浅析铁路曲线桥墩台中心坐标计算解析

浅析铁路曲线桥墩台中心坐标计算解析
浅析铁路曲线桥墩台中心坐标计算解析

浅析铁路曲线桥墩台中心坐标计算

(中交 广东 广州)

摘 要:结合在建的某铁路设计资料,采用坐标计算法计算铁路曲线桥梁工作线偏角,并推算出桥梁墩台中心坐标,全过程采用VB 语言程序结合Excel 电子表格自动计算。 关键词:曲线桥梁工作线;偏距E 值;交点距L ;桥梁偏角α;桥梁偏角坐标计算法 Abstract :

Key words :

1引言

高速铁路采用的桥梁部份所占比例较大,需要计算的曲线桥梁墩台坐标计算工作量繁重。与直线桥相比,曲线桥墩台坐标的计算要复杂的多,涉及的内容也较多,如何能快速准确计算出曲线桥梁墩台坐标对测量内业计算至关重要。传统的采用前后视偏角计算法计算桥梁偏角,F B A δδα+=,δB 前视偏角,δB 后视偏角,由于梁体在线路上的位置不同,δB 、δF 的计算方法也不一样,不同情形下桥梁线路偏角的计算公式也不同,计算起来繁琐。

本文结合在建的某铁路,谈谈自已采用坐标计算法计算桥梁偏角,推算曲线桥梁墩台坐标的一些快速计算方法及编程实现。

2 基本原理

2-1. 梁和桥台在曲线上的布置形式

桥梁位于曲线上,线路中线为具有一定半径的圆曲线或缓和曲线,而预制梁的中线为直线,这就要求梁中线必须随着线路中线的弯曲形成与线路曲线基本相符的连续折线,如图2-1-1所示。这条连续折线称为曲线桥梁的工作线,其顶点为相邻两梁中线的交点,相邻两交点之间的水平距离,称为交点距,亦称墩中心距或跨距,以L 表示。

在曲线桥上,桥梁工作线为折线,线路中线为曲线,两者并不重合,列车通过时,桥梁必然承受偏心荷载。为了使桥梁承受较小的偏心荷载,桥梁设计中,每孔梁中心线的两个端点并不位于线路中心线上,而必须将梁的中线向曲线外侧移动一段距离。根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线的中矢值,此布置方式称为切线布置,如图2-1-2(a )所示;也可以等于该中矢值的一半,称为平分中矢布置,如图2-1-2(b )所示。两种布置形式比较,平分中矢布置较为有利,铁路曲线桥基本上都采用这种布置形式。

图2-1-1

桥台在曲线上的布置形式与梁稍有不同,如果将桥台的中心线和与其相邻的梁跨中线布置在同一条直线上,则台尾中心必然偏离到线路中线的外侧,如图2-2-1所示。设其偏距为d ,如果d ≤10cm 时,则桥台就采用这种布置形式;否则,应旋转桥台,使台前的偏距与相邻梁跨的偏距相同,台尾的偏距为0,如图2-2-2所示。前者布置形式称为直线布置,后者称为折线布置。

当采用折线形式布置桥台时,台尾偏角可能会出现负值,如图2-2-3(a )所示,如果出现这种情况,则台前和台尾采用相同的偏距,如图2-2-3(b )所示。

2-2.偏距E 的计算

在曲线桥上,梁的中线由弦线位置,向曲线外侧移动的一段距离称为偏距,并以E 表示。由于曲线半径很大,相邻两跨梁中线的偏转角很小,故可以认为偏距E 就是桥梁工作线各转折点相对线路中线外移的距离。

图2-2-1 图2-2-2

图2-2-3

在圆曲线上,切线布置的梁,其偏距为:

R

L E 82

= ( 1-1) 若为平分中矢布置,其偏距为:

R

L E 162

= (1-2) 在缓和曲线上,切线布置的梁,其偏距为:

28l l R L E i ?= (1-3) 若为平分中矢布置,则偏距为:

图2-1-2

216l l R L E i ?= (1-4) 式中,L 为交点距、R 为圆曲线半径、l i 为ZH (或HZ )至计算点的距离、l 0为缓和曲线长。

曲线桥梁设计中,桥墩的中心选在桥梁工作线的转折点上,其纵轴线位于工作线转折角的角平分线上,横轴线与纵轴线垂直。由偏距的计算公式可以看出,当相邻两孔梁的跨距不等,或虽然跨距相等,但位于缓和曲线上时,所求得的偏距E 值不等,导致相邻两孔梁中线的交点不在两孔梁的正中间,这就造成两孔梁在墩上不能对称放置。为了避免这种情况的发生,规定了当相邻梁跨都小于16m 时,按较小跨度梁的要求计算偏距E 值,而大于20m 时,按较大跨度梁的要求计算偏距E 值。

2-3. 交点距L 的计算

考虑到梁体的制造误差、架设误差、梁在受力后的伸长、温度变化对梁长的影响、墩台施工误差和测量误差等,相邻两跨梁的梁端之间、桥台胸墙线与相邻梁端之间应留有一定的间隙。对于直线桥,梁端之间、梁端与桥台胸墙线之间彼此平行,其间隙称为直线桥的梁缝。对于曲线桥,相邻两跨梁的梁端之间、桥台胸墙线与相邻梁端之间不平行,规定曲线内侧的间隙不小于一个定值,该定值称为曲线桥的梁缝,如图2-3-1所示。由于梁缝的存在,使得交点距L 并不等于梁的长度L ′。

交点距的计算公式为

F L L 2+'= (1-5)

其中:

222sec 2

cos 2sin 2ααααtg B a B a F ?+?=?+

= 当α 很小时,22 12sec α

α

α

≈≈tg 、,则

2

2α?+≈B a F (1-6) 式中,F 为墩中心至相邻梁端的距离;a 为规定的最小梁缝之半;B 为梁的宽度;α 为工作线转向角。

2-4.桥梁偏角α 的计算

桥梁偏角α 即曲线桥梁工作线的偏转角。桥梁在曲线上的布置,可以看成先将梁布置在线路上,此时相邻两梁中线转向角即为线路偏角;然后将梁向曲线外侧移动以满足受力要求,此时相邻两梁中线转向角即为桥梁偏角。梁向曲线外侧移动后,如果相邻三个交点的偏距值均相等,即梁体是相对平移的,则桥梁偏角的值与线路偏角的值相等;否则,桥梁偏角图2-3-1

的值就为线路偏角的值和梁体两端位移不等产生的角值共同组成的。梁体两端位移不等产生的角值称为外移偏角,是由于外移的偏距不等而产生的。由此可见,桥梁偏角实际上是由线路偏角和外移偏角组成的,如图2-4-1所示。设线路偏角为αA ,外移偏角为αE ,则桥梁偏角α为

α = αA + αE (1—7)

图2-4-1

αA =αi- 1-i - αi-i+1 (1-8)

αi- 1-i –小里程向的方位角;αi-i+1–大里程向的方位角;由线路里程坐标反算求出。

αi- 1-i =atn(

11----xi xi yi yi ) (1-9) αi-i+1=atn(xi

xi yi yi -+-+11) (1-10) 桥梁外移偏角公式推算:外移偏角的产生主要是由相邻梁跨偏值E 不同引起,可借用测量学里偏心观测角度规化原理及公式计算。

ρθθφφα)2cos )(11cos )(1()(11+--+--=+-=i i F

i i B F B E E E L E E L ″ 单位为″(1-11) 铁路桥梁设计单个交点处的偏角较小,且E 值近似法线方向,1θ 、2θ近似90°,公式(1-11

可简化为:

))(1)(1()(11+--+--=+-=i i F i i B F B E E E L E E L φφα 单位为Rad 弧度 (1-12) 式中,ρ为常值206265 、L B 为后跨梁的交点距、L F 为前跨梁的交点距、E i -1为后交点i -1的偏距、E i 为计算点i 的偏距、E i +1为前交点i -1的偏距。

2-5.采用坐标法计算桥梁偏角α

线路偏角的坐标计算法是利用方位角求差值的方法,即首先计算弦线端点的坐标,然后按坐标反算计算出弦线的坐标方位角,根据坐标方位角求出前一条弦线相对于后一条弦线的偏角,即线路偏角,最后加上外移偏角即得桥梁工作线偏角。

3 程序快速计算实现

3-1. 用VB 语言结合Excel 编制常规线路坐标正反算计算程序。

该程序只需输入线路曲线要素设计资料、里程及偏距可以实现线路坐标正反算快速计

算。程序使用时首先输入曲线要素,点击按钮

,输入里程桩号点击按钮

,可自动快速生成线路中边桩坐标。

某铁路曲线要素表—程序截图1

某铁路曲线中桩、边桩坐标正反算表—程序截图2

3-2.电子表格Excel编制曲线桥梁墩台中心坐标计算程序。

3-2-1.曲线桥梁墩台中心坐标计算流程图

3-2-2.曲线桥梁墩台中心里程粗算

依据桥梁设计规范要求和设计采用的标准梁长确定曲线最小梁缝宽度2a ,其中a 为内侧最小梁缝宽度的一半。交点距的粗算采用计算公式a L L 2+'= ,初步计算出每个墩台的中心里程并复制到坐标正反算程序计算出线路中心坐标。

3-2-3.桥梁工作线偏角坐标法计算

把正反算程序计算出的里程坐标复制到曲线桥梁墩台中心坐标计算程序,可自动计算出线路交点距、交点间方位角并计算出线路偏角。输入偏量E 可自动计算出外移偏角,E 值正负号规定右偏为+,左偏为- 。桥梁工作线偏角α = αA + αE 其中α为桥梁偏角,αA 为线路偏角,αE 为外移偏角,计算公式(1-12)。

3-2-4.曲线桥梁工作线交点距L 计算

交点距的计算公式为(1-5)、(1-6)。

3-2-5.墩中心里程计算

通过曲线墩台起始里程加上计算出的桥梁工作线交点距L 可推算出每个墩台中心里程。 3-2-6.跌代计算

重复上述跌代计算一次可算得准确的桥梁工作线偏角α、交点距L 及墩台中心里程。 3-2-7.按测量导线计算法推算墩中心坐标

根据起始方位角加上每个墩台桥梁偏角α,自动计算出桥梁工作线方位角,结合计算出的桥梁工作线交点距L ,按测量计算导线的方法快速计算出每个墩台的中心坐标闭合至台尾。

αββ+-=1i i (1-13)

Xi=Xi-1+Lcos(βi) (1-14)

Yi=Yi-1+Lsin(βi) (1-15)

β为桥梁工作线方位角,α为桥梁偏转角。

3-2-8.程序计算截图

曲线桥梁墩台中心坐标计算程序表—程序截图3

3-3.程序计算结果与某铁路设计图纸对比。

计算结果与某铁路设计图纸对比统计表

与铁路设计图纸对比,实例计算出来的梁缝宽度偏差在5mm内,桥梁偏角偏差在0.2″内,墩台中心坐标计算误差2mm内,梁缝宽度偏差主要是因为设计图纸尾数取5mm整数倍产生。

4结论

4-1.本文采用坐标计算法计算桥梁偏角避免了传统的前后视法计算桥梁偏角区分桥梁所处位置不同采用不同计算公式的繁琐,采用的公式计算简洁,便于编程实现。

4-2.通过计算实例与设计资料对比,计算精度符合设计要求,全过程采用程序自动计算,极大的减轻了铁路曲线桥梁测量内业计算的工作量。

[1] 张坤宜交通土木工程测量人民交通出版社

[2] 郭圣路、张荣圣 Visual Basic6.0中文版从入门到精通电子工业出版社

[3] 曲线上桥梁布置肆桥8029③铁道部第四勘测设计院通用图

[4]罗书学铁路桥梁基础工程中国铁道出版社

[5] 张正禄等. 工程测量学[M]. 武汉:武汉大学出版社,2005-10

[6] 张景生. 中文Visual basic6.0教程[M]. 北京:北京希望电子出版社,1996

[7] 王新洲,陶本藻,邱卫宁,姚宜斌. 高等测量平差[M]. 北京:测绘出版社,2006

注意事项:

1、铁路单线桥梁的曲线半径R≥2000m时,曲线桥墩可不设横向预偏心,但设外矢距,即:线路中心坐标沿法线方向向曲线外侧偏移偏距E值后为桥墩中心。

2、铁路单线桥梁的曲线半径R<2000m时,曲线桥墩设横向预偏心和外矢距,即:线路中心坐标沿法线方向向曲线外侧偏移偏距E 值和预偏心值后为桥墩中心。

3、铁路单线曲线桥台不设横向预偏心,桥台有直线布置和折线布置两种方案,应根据桥台尾处桥台中线与线路中线的偏距值大小而选定方案。

4、铁路双线曲线桥墩不设横向预偏心,但设外矢距。

5、纵向预偏心:铁路桥梁桥跨为不等跨时,应根据设计图确认是否设有纵向预偏心,即梁缝中心线与桥墩中心线不重合,一般桥墩中心线向大跨方向偏移。

铁路公路坐标计算方法

铁路公路曲线防样坐标计算方法一、 随着我国公路铁路的大力建设,对坐标放样的要求精度越来越高,以及通过一种快速的捷径来达到一次性对整个路基、桥梁的中线编辑公式,准确较快的计算出中心坐标,使得坐标放样在我们的施工中带来更大的方便。 1、首先熟悉测量知识圆曲线基本公式及概念。 偏角法测设圆曲线 1-1

知道了圆曲线的测设里程,即测设的曲线长Li ,即可进行计算,其计算公式如下: π α0180?=R L i i 2 i i αδ= i i R c δsin 2= (1-1) 式中,i δ,i c 为曲线测设曲线点i 的偏角与弦长。 切线支距法测设圆曲线 ZY i i R x αsin ?= )c o s 1(i i R y α-?= π 180?=R L a i i (1-2) 1-2

式中i L 为曲线上点i 至ZY (或YZ )的曲线长。 2、缓和曲线的基本公式及概念。 缓和曲线是直线与圆曲线之间的一种过渡曲线,它与直线分界处半径为∞,与圆曲线相接处半径与圆曲线半径R 相等,缓和曲线上任一点的曲率半径ρ与该点到曲线起点的长度成反比。如下图中,存在公式: ρ∝l 1 或C l =ρ (2-1) 公式中C 是一个常数,称缓和曲线半径变更率。当0l l =时,R =ρ 所以C l R =?0,C l =ρ,是缓和曲线的必要条件,实用中能满足这一条件的曲线可称为缓和曲线,如辐射螺旋线、三次抛物线等,我国缓和曲线均采用辐射螺旋线。 1-3

3、缓和曲线方程式: 按照C l =ρ为必要条件导出的缓和曲线方程为: ????++-=?????++-=5 11 3734 9 25422403366345640C l C l C l y C l C l l x (3-1) 根据测设精度的要求,实际应用中可将高次项舍去,并顾及到C Rl =0,则上式变为 3 2 025 640Rl l y l R l l x = -=(3-2) 式中,x ,y 为缓和曲线上任一点的直角坐标,坐标原点为直缓点(ZH )或缓直(HZ ),通过该点的缓和曲线切线为x 轴。 1-4

5800计算器程序下载

阅览室馆友我的图书馆 kaixin100 | | 分享

U+W(Acos(G+QEKW(C+KWD))+Bcos(G+QELW(C+LWD))+Bcos( G+QEFW (C+FWD))+Acos(G+QEMW(C+MWD)))→X: V+W(Asin(G+QEKW(C+KWD))+Bsin(G+QELW(C+LWD))+Bsin(G+ QEFW(C+FWD))+Asin(G+QEMW(C+MWD))) →Y: G+QEW(C+WD)+90→F:X+Zcos(F)→X:Y+Zsin(F)→Y 反算子程序SUB2 G-90→T (Y-V)cosT-(X-U)sin(T) →W Abs(W)→W:0→Z Lbl6:Prog "SUB1" T+QEW(C+WD) →L:(J-Y)cos(L)-(I-X)sin(L)→Z IF Abs(Z)<1E-6:Then0→Z:Prog "SUB1":(J-Y)÷sin(F)→Z:Else W+Z→W:Goto6:IfEnd 数据库子程序SUB0 Goto 1(线元可输入多条,分离式可在前多加一位,匝道一样。例:左幅为K129+500,右幅输线元参数里程为1129+500,其他不变,前面 1为任意数字,计算机便于区分) Lbl 1:IF S<线元终点里程:Then@@@→O(线元起点里程) :@@@ →U(线元起点X坐标):@@@→V(线元起点Y坐标):@@@→G(线元起点计算方位角):@@@→P(线元起点半径):@@@→R(线元止点半径):@@@→H(线元长度):@@@→Q(线元左、右偏标志,左偏-1,右偏1,直线为0):Return:IfEnd IF S<线元终点里程:Then@@@→O(线元起点里程) :@@@ →U(线元起点X坐标):@@@→V(线元起点Y坐标):@@@→G线元(起点计算方位角):@@@→P(线元起点半径):@@@→R(线元止点半径):@@@→H(线元长度):@@@→Q(线元左、右偏标志,左偏-1,右偏1,直线为0):Return:IfEnd 。。。。。。。。。。。。。。。。。。。。。。。。。。。 一程序功能 本程序由一个主程序(ZBJS)和3个子程——正算子程序(SUB1)、反 算子程序( SUB2) 、数据库子程序(SUB0)构成,可以根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线 元要素(起点坐标、起点里程、起点切线方位角、线元长度、起点曲 率半径、止点曲 率半径)及里程边距或坐标,对该曲线段范围内任意里程中边桩坐标 进行正反算。另 外也可以将本程序中核心算法部分的两个子程序移植到其它相关的 程序中,用于对曲 线任意里程中边桩坐标进行正反算。本程序也可以在CASIO fx-4500P计算器及CASIO fx-4850P计算器上运行。 二、使用说明

公路工程测量方法总结

公路工程测量方法总结 一、常用计算公式和常用命令 1、已知A(X1,Y1)、B(X2,Y2)、C(X3,Y3)三点,求圆心O点坐标(X,Y)。 Y= ((X32+ Y32- X22- Y22)/(2X3-2X2) -(X22+ Y22- X12- Y12)/(2X2-2X1))/((Y1- Y2)/(X2-X1)-(Y2- Y3)/(X3-X2)) X=(X22+ Y22-2Y2Y- X12- Y12+2Y1Y)/(2X2-2X1) 结论:(X1-X) 2 +(Y1-Y) 2=(X2-X) 2 +(Y2- Y) 2=(X3-X) 2 +(Y3- Y) 2 2、三角形面积计算:已知三角形的三条边A、B、C,求三角形面积S。 D=(A+B+C)/2 S=√(D*(D-A)*(D-B)*(D-C))。 3、已知两条直线方位角和两条直线上任一点坐标,求交点坐标O(X,Y)。【直线MN,方 位角F、N点坐标(X1,Y1);直线HP:方位角E、H点坐标(X2,Y2)】。 交点O坐标:X=(X2*tan E- X1*tan F- Y2+Y1)/(tan E-tan F) Y= X*tan F- X1* tan F+ Y1 4、已知路基设计标高A、计算填土高程B、上次填土高程或原地面高程(基本为直线)C、 路基设计宽度L和边坡坡度为i,标高B到标高C的填土面积S。 S=((2A-B-C)*i+L)*(B-C) 5、缓和曲线坐标计算公式:【R为圆曲线半径(右偏为正,反之为负)、L为缓和曲线总长、 Z为起算切线方位角(即ZH或HZ点所在直线上的方位角)、D为起算点桩号、(X1,Y1)为ZH或HZ点坐标】 A=K-D W=A-A5/(40R2L2) (数学坐标X) E=A3/(6RL)-A7/(336R3L3) (数学坐标Y) X= X1+W cos Z-E sin Z Y= Y1+W sin Z+E cos Z C=A-A5/(90R2L2) 【(C为弦长,A为计算点到起算点的缓曲线弧长,L为缓和曲线全长),由于A5/(90R2L2)此值为微量,可以把C约等于A,得A=C+C5/(90R2L2) 】 F"FWJ"=Z+90*A2/(RLπ)为偏角(计算点的切线方位角)(F"FWJ":在CASIOfx-4800 计算器中将F值赋给FWJ并显示出来,在CASIOfx-4850计算器中将F值赋给FWJ并 显示出来为:"FWJ":F)。 6、圆曲线坐标计算公式:【R为圆曲线半径(右偏为正,反之为负)、Z为起算方位角、D 为起算点桩号、(X1,Y1)为ZY或YZ点坐标】 L=K-D【(计算点到起算点的弧长,D为起点桩号),弧长另一计算公式:L=Raπ/180 】

铁路曲线桥墩台中心坐标计算

浅析铁路曲线桥墩台中心坐标计算

————————————————————————————————作者:————————————————————————————————日期:

浅析铁路曲线桥墩台中心坐标计算 (中交 广东 广州) 摘 要:结合在建的某铁路设计资料,采用坐标计算法计算铁路曲线桥梁工作线偏角,并推算出桥梁墩台中心坐标,全过程采用VB 语言程序结合Excel 电子表格自动计算。 关键词:曲线桥梁工作线;偏距E 值;交点距L ;桥梁偏角α;桥梁偏角坐标计算法 Abstract : Key words : 1引言 高速铁路采用的桥梁部份所占比例较大,需要计算的曲线桥梁墩台坐标计算工作量繁重。与直线桥相比,曲线桥墩台坐标的计算要复杂的多,涉及的内容也较多,如何能快速准确计算出曲线桥梁墩台坐标对测量内业计算至关重要。传统的采用前后视偏角计算法计算桥梁偏角,F B A δδα+=,δB 前视偏角,δB 后视偏角,由于梁体在线路上的位置不同,δB 、δF 的计算方法也不一样,不同情形下桥梁线路偏角的计算公式也不同,计算起来繁琐。 本文结合在建的某铁路,谈谈自已采用坐标计算法计算桥梁偏角,推算曲线桥梁墩台坐标的一些快速计算方法及编程实现。 2 基本原理 2-1. 梁和桥台在曲线上的布置形式 桥梁位于曲线上,线路中线为具有一定半径的圆曲线或缓和曲线,而预制梁的中线为直线,这就要求梁中线必须随着线路中线的弯曲形成与线路曲线基本相符的连续折线,如图2-1-1所示。这条连续折线称为曲线桥梁的工作线,其顶点为相邻两梁中线的交点,相邻两交点之间的水平距离,称为交点距,亦称墩中心距或跨距,以L 表示。 在曲线桥上,桥梁工作线为折线,线路中线为曲线,两者并不重合,列车通过时,桥梁必然承受偏心荷载。为了使桥梁承受较小的偏心荷载,桥梁设计中,每孔梁中心线的两个端点并不位于线路中心线上,而必须将梁的中线向曲线外侧移动一段距离。根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线的中矢值,此布置方式称为切线布置,如图2-1-2(a )所示;也可以等于该中矢值的一半,称为平分中矢布置,如图2-1-2(b )所示。两种布置形式比较,平分中矢布置较为有利,铁路曲线桥基本上都采用这种布 图2-1-1

CASIO fx-5800P实用工程测量程序

一、QXFY 辛甫森公式放样程序 1. “X0”? U:“Y0”?V 2. “XA”? A:“Y A”? B:“CA”? C:“1÷RA”?D:“1÷RB”?E: “KA”?F:“KB”? G 3. Lb1 1:“KI”?H:“JJ”?L:“Y+Z-”?R 4. If H>G Or H

5800简单全线坐标计算程序

5800全线任意坐标计算程序 1. 正算主程序(ZHCX) (不运行) 8→DimZ 1÷P→Z[4 ]:(P-R)÷(2HPR)→D: 180÷π→E “Z=”?Z:”YJJ=”?A:Abs(S-O)→W 0.26→Z[1 ]: 0.74→B: 0.02→K: 0.82→Z[3 ]: 1-Z[3 ]→F:1-K→Z[2 ] U+W(Z[1 ]cos(G+QEKW(Z[4 ]+KWD))+Bcos(G+Z[3 ]QEW(Z[4 ]+ Z[3 ]WD))+Bcos(G+QEFW (Z[4 ]+FWD))+ Z[1 ]cos(G+ Z[2 ]QEW(Z[4 ]+ Z[2 ]WD)))→X: V+W(Z[1 ] sin (G+QEKW(Z[4 ]+KWD))+B sin(G+ Z[3 ]QEW(Z[4 ]+ Z[3 ]WD))+B sin(G+QEFW (Z[4 ]+FWD))+ Z[1 ] sin(G+ Z[2 ]QEW(Z[4 ]+ Z[2 ]WD)))→Y: G+QEW(Z[4 ]+WD)→F:X+Zcos(F+A)→X:Y+Zsin(F+A)→Y:If F≧360:Then F-360→F:IfEnd ”X=”:X→X◢ ”Y=”:Y→Y◢ If F﹤0:Then F+360→F:IfEnd ”QX FWJ=”:F▼DMS◢ “C=1=>XX: C=2=>XZ”: ”C=”?C: ”QHJU=”?L: If C=1:Then Goto 1:Else Goto 2: IfEnd 可以计算斜交斜做或斜交正做的桥涵坐标 Lbi 1 X+L cos(F)→X:Y+Lsin(F)→Y: Goto 3 Lbi 2 X+L cos(F+A-90)→X:Y+Lsin(F+A-90)→Y: Goto 3 Lbi 3 “QH-X=”: X →X◢ “QH-Y=”: Y →Y◢ Prog “FY” 2 . 参数子程序(直接运行) M(主线) 一条线路一个名称 “S=”?S If S≦线元终点:Then 线元起点X值→U: 线元起点Y值→V:线元起点切线方位角→G:线元起点桩号→O:线元长度→H:线元起点半径→P:线元终点半径→R:(左偏-1,或右偏 1)→Q:Goto 1:IfEnd … … If S≦线元终点:Then 线元起点X值→U: 线元起点Y值→V:线元起点切线方位角→G:线元起点桩号→O:线元长度→H:线元起点半径→P:线元终点半径→R:(左偏-1,或右偏 1)→Q:Goto 1:IfEnd Lbi 1 Prog “ZBJS” 3. 放样程序(FY)(不运行) “X0=”?M:“Y0=”?N Pol((X-M, Y-N)

公路测量坐标计算公式

高速公路的一些线路计算 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: y y ⑼y x x ⑻x αSsin y ⑺αScos x ⑹90 ααα⑸y x ⑷S 180n x y arctg α⑶l 3456R l l 40R l l y ⑵)K R 336l l 6Rl l (x ⑴Z 1Z 11111012 0200 040 49202503307 03 0+=+===-+=+=?+=+-=-= 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: ?? ? ??=<?? ? ??=>>1n 0y 0x 1n 0y 0x 2n 0y 0x 0n 0y 0x 00000000 当计算第二缓和曲线上的点坐标时,则: l 为到点HZ 的长度 α为过点HZ 的切线方位角再加上180° K 值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ 的坐标 切线角计算公式:2Rl l β0 2 =

二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: y y ⑿y x x ⑾x αSsin y ⑽αScos x ⑼90α αα⑻y x ⑺S 180n x y arctg α⑹m Rsinα'y ⑸p]K )cosα'[R(1x ⑷34560R l 240R l 2l ⑶m 2688R l 24R l ⑵p Rπ)l -90(2l ⑴α'Z 1Z 11111012 0200 0004 5 23003 40 200+=+===-+=+=?+=+=+-=+ -=- == 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: ?? ? ??=<?? ? ??=>>1n 0y 0x 1n 0y 0x 2n 0y 0x 0n 0y 0x 00000000 当只知道HZ 点的坐标时,则: l 为到点HZ 的长度 α为过点HZ 的切线方位角再加上180° K 值与知道ZH 点坐标时相反 x Z ,y Z 为点HZ 的坐标

公路测量卡西欧5800万能程序

一、前言本程序是《CASIO fx-5800P计算与道路坐标放样计算》中道路坐标放样计算程序的升级改进版本。原道路坐标放样计算程序只基于道路的单个基本型曲线,有效计算范围仅包括平曲线部分和前后的两条直线段,使用时需要输入平曲线设计参数,无坐标反算桩号功能。改进后的程序名称为:道路中边桩坐标放样正反算程序(全线贯通),增加了可实现全线贯通的数据库功能和坐标反算桩号功能,主要是: 1.使用道路平面数据库子程序,可将一段或若干段道路的交点法格式平面参数(可容易从直线、曲线及转角表中获得)以数据库子程序形式输入计算器,程序在计算时省却了输入原始数据的麻烦; 2.坐标正算方面,输入桩号即可进行道路的中、边桩坐标计算,若输入了测站坐标,还可同时计算全站仪极坐标放样数据(拨角和平距); 3.坐标反算方面,输入平面坐标,即可计算对应的桩号和距中距离(含左右信息); 4.对于存在断链的道路,可分段分别编写数据库子程序,然后在主程序中添加一个路段选择的功能即可实现(可参照立交匝道程序中匝道的选择)。程序的特点: 1.可进行中桩坐标的正、反算,程序代码简洁,便于阅读和改写; 2.主程序通过调用数据库子程序,省却了使用时输入平面参数的繁琐; 3.使用数据库子程序,换项目只需改写数据库子程序,程序通用性强。二、道路示例项目基本资料基本资料同《CASIO fx-5800P计算与道路坐标放样计算》第6章HY高速公路第2合同段(合同段起止桩号: K4+800~K9+600)。这里摘取直线、曲线及转角表资料如下.

.

. 三、程序代码 .

. .

. .

线元法万能坐标计算程序

线元法万能坐标计算程序(适用于CASIO fx-9750GⅡ计算器) 论文https://www.360docs.net/doc/f113823151.html,/:本论文仅供学习交流使用,本站仅作合理转载,原作者可来邮要求删除论 文。 摘要:我国公路建设事业正处于一个高速发展的时期,在公路工程施工过程中,施工技术人员经常要使用全站仪、水准仪进行施工放样、高程测量,在测量过程中,手工计算速度慢,失误率高,工作效率极低。利用CASIO fx-9750GⅡ编程函数计算器强大的内存(可诸存63000个字符)和编程功能,编写各种计算程序,能够在2秒钟内计算出施工放样、桩点坐标等施工过程中的各项数据资料,同时也使我们有更多的时间去挑战更富有创造性的工作。 关键词:坐标放线线元测量程序 1、前言 本程序采用Gauss-Legendre(高斯-勒让德)五节点公式作内核,计算速度(太约2秒)适中,计算精度很高。在此之前,本人曾用过以下公式作内核:①积分公式simpson法②双重循环复化高斯2节点③高斯-勒让德3节点④求和公式复化simpson法⑤双重循环复化simpson法⑥高斯-勒让德4节点,⑦高斯-勒让德5节点,经过测试③计算最快,⑦代码稍长但计算速度只比③⑥稍慢,精度最高,可满足线元长小于1/2πD 的所有线形的精度要求。⑦作内核分别计算圆曲线长1/4πD、1/2πD、3/4πD、πD处的精度,1/4πD时偏差为0.001mm,1/2πD时偏差为0.55m m,3/4πD时偏差为31.63mm,πD时偏差为968mm,偏差按半径倍数增大,如线元长大于1/2πD(1/2圆周长)时,可将其拆分二个或多个线元单位,以确计算保精度。 2、程序特点 事先将所有的平曲线交点的线元要素诸存到计算器内,测量时只输桩号、边距等程序会自动寻找各类要素,一气呵成地完成施工测量任务,中途不需人工转换各类要素数据,本程序可诸存几百条线路的要素数据,计算时可按需选择线路编号进行测量。测量时不需查阅及携带图纸,仅一台CASIO fx-9750GⅡ编程函数计算器即可。 本程序含一个主程序:3XYF,五个子程序:GL(公式内核)、QD(线路选择)、XL(线路要素判断)、GF(坐标反算)、File 1 (要素存放的串列工作簿)。可以根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、终点里程、起点曲率半径、止点曲率半径)及里程边距或坐标,对该线元段范围内任意里程中边桩坐标进行正反算。 3、计算公式及原理 如图:BC 间为一曲线元,曲线元上任一点的曲率随至B 点的弧长作线性变化。设起点B 的曲率为KA ,终点C 的曲率为KB ,R 为曲线半径。±表示曲线元的偏向,当曲线元左偏时取负号,当曲线元右偏时取正号,直线段以1的45次方代替(即半径无穷大)。 式中:αΑ=起始方位角l =p 点到B的距离lS=曲线总长αp=p 点切线方位角 R1=R5=0.118463442528095 ,R2 = R4 = 0.239314335249683 , R3 = 0.28444444444444 V1=1-V5= 0.046910070 ,V 2= 1-V4 = 1 0.2307653449 V3= 0.5 利用上面公式及CASIO fx-9750GⅡ编程函数计算器可编写下列计算程序。 4、程序清单 (1)、3XYF(主程序) "1→XY2→FS"?→V:V=1=>Goto 1:V=2=>Goto 2↙(选择计算功能) Lbl 1:File 1:”XLn”?→S:Prog “QD”↙(选择线路)

FX5800计算器公路全线坐标正、反算计算程序

5800计算器公路全线坐标正、反算计算程序FX5800全线贯通万能正、反算程序(一体化、超好用、短小、易懂) FX5800计算器的积分程序(正反算、全线贯通、新线路)终极版 ZHUCHENGXU主程序 "1.ZS,2.FS" ?→Q←┘输入1正算,输入2反算 “NEW=0,OLD≠0”?Z←┘ IfZ=0:Then“X0=”?A:“Y0=”?B:“C0=”?C:“1/R0=”?D:“1/RI=”?E:“SP=”?F:“EP=”?G:Ifend:Q=2=>Goto 2←┘ Lbl1 :“KM=,<0 Stop”?H:H<0=>Stop:“PJ=”?O:“PY=”?L←┘ LblZ:Z=1=> Prog“01”:Z=2=> Prog“02”←┘选择数据库文件,可增加 H- F→X:0.5(E-D)÷(G-F)→N←┘ C+(XD+NX2)*180÷π→P:P<0=>P+360→P:P>360=>P-360→P←┘- A+∫(cos(C+(XD+NX2)*180÷π),0,X)+Lcos(P+O)→U←┘ B+∫(sin(C+(XD+NX2)*180÷π),0,X)+Lsin(P+O)→V←┘ Q=2=>Goto4:Cls:Fix 3←┘ "Xn=":Locate4,1,U:"Yn=": Locate5,2,V:“FWJ=”:PDMS◢ Norm 2:Cls:Goto1←┘ Lbl2:“XD=,<0,STOP”?R:R<0=>Stop:“YD=”?S←┘ “KMDG=”?H :90→O:0→L:GotoZ←┘(H线路范围内的任意桩号) Lbl4:Pol(R-U,S-V):J<0 => J+360→J←┘ Whileabs(Icos(J-P))≤0.001:P-J>180=> J+360→J: P-J<-180=> P+360→P:If P-J>0:then -I→L:else I→L :Ifend:Goto3: Whileend:H+Icos(J-P)→H:GotoZ←┘ Lbl3:Cls:Fix 3←┘

道路施工测量公路边线桩点的坐标计算及放样方法

公路边线桩点的坐标计算及放样方法 中建四局一公司 (贵阳市云岩区松柏巷1号550003) 【摘要】本文主要讨论了在高等级公路施工放样过程中,公路边桩的坐标计算和放样方法。一、引言 公路施工放样测量是按照设计和施工要求将图纸上的路线设计方案放样到实地上去的一项工作,对新建的高等级公路而言,各方面的质量要求都很高,为确保路基在施工过程中路基宽度、坡比符合设计要求,笔者在此主要探讨了利用全站仪对公路边桩放样时的坐标计算方法 二、曲线上任一点的中桩坐标的计算 以直缓(TS)或缓直(ST)点为原点,以直缓点(或缓直点)的缓和曲线的切线为X轴,过直缓点(或缓直点)且垂直于X轴为Y轴,建立切线直角坐标系如图1,用切线支距法计算出曲线上每一点切线坐标。 1、曲线上任一点的中桩坐标的计算: 1.1、缓和曲线上任一点i的切线坐标计算: xi=l i - l5i/(40R2l02) 参考文献(1) yi=l3i/(6Rl0) 式中:x i、y i:缓和曲线上任一点的切线坐标。 l i :缓和曲线上任一点到直缓点(或缓直点)的距离。 l0:缓和曲线长度。 R:圆曲线半径。

1.2、带有缓和曲线的圆曲线上任一点的坐标计算 x i=Rsin αi +m y i =R(1-cos αi )+P 式中:xi、y i : 带有缓和曲的圆曲线上任一点的坐标。 m :增加缓和曲线后,切线增值长度。 m= l 0/2 - l 02/(240R2) p :增加缓和曲线后,圆曲线相对切线的内移量 p=l02/(24R) αi: i 点至缓和曲线起点弧长所对应的圆心角 αi =l i/R?180°/π+β0 式中:li :圆曲线上任一点到圆曲线起点的长度。 β0:缓和曲线角度。 β0= l 0/(2R)? 180°/π l o : 缓和曲线长度 1.3、利用坐标系变换,将切线直角坐标系变换为测量坐标系: 图1 1)、第一段缓和曲线上的点,即从TS 点SC 点之间: 参考文献(1)

卡西欧FX5800线路曲线坐标计算程序

卡西欧FX5800---辛普森公式(万能公式) 复化辛普森公式 1.Lbl 0:“XA=”?A:“YA=”?B: “CA=”?C:“1/RA=”?D:“1/RB=”?E:“DKA=”?F:“DKB=”?G 2.Lbl 1:“DKI=”?H:“DL=”?O:“DR=”?R:IF H>G:THEN Goto0 IFEND 3.(E-D)/Abs(G-F)→P:Abs(H-F) →Q: P×Q→I:D+I→T 4.C+(I+2D)×Q×90/π→J 5. C+(I/4+2D)Q×45/(2π) →M: C+(3I/4+2D)Q×135/(2π) →N 6. C+(I/2+2D)Q×45/π→K 7. A+Q(cosC+4(cosM+cosN)+2cosK+cosJ)/12 →X 8.B+Q(sinC+4(sinM+sinN)+2sinK+sinJ)/12 →Y 9.”FW=”:J▲DMS ▲ 10. “X=”:X▲ 11. “Y=”:Y▲ 12.“XL=”: X+Ocos(J-90) →U ▲ 13.“YL=”: Y+Osin(J-90) →V▲

14.“XR=”:X+Rcos(J+90)→ W▲ 15.“YR=”:Y+Rsin(J+90)→ Z▲ 16.Goto 1 程序结束 程序说明: A- 曲线元起点A的坐标; B- 曲线元起点B的坐标; C- 曲线元起点A的切线坐标方位角; F- 曲线元起点A的里程; G- 曲线元起点B的里程; H- 曲线上待求点i的里程; D- 曲线元起点A的曲率; E- 曲线元终点B的曲率; XL-左边线点位X坐标; YL-左边线点位Y坐标; XR-右边线点位X坐标; YR-右边线点位Y坐标; X- 中线点位纵坐标; Y- 中线点位横坐标; DL-左边线距中线平距; DR-右边线距中线平距; 该程序需要输入的数据为: (1).曲线元起点A的坐标及切线坐标方位角,计算器上用“XA”,“YA”,“CA”显示; (2).曲线元起点A和B的曲率,计算器上用I÷RA,I÷RB显示(曲线左偏时取“-”); (3).曲线元起点A和终点B的里程,计算器上用“DKA”,“DKB”显示;(4).输入待求点里程和该点距左右的水平距离,计算器上用“DKI”,“DL”,“DR”显示; 每算完一个待求点的中线及边线坐标,程序又让输入下一点的“DKI”,“DL”,“DR” 当输入的“DKI”大于“DKB”时,此时输入下一个曲线元起点的曲率和里程,即可计算下一个曲线中线及边线点位坐标。 使用该程序应注意事项; 该程序以前进方向为有意识,不可倒退计算;缓和段和圆曲线段应分开计算在计算圆曲线时应记下缓和 曲线尾的坐标方位角即“J”的角度;在计算第一段缓和曲线时曲率“1÷RA”输入0;在计算第二段缓和曲 线时“1÷RB” 输入0 。 (5)第一个0为零。

道路坐标计算公式(简单实用)

曲线坐标计算 1、曲线要素计算 (1)缓和曲线常数计算 移距R l 24/p 2 s = 切垂距 23 s 240/2/m R l l s -= 缓和曲线角R l R l s s πβ/902/0??== (2)曲线要素计算 切线长 m R T ++=2/tan )p (α 曲线长 ?+=?-+=180/]180/)2([20απβαπR l R l L s s 外矢距 R R E -+=)]2/cos(/)p [(0α 切曲差 L T q -=2 2、主要点的里程推算

s s s S l YH HZ )/22l -(L QZ YH )/22l -(L HY QZ l +=+=+=+=-=ZH HY T JD ZH 检核: HZ T JD =-+q 3、方位角计算 根据已知JD1和JD2的坐标计算出 21JD JD -α 偏角βαα±=--211JD JD JD ZH ?±-=-18011JD ZH ZH JD αα 4、计算直线中桩坐标 (1)计算ZH 点坐标: ZH JD JD ZH ZH JD JD ZH T y y T x x --?+=?+=1111sin cos αα (2)计算HZ 点坐标: 2 11211cos cos JD JD JD HZ JD JD JD HZ T y y T x x --?+=?+=αα (3)计算直线上任意点中桩坐标 待求点到JD1的距离为i L 2 112 11sin cos -JD JD i JD i JD JD i JD i i L y y L x x HZ T L --?+=?+=+=αα里程 待求点里程 5、计算缓和曲线中桩坐标 (1)第一缓和曲线上任意点中桩坐标 在切线坐标系中的坐标为: s i s i Rl l y Rl l l x 6/)(40/3 25=-= ZH 到所求点方位角:

公路坐标计算方法

坐标计算方法 目前公路、铁路工程的施工放样已广博采用全站仪放样,而全站仪放样的关键是放样逐点的坐标计算。 放样点的位置不外乎两种,即: 中线点(中桩)和横断面范围上的任意点(边桩)。 1、直线段坐标的计算方法: 直线段的坐标方位角α(用弧度表示)是不变的,其坐标计算不用考虑方位角的变化。 1.1直线段任意中桩点坐标计算公式如下: X=X0+L*COSα Y=Y0+L*SINα 其中:X0、Y0分别代表直线段已知点的坐标;L代表计算点到已知点的距离;α代表直线段的方位角以弧度计。 1.2边桩坐标计算公式如下: (本文以90度即π/2弧度示例) X=X0+ D*COS(α±π/2+π) Y=Y0+ D*SIN(α±π/2+π) 其中:X0、Y0分别代表已知中桩点的坐标;D代表计算点到中桩的距离,α代表中桩点的方位角以弧度计。 ±的使用,当计算点在左侧选择-,当计算点在右侧选择+ 2、xx曲线段坐标的计算方法: 圆曲线段采用切线支距法计算:

2.1中桩坐标计算 2.1-1方位角计算: 已知ZY点的方位角α,计算点的弦切角δ=L/2R,L为计算点到ZY点的桩号长度,所以计算点的方位角为(α±δ)。 ±的使用,当路线为左转时选择-,路线为右转时选择+ 2.1-2计算点到ZY点的距离计算: C=2R*SIN(L/2R),L为计算点到ZY点的桩号长度;R为圆曲线的半径。 2.1-3中桩坐标计算公式: X=X0+ C*COS(α±δ) Y=Y0+ C*SIN(α±δ) α为ZY点的方位角;X0、Y0代表ZY点的坐标; δ=L/2R,C=2R*SIN(L/2R),R为圆曲线半径,L为桩号长度。 ±的使用,当路线为左转时选择-,路线为右转时选择+。 2.2边桩坐标计算 2.2-1方位角计算: a、已知中桩点方位角(α±δ); b、因为圆曲线上的边桩点是沿半径方向布置的,半径垂直于计算点的切线而不是弦线,如果严格按照弦线90度即π/2弧度方向布置计算,需要调整角度,即弦垂线与切线垂线的夹角i,其中i=L/2R=δ,所以计算点的方位角即为: (α±2δ±π/2)。 第一个±指路线走向,路线左转时选择-,路线右转时选择+;

CASIO万能坐标计算程序

程序:MC W“1.JS 2.SZ”:W=1=>Z[2]=0:Goto 1 ΔW=2=> O“KOU LING”:O≠123456=>O= 0: “OUT” ◢Goto 5ΔO=0:Defm 42:Z[1]=0:Goto 0←┘ Lbi 0←┘ {ABCREFGU}:A“X0”:B“Y0”:C“F0”:R“R0”:E“RN”:F“D0”:G“LS”:U“G” ←┘ Z[Z[1]*8+3]=A:Z[Z[1]*8+4]=B:Z[Z[1]*8+5]=C:Z[Z[1]*8+6]=1÷R:Z[Z[1]*8+7]=1÷E:Z [Z[1]*8+8]=F: Z[Z[1]*8+9]=F+G: Z[Z[1]*8+10]=U←┘ A=0=> Z[2]=0:Goto 1ΔIsz Z[1]: Goto 0←┘ Lbi 1←┘ {DZ}:D:Z:Z[2]=0:Goto 2←┘ Lbi 2←┘ D≤Z[Z[2]*8+9]=>A=Z[Z[2]*8+3]:B=Z[Z[2]*8+4]: C =Z[Z[2]*8+5]:R=Z[2]*8+6]: E= Z[Z[2]*8+7]: F=Z[Z[2]*8+8]: G=Z[2]*8+9]: U=Z[Z[2]*8+10]: Goto3:ΔIsz Z[2]:Got o 2 Lbi 3←┘ P=U(E-R)÷Abs(G-F):Q=Abs(D-F):I=PQ:J=C+90 Q(I+2UR)/π:J<0=>J=J+360ΔM=C+45 Q(I÷4+2UR)÷2π:N=C+135Q(3I÷4+2UR)÷2π:K=C+45Q(I÷2+ 2UR)÷π:L=C+45Q(I÷8+2UR) ÷4π: S=C+135Q(3I÷8+2 UR) ÷4π: T=C+225Q(5I÷8+2UR) ÷4π: H=C+315Q(7I÷8+2UR) ÷4π←┘ Lbi 4 X=A+Q(Cos C+4(Cos L+ Cos S +Cos T+Cos H)+2(Cos M + Cos N+Cos K)+Cos J) ÷24+ZCos(J+90)←┘ Y=B+Q(Sin C+4(Sin L + Sin S + Sin T+ Sin H)+2(Sin M + Sin N+ Sin K) + Sin J) ÷24 +ZSin(J+90)←┘ Z=0=>“X”:X:Pause 0: “Y” :Y◢Goto 1Δ Z<0=>“XL”:X:Pause 0: “YL”:Y◢Goto 1Δfx4850 Z>0=>“XR”:X:Pause 0: “YR”:Y ◢Goto 1 ←┘

公路坐标计算公式

一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度

α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反 x Z,y Z为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 x Z,y Z为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径

P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: 五、超高缓和过渡段的横坡计算

线路中线和边线点位坐标的万能通用程序

1线路中线和边线点位坐标的万能通用程序 Lb1?: { E G }:A“X?”:B“Y?”:C“FWJ”:D“1/R-QD”: E“1/R-ZD”:F“QD-ZH”:G“ZD-ZH”: Lb1 1:{ H O }:H“JS-ZH”:O“JZ-JL”:H > G Goto 2 Δ Prog 1: X“X-JS”=X+Ocos(J+9?)▲Y“Y-JS”=Y+Osin(J+9?)▲Goto1Δ Lb1 2:L=H:H=G:“WARING>JS-FW”▲“SR…SUJU”▲ Prog 1: A=X:B=Y:D=E:F=G:C=J:H=L: Got o ?Δ 子程序1: P= (E-D)/ABS(G-F):Q=ABS(H-F):I=PQ: J=C+9?Q(I+2D)/π: M=C+45Q(I/8+D)/π: N=C+135Q(3I/8+D)/π K=C+45Q(I/2+2D)/π X=A+Q(cosC+4(cosM+cosN)+2cosK+cosJ)/12: Y=B+Q(sinC+4(sinM+sinN)+2sinK+sinJ)/12: 注释:A“X?”:B“Y?”:-起点的xy坐标 C“FWJ”:-起点的方位角 D“1/R-QD”:起点的 1/半径,如直线为1/e50 E“1/R-ZD”:终点的 1/半径,如半径100为1/100(如左转为负,右转为正)“QD-ZH”:G“ZD-ZH”:起点、终点的桩号 H“JS-ZH”:O“JZ-JL”:输入计算的桩号,距中距离、如大于计算范围则显示 “WARING>JS-FW”▲“SR…SUJU”▲只需继续输入下一点的终点的 1/半径和终点桩号即可连续计算下一线型。 X“X-JS”、y“y-JS”显示计算点的xy坐标

高速公路坐标计算方法

高速公路坐标高程计算程序 本软件简要说明: 一、平曲线计算(主程序) 1、J为起算点里程,C、D为起算点的X、Y坐标,F为起算点的切线方位角,R为圆曲线半径 (左偏取负,右偏取正),A、B为第一、第二缓和曲线回旋参数,O为圆曲线长度,Ki为该 分段的终点里程; 2、对于直线段或圆曲线段,起算点可取直线或圆曲线上的任意一点; 3、对于带第一、第二缓和曲线的平曲线段,起算点应取HY点; 4、K为所求点的里程,T、P为第一偏距、偏角,S、Z为第二偏距、偏角,偏角取从该点的 切线顺时针旋转的夹角; 5、分段法则:直线单独分段;单一的圆曲线单独分段;缓和曲线1+圆曲线+缓和曲线2为一 个整体单独分段,若不存在第一或第二缓和曲线(即不完全缓和曲线)仍然可以计算,A或B可取任意不为零的值;若不存在圆曲线,则O取零; 6、无论任何时候A、B不能取零,否则可能导致被零除的错误; 7、F、Q切线方位角输入输出均为度.分秒的格式,例如153°24′05.24″=153.240524。 Q改变时,可按照新方位角为基准,结合第一第二偏距、偏角重新计算所求点; 8、输入平曲线参数后,默认为计算全线坐标,可修改来计算某段曲线,默认间距也可修改; 9、可参考CAD图《平曲线计算图例》; 10、生成的中桩CAD脚本设置成在世界坐标系下生成,注意的是世界坐标系与大地测量坐标系 的区别是XY坐标是互换的,否则画出的图形与实际相反。先打开CAD,设置好图层名称、颜色, 并设置为当前层,然后单击CAD的工具==>运行脚本==>选中生成的脚本文件即可。 11、输出的坐标结果可以导入到EXCEL中,操作办法为:打开EXCEL,然后把坐标数据复制到 单元格里,然后单击数据==>分列==>选中分隔符号==>下一步==>选中TAB键和逗号==>下一步 ==>完成即可。下一次可直接在此表中粘贴,数据自动分列。 二、缓和曲线计算(辅助程序) 1、本程序为辅助程序,用来从ZH点或HZ点计算整条完全的缓和曲线, 若不知道HY点X、Y、Q参数,可用此程序计算出来,然后输入平曲线参数; 2、参数设置参考平曲线计算; 3、导出到EXCEL的办法同平曲线计算; 三、直线计算(辅助程序) 1、本程序为辅助程序,若已知P1(X1,Y1),P1-->P2的距离I及方位角J(度.分秒格式),可计算坐标P2(X2,Y2)。 四、方位角计算

铁路公路坐标计算方法

铁路公路曲线放样坐标计算方法一、 随着我国公路铁路的大力建设,对坐标放样的要求精度越来越高,以及通过一种快速的捷径来达到一次性对整个路基、桥梁的中线编辑公式,准确较快的计算出中心坐标,使得坐标放样在我们的施工中带来更大的方便。 1、首先熟悉测量知识圆曲线基本公式及概念。 偏角法测设圆曲线 1-1

知道了圆曲线的测设里程,即测设的曲线长Li ,即可进行计算,其计算公式如下: π α0180?=R L i i 2 i i αδ= i i R c δsin 2= (1-1) 式中,i δ,i c 为曲线测设曲线点i 的偏角与弦长。 切线支距法测设圆曲线 ZY i i R x αsin ?= )c o s 1(i i R y α-?= π 0180 ?=R L a i i (1-2) 1-2

式中i L 为曲线上点i 至ZY (或YZ )的曲线长。 2、缓和曲线的基本公式及概念。 缓和曲线是直线与圆曲线之间的一种过渡曲线,它与直线分界处半径为∞,与圆曲线相接处半径与圆曲线半径R 相等,缓和曲线上任一点的曲率半径ρ与该点到曲线起点的长度成反比。如下图中,存在公式: ρ∝l 1 或C l =ρ (2-1) 公式中C 是一个常数,称缓和曲线半径变更率。当0l l =时,R =ρ 所以C l R =?0,C l =ρ,是缓和曲线的必要条件,实用中能满足这一条件的曲线可称为缓和曲线,如辐射螺旋线、三次抛物线等,我国缓和曲线均采用辐射螺旋线。 1-3

3、缓和曲线方程式: 按照C l =ρ为必要条件导出的缓和曲线方程为: ????++-=?????++-=5 11 3734 9 25422403366345640C l C l C l y C l C l l x (3-1) 根据测设精度的要求,实际应用中可将高次项舍去,并顾及到C Rl =0,则上式变为 3 2 025 640Rl l y l R l l x = -=(3-2) 式中,x ,y 为缓和曲线上任一点的直角坐标,坐标原点为直缓点(ZH )或缓直(HZ ),通过该点的缓和曲线切线为x 轴。 1-4

相关文档
最新文档