出现。16时许,1号机组厂房发生氢气爆炸,整个操作厂房的外壁、顶部被炸飞。在爆炸发生后,核电站厂区内辐射剂量一度升至1.015mSv/?,到18时才下降至0.0705 mSv/?。所幸爆炸并未损坏混凝土安全壳。22时许,抢修当局开始向1号反应堆注入海水实施冷却。 3月13日

相关文档
最新文档