加工中心主轴的常见故障分析

加工中心主轴的常见故障分析
加工中心主轴的常见故障分析

加工中心主轴的常见故障分析

【摘要】加工中心的主轴是加工中心的核心部件,对生产正常运行影响巨大。本文根据生产实践经验,对加工中心主轴的常见故障现象进行了详细的分析,并提出了相应的维修措施,为保证加工中心的良好运行提供了有效的技术支撑,同时对加工中心的使用人员和维修人员有着较好的借鉴作用。

【关键词】加工中心;主轴;故障分析;维修措施

0.引言

加工中心是高速、高精密、高自动化、结构异常复杂的先进加工设备,在现代制造业生产中发挥着巨大的作用,一旦发生故障,极大的影响企业的生产效率,虽然加工中心都具有着很好的故障自诊功能,在加工中心发生故障时大部分都会有报警信息提示,但有时候加工中心的故障是综合形式的,没有报警信息,无法区分是机械问题、电气问题,还是液气压问题、CNC系统,需要维修人员具有较多的知识和综合判断能力和丰富的维修经验。本文根据生产实践经验,对加工中心常见的主轴故障进行了详细的分析,并提出了相应的维修措施,为加工中心的维修和维护提供了有效的借鉴。

1.加工中心主轴的常见故障分析

加工中心的主轴通常使用伺服调速电动机调速,其结构相对简单,但是加工中心有刀具自动夹、和切屑自动清除装置以及主轴准停装置,常见的主轴故障也多发生在这些部位,下面对其进行具体的分析。

1.1主轴发热、旋转精度下降问题

故障发生的现象:加工出来的工件孔精度偏低,圆柱度很差,主轴发热很快,加工噪声很大。

故障原因分析:经过对机床主轴长期观察可以确定,机床主轴的定心锥孔在多次换刀过程中受到损伤,主要损伤原因是使用过程中换刀的拔、插到失误,损伤了主轴定心孔的锥面,仔细分析后发现主轴部件的故障原因有四点:(1)主轴轴承的润滑脂不合要求,混有粉尘杂质和水分,这些杂质主要来源于该加工中心用的没有经过精馏和干燥的压缩空气,在气动清屑时,粉尘和水气进入到主轴轴承的润滑脂内,导致主轴轴承润滑不好,产生大量热河噪声;(2)主轴内用于定位刀具的锥形孔定位面上有损伤,导致主轴的锥面和刀柄的锥面不能完美配合,加工的孔出现微量偏心;(3)主轴的前轴承预紧力下降,导致轴承的游隙变大;(4)主轴内部的自动夹紧装置的弹簧疲劳失效,刀具不能完整拉紧,偏离了原本位置。

针对以上原因,故障处理措施:(1)更换主轴的前端轴承,使用合格的润滑

浅析数控铣床的主轴结构设计

浅析数控铣床的主轴结构设计 摘要自从我国改革开放之后,我国的工业领域发展就十分迅速,工业化水平不断提高,促进了国民经济的迅速发展,尤其是近几年自动化技术在工业领域中的普遍应用,极大提高了工业生产的质量和效率,其中各种工业生产设备的应用,极大的便利了工业生产活动,数控铣床作为工业生产中的常见设备,在工业生产中的高速度,高精度以及高效率等优势,使其在工业领域中发挥的作用越来越大。在数控铣床结构中,主轴结构无疑是十分关键的,直接影响着数控铣床的应用,所以本文就针对数控铣床的主轴结构设计进行分析,促进数控铣床在工业领域中的应用。 关键词数控铣床;主轴;结构设计 在我国的工业生产领域中,数控铣床作为高速切削技术的主要应用设备,在我国应用十分广泛,有效提高了切削工作的效率和质量,提高了工业生产中的产品加工精度,在高速切削的过程中主轴是极为核心的部件,主轴的结构和质量会直接影响工业生产的质量和效率,所以在现代数控铣床的应用过程中,需要加强对主轴结构的设计,提高主轴的质量,从而促进数控铣床的广泛应用。 1 數控铣床主轴结构特点 主轴是数控铣床结构中最为关键和核心的部件,其主要作用是带动刀具高速旋转,从而实现高速切削,完成加工任务,而在切削工作中,主轴的作用也就具体表现为切削力的承受和为机床提供驱动力。由于主轴在数控铣床的工作中发挥着重要的作用,承受了巨大的压力,所以数控铣床的工作过程中,主轴想要实现高速旋转,保证加工的质量和效率就必须对自身的结构进行优化,保证自身的可靠性,也就是说,需要有良好的静动态特性。 数控铣床的主轴具有一定的结构特点,主要包括: (1)主轴的中心为空心,在其中会装弹簧等装置来固定和使用铣刀,方便铣刀的使用; (2)在主轴的前端会设置一个7:24比例的锥形空洞,在断面上会设置用于将主轴转矩数据传输给铣刀的主轴转矩检测装置; (3)在主轴的后部会设置用于铣刀放松的液压缸,在日常为铣刀进行保护; (4)主轴的运转主要依靠齿轮进行,用齿轮进行变速传动; 2 数控铣床主轴结构的设计优化 2.1 进行设计控制

加工中心常见故障诊断与对策

加工中心常见故障诊断与对策 一、手轮故障 原因: 1.手轮轴选择开关接触不良 2.手轮倍率选择开关接触不良 3.手轮脉冲发生盘损坏 4.手轮连接线折断 解决对策: 1.进入系统诊断观察轴选开关对应触点情况(连接线完好情况),如损坏更换开关即可解决 2.进入系统诊断观察倍率开关对应触点情况(连接线完好情况),如损坏更换开关即可解决 3.摘下脉冲盘测量电源是否正常,+与A,+与B之间阻值是否正常。如损坏更换 4.进入系统诊断观察各开关对应触点情况,再者测量轴选开关,倍率开关,脉冲盘之间连接线各触点与入进系统端子对应点间是否通断,如折断更换即可 二.X Y Z轴及主轴箱体故障 原因: 1.Y Z轴防护罩变形损坏 2.Y Z 轴传动轴承损坏 3.服参数与机械特性不匹配。 4.服电机与丝杆头连接器变形,不同轴心 5.柱内重锤上下导向导轨松动,偏位 6.柱重锤链条与导轮磨损振动 7.轴带轮与电机端带轮不平行 8.主轴皮带损坏,变形 解决对策: 1.防护罩钣金还原 2.检测轴主,负定位轴承,判断那端轴承损坏,更换即可 3.调整伺服参数与机械相互匹配。(伺服增益,共振抑制,负载惯量)4.从新校正连结器位置,或更换连接器 5.校正导轨,上黄油润滑 6.检测链条及导轮磨损情况,校正重锤平衡,上黄油润滑

7.校正两带轮间平行度,动平衡仪校正 8.检测皮带变形情况损坏严重更换,清洁皮带,调节皮带松紧度 三.导轨油泵,切削油泵故障 原因: 1. 导轨油泵油位不足 2. 导轨油泵油压阀损坏 3. 机床油路损坏 4. 导轨油泵泵心过滤网堵塞 5. 客户购买导轨油质量超标 6. 导轨油泵打油时间设置有误 7. 切削油泵过载电箱内断路器跳开 8. 切削油泵接头漏空气 9. 切削油泵单向阀损坏 10. 切削油泵电机线圈短路 11. 切削油泵电机转向相反 解决对策: 1.注入导轨油即可 2.检测油压阀是否压力不足,如损坏更换 3.检测机床各轴油路是否通畅,折断,油排是否有损坏。如损坏更换4.清洁油泵过滤网 5.更换符合油泵要求合格导轨油 6.从新设置正确打油时间 7.检测导轨油泵是否完好后,从新复位短路器 8.寻找漏气处接头,从新连接后即可 9.检测单向阀是否堵塞及损坏,如损坏更换 10.检测电机线圈更换切削油泵电机 11.校正切削油泵电机转向,即可 四.加工故障 原因: 1.X Y Z轴反向间隙补偿不正确 2.X Y Z向主镶条松动 3.X Y Z轴承有损坏 4 机身机械几何精度偏差

立式加工中心主轴部件设计说明

引言 装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展高新技术产业和尖端工业(如:信息技术及其产业,生物技术及其产业,航空、航天等国防工业产业)的使能技术和最基本的装备。制造技术和装备是人类生产活动的最基本的生产资料,而数控技术则是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。 数控机床技术的发展自1953年美国研制出第一台三坐标方式升降台数控铣床 算起,至今已有很多年历史了。20世纪90年开始,计算机技术及相关的微电子基础工业的高速发展,给数控机床的发展提供了一个良好的平台,使数控机床产业得到了高速的发展。我国数控技术研究从1958年起步,国产的第一台数控机床是第一机床厂生产的三坐标数控铣床。虽然从时间上看只比国外晚了几年,但由于种种原因,数控机床技术在我国的发展却一直落后于国际水平,到1980年我国的数控机床产量还不到700台。到90年代,我国的数控机床技术发展才得到了一个较大的提速。目前,与国外先进水平相比仍存在着较大的差距。 总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。

1 绪论 1.1 加工中心的发展状况 1.1.1 加工中心的国外发展 对于高速加工中心,国外机床在进给驱动上,滚珠丝杠驱动的加工中心快速进给大多在40m/min以上,最高已达到90m/min。采用直线电机驱动的加工中心已实用化,进给速度可提高到80~100m/min,其应用围不断扩大。国外高速加工中心主轴转速一般都在12000~25000r/min,由于某些机床采用磁浮轴承和空气静压轴承,预计转速上限可提高到100000r/min。国外先进的加工中心的刀具交换时间,目前普遍已在1s左右,高的已达0.5s,甚至更快。在结构上,国外的加工中心都采用了适应于高速加工要求的独特箱中箱结构或龙门式结构。在加工精度上,国外卧式加工中心都装有机床精度温度补偿系统,加工精度比较稳定。国外加工中心定位精度基本上按德国标准验收,行程1000mm以下,定位精度可控制在0.006~0.01mm之。此外,为适应未来加工精度提高的要求,国外不少公司还都开发了坐标镗精度级的加工中心。 相对而言,国生产的高速加工中心快速进给大多在30m/min左右,个别达到 60m/min。而直线电机驱动的加工中心仅试制出样品,还未进入产量化,应用围不广。国高速加工中心主轴转速一般在6000~18000r/min,定位精度控制在0.008~0.015mm之,重复定位精度控制在0.005~0.01mm之。在换刀速度方面,国机床多在4~5s,无法与国际水平相比。 虽然国产数控机床在近几年中取得了可喜的进步,但与国外同类产品相比,仍存在着不少差距,造成国产数控机床的市场占有率逐年下降。 国产数控机床与国外产品相比,差距主要在机床的高速、高效和精密上。除此之外,在机床可靠性上也存在着明显差距,国外机床的平均无故障时间(MTBF)都在5000小时以上,而国产机床大大低于这个数字,国产机床故障率较高是用户反映最强烈的问题之一。 1.1.2 立式加工中心的研究进展

加工中心换刀故障的解决方法

加工中心换刀故障的解决方法 一、主轴抓刀序号乱 当出现该问题时,将主轴的刀具取下, 1 号刀套转至换刀位,具体操作如下: 1. 系统一 PM&参数一计数器,计数器C1— PRESET S入刀库容量值,然后输入当前刀位,C2可不用考虑 2. 系统一 PM&参数一数据表,OFF DATA俞入值(刀库容量值+ 1) 3. 压FG DATA软键,DO-Dn依次输入0?n(相应的刀具号)即可 二、撞刀故障 出现撞刀故障的主要原因有可能是: 1. 主轴紧刀信号突然丢失导致主轴停转,X、丫仍然走动,此时可修改PLC程 序或调整紧刀开关,使其压合正常,同时检查紧刀电磁阀是否正常工作 2. 用户程序有问题 3. 用户使用刀具长度补正,但选择平面时选择的是非 G17平面所置 4. 发那科 0I 检查其零件信号是否已丢失或调整刀具夹紧开关 三、主轴出现掉刀现象,机床抓不住刀这种情况下一般可通过如下检查排除故障 1 . 检查气泵压力是否正常 2. 检查机床主轴气路是否通畅,是否有漏气现象,主轴气缸上下运动是否正常,松、卡刀开关是否正常 3. 检查气缸是否漏气、检修气缸活塞及气缸密封件 4. 检查机床抓刀爪子是否打开、调整抓带气缸下螺丝钉是否顶到抓刀爪子上端, 调整抓刀爪子上端蝶簧 5. 检查机床抓刀爪子是否磨损 四、刀盘不能转动 其原因可能是刀库电机热保护器动作,或抱闸没有打开,或刀盘传动太沉等,可检查电柜中的热保护是否跳闸,若电气正常,可能是机械传动出现故障。一般刀盘传动轴承过脏或生锈都可能出现卡死现象,此时出现电机温度过高,刀盘转不动、换刀按钮LED不显示。 五、刀库无法进出 这种情况可以通过检查以下部位排除故障 1 . 电机电源是否正常、电机是否转动 2. 刀库换刀接近开关是否正常、换刀信号以及刀库准备好信号是否正常,有没 有线路虚接现象 3. 继电器是否正常工作、线路是否有虚接 4. 刀库转盘、传动机构是否灵活、有无卡死现象 六、主轴准停位错位现象 1. 打开主轴箱外壳,使主轴与电机联接皮带脱开,可以用手转动主轴的方法来 调整准停位。 2. 可以在操作系统中调整准停位,具体方法如下:在 MDI方式下,按下设定键

对加工中心滑枕的结构设计

对加工中心滑枕的结构设计 摘要:数控机床及数控加工中心是现代制造业的关键设备,一个国家数控机床的产量和技术水平在某种程度上就代表这个国家的制造业水平和竞争力。滑枕是加工中心的核心结构之一,是对零部件加工的直接执行机构,它的结构设计是否合理对加工中心的加工结果有着直接的影响。因而加工中心滑枕的结构设计尤为重要。 关键词:加工;滑枕;结构设计 1前言 数字控制也是最近几年新兴起来的一种自动控制的技术,利用数字化的信息实现机床控制的一种方法。数字控制的机床是采用数字来对机床进行控制。数控的机床是装有数控控制的装备。数字控制的系统主要的功能就是采用逻辑处理的方式,或者是运用其他的运算符编码指令来对规定的程序进行编写,数控系统也是一种控制的系统,他能够完成对数控信息的输入、编码以及运算,对数控机床进行全面的加工。 2数控机床及加工中心的工作原理 数控机床的加工中心主要就是运用了计算机技术的自动控制,精密的测量方法和完善的机械设计等方面知识,也是机电一体化的产品,是未来机床的发展趋势。数控机床的工作原理是:首先将加工零件图上的信息和工艺的信息数字化,按照相关规定的代码和格式对其进行相应的加工。数字化信息的定义就是将工件与道具的坐标分割成一个小单位,也可以叫做最小位移量,数控系统是按照程序的要求,对信息进行处理和分配,使得坐标的移动可以是若干个小的位移单位,在工件与道具运动的过程中完成零件的加工。 3 数控加工中心滑枕结构设计 主轴和主轴电机等构件与移动部分相连,随移动部件移动。丝杠电机与固定件连接。丝杠与固定部分连接,丝杠丝母控制移动部分上下移动。主轴电机选择西门子1PH7-137—NG,配套减速器型号为2LG4320。丝杠驱动电机选择西门子1FK7101-5AF71,配套减速器型号为LP155-M01。丝杠公称直径选为55 mm,导程20 mm,长度约为1200 mm。丝母的型号选择为BNFN5520-5。联轴器选择为ROTEX梅花型弹性联轴器。型号NO.001-钢材料,规格38。 3.1滑枕设计计算 3.1.1滚珠丝杠选择计算 (1)已知参数 丝杠的公称直径55mm,导程20mm,长度1500mm,BNFN5520-5。 (2) 切削力的确定 按照立铣(不对称顺铣)计算各向分力,如下图所示:已知主切削力Fc =5000(N),fw—运转系数,见下表:

加工中心常见故障及排除

。 一、加工中心发现和出现了如下的问题,应如何进行处理,解决方案: 1. 2009048,发现FANUC系统三轴编码器电池APC报警,报警号为307。 解决方案:需更换电池。 2. 专机ERROR 20报警 解决方案:更换伺服电机 3. TH5660C 主轴不转 解决方案:主轴高低档处理 TH5660A,X轴行程硬保护 解决方案:行程开关处理 TOM-850漏油 解决方案:压力检测开关漏油处理 4. 2010033 TOM-850卡刀 解决方案:换刀臂位置处理 2010034 TOM-850 防护门拉动不畅 解决方案:查为门轮已坏,处理门轮 TH5660C 漏气严重 解决方案:更换主轴打刀气缸Φ10mm的进气管更换 专机ERR37 NC ALARM 解决方案:润滑油路处理 5. 2010127 TOM-850 漏气 解决方案:空气压力控制开关(SNS-C106X)不良,暂无配件 2010029 TOM-850,机床漏水 解决方案:加铁皮引流 004-38 OM-850,机床漏水 解决方案:猴箍松脱,脱紧处理 专机ERR02 X AXIS NO RES 解决方案:X轴信号线处理 6. 2010029 TOM-850,屏幕不显示,系统打不开 解决方案:线路处理 48002 XH715, PUT UP故障

解决方案:电磁阀处理 TOM-850 漏水 油水分离器回液管处理 7. 004-38 机床无压力,不打油 解决方案:泵头间隙过大,无法调整,暂无配件 2009044 TOM-850 漏气 解决方案:更换耐压力大一点的压力控制开关 2010031 TOM-850,漏水 解决方案:加铁皮引流 8. 2010085 TOM-850 1002,1005,1012等报警 解决方案:更换I/O模块保险丝 9. 2010034 TOM-850,防护门拉不动 解决方案:装好门轮,间隙调整 2009075 TOM-1060 手轮无动作 解决方案:15针插头处理 TH5660A Z轴行程不能满足加工 解决方案:在行程允许的前提下调整行程开关 2010086 机台漏气 解决方案:查为快速放气阀漏气,暂无配件 2010085 TOM-850,打刀不动作不良 解决方案:打刀按键处理,装好主轴防护罩 10. 004-18,TOM-850,Y轴护罩螺丝断 解决方案:断螺丝处理,更换螺丝 11. 2010086 TOM-850,漏气 解决方案:更换QE-03,现为QE-04 001-05 CJK-6430,X、Z轴移动慢,开机冒烟 解决方案:三相AC380V缺相,更换保险丝,工作灯线路处理 TOM-850,机床不动作 解决方案:换刀臂处理 12. TOM-850,显示器屏闪 解决方案:查为发光管存在问题

主轴定点停止

1.主轴准停装置 在数控钻床、数控铣床以及镗铣为主的加工中心上,由于特殊加工或自动换刀,要求主轴每次停在一个固定的准确的位置上。所以在主轴上必须没有准停装置。准停装置分机械式和电气式两种。 图5-8所示机械准停装置的工作原理如下:准停前主轴必须是处于停止状态,当接收到主轴准停指令后.主轴电动机以低速转动,主轴箱内齿轮换挡使主轴以低速旋转,时间继电器开始动作,并延时4--6s,保证主轴转稳后接通无触点开关1的电源,当主轴转到图示位置即凸轮定位盘3上的感应块2与无触点开关1相接触后发出信号,使主轴电动机停转。另一延时继电器延时0.2--0.4s后,压力油进入定位液压缸下腔,使定向活塞向左移动, 当定向活塞上的定向滚轮5顶入凸轮定位盘的凹槽内时,行程开关LS2发出信号,主轴准停完成。若延时继电器延时1S后行程开关IS2仍不发信号,说明准停没完成,需使定向活塞6后退,重新准停。当活塞杆向右移到位时,行程开关lSl发出滚轮5退出凸轮定位盘凹槽的信号,此时主轴可启动工作。 机械准停装置比较准确可靠,但结构较复杂。现代的数控铣床一般都采用电气式主轴准停装置,只要数控系统发出指令信号主轴就可以准确地定向。如常用磁力传感器检测定向的工作原理如图5-9所示是在主轴上安装有一个永久磁铁4与主轴一起旋转,在距离永久磁铁4旋转轨迹外1—2mm处固定有一个磁传感器5,当铣床主轴需要停车换刀时,数控装置发出主轴停转的指令,主轴电动机3立即降速,使主轴以很低的转速回转,当永久磁铁4对准磁传感器5时,磁传感器发出准停信号,此信号经放大后,由定向电路使电动机准确地停止在规定的周向位置上。这种准停装置机械结构简单,发磁体与磁感传感器间没有接触摩擦,准停的定位精度可达±1。,能满足一般换刀要求。而且定向时间短,可靠性较高。

加工中心主轴组件结构设计开题报告

加工中心主轴组件结构设计 1 综述 1.1 本课题研究的意义 装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。因此,专家们预言: 机械制造的竞争,其实质是数控技术的竞争。 数控技术是用数字信息对机械运动和工作过程进行控制的技术;是制造业实现自动化、柔性化、集成化生产的基础;是提高产品质量、提高劳动生产率必不可少的物质手段;是国防现代化的重要战略物质;是关系到国家战略地位和体现国家综合国力水平的重要基础性产业。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。 根据国民经济发展和国家重点建设工程的具体需求,设计制造“高、精、尖”重大数控装备,打破国外封锁,掌握数控装备关键技术,创出中国数控机床品牌,提

高市场占有率是全面提升我国基础制造装备的核心竞争力的关键所在。 1.2本课题要解决的问题 主轴组件是机床的一个重要组成部分,它包括主轴,轴承以及安装在主轴上的传动件。主轴要求传递扭矩,直接承受切削力且还要满足通用机床,专用机床,数控机床各自不同的要求。主轴组件设计应满足的要求: 1)旋转精度 是指轴类工件在装配后,在无负载、低速旋转的条件下,工件前端的径向跳动和轴向窜动量的大小。 2)刚度 指主轴组件在外力的作用下,仍能保持一定工作精度的能力。刚度不足时,不仅影响加工精度和表面质量,还容易引起振动。恶化传动件和轴承的工作条件。 设计时应在其他条件允许的条件下,尽量提高刚度值。 3)抗震性 指主轴组件在切削过程中抵抗强迫振动和自激振动保持平稳运转的能力。抗震性直接影响加工表面质量和生产率,应尽量提高。 4)温升和热变形 温升会引起机床部件热变形,使主轴旋转中心的相对位置发生变化,影响加工精度。并且温度过高会改变轴承等原件的间隙、破坏润滑条件,加速磨损。5)耐磨性 指长期保持其原始精度的能力。主要影响因素是材料热处理、轴承类型和润滑剂方式。 设计时应综合考虑以上几点要求,注意吸收新技术,以获得满意的设计方案。

美国HAAS公司VF3加工中心主轴典型故障处理

美国HAAS公司VF3加工中心主轴典型故障处理 发表时间:2019-05-20T15:05:09.453Z 来源:《电力设备》2018年第34期作者:强顺义李林峰 [导读] (陕西凌云电器集团有限公司陕西宝鸡 721006) 一、提出问题 我公司在2002年左右先后购进2台美国HAAS公司生产的VF3立式加工中心。加工中心简称CNC,是由机械设备与数控系统组成的使用 于加工复杂形状工件的高效率自动化机床。加工中心备有刀库,具有自动换刀功能,能对工件一次装夹后连续完成钻、镗、铣、铰、攻丝 等多种工序,对加工形状复杂,精度要求较高,品种更换频繁的零件具有良好的经济效益。该机床配置哈斯数控系统,X,Y,Z轴具备3轴联动功能。其使用多年来,其中主轴的一些故障具有代表性,现将这些故障进行分析、整理和总结。 二、分析、解决问题 1、加工中心主轴准停控制故障 准停(定位)控制即数控系统接收到主轴定向指令时,主轴自动按规定的方向和速度旋转,当检测到主轴一转信号后,主轴旋转一个 固定的角度准确停止。其故障主要表现为机床经过长时间运行或主轴被碰撞之后,当执行主轴定位功能M19时主轴定位角度偏移,导致在 自动换刀过程中机械手抓取主轴刀柄时出现左右错位而换刀失败的现象。 我们在检修的过程中,首先可以试着调整主轴定位角度,通过修改参数257#来实现(首先按下急停按钮,然后按SETING GRAPH,接着修改7#参数PARAMETER LOCK,打开写保护,然后找到257#参数SPINGDL ORIENT OFSET,调整其数值),257#参数SPINGDL ORIENT OFSET的意思是主轴定位偏置值。如果修改之后主轴定位准确、稳定且换刀正常,那么说明是由于长时间的加工出现的偶尔偏移。若换几次刀以后主轴定位角度又出现偏移,我们可以在MDI模式下执行主轴转动程序,仔细观察主轴速度设定值与实际转速的反馈值。正常情况下,速度设定值与实际的转速反馈值相差无几,若设定速度为1000r/min,反馈转速多为998 r/min到1002r/min。如果相差大,建议首先检查与机床主轴编码器相关的参数。如果参数无误,则需要打开主轴护罩,检查以下项目:①、连接主轴电机与主轴的同步带是否磨损、打滑;②、连接主轴和编码器的同步带是否磨损、打滑;③、主轴位置编码器是否损坏;④、编码器轮与主电机的钢轮有无磨损;⑤、定位键是否紧固。在实际的修理中,我们经常遇到的情况是皮带松紧度不合适,编码器轮上的牙型齿磨损成光面,同步带上的牙型齿磨损 接近平面等。 检修完成后需再次调整257#参数,通过调整其值使主轴定位后换刀机械手转过来能够正好抓住刀柄,即机械手的圆弧部位定位块正好 嵌入到刀柄的凹处,且两边的间距相等,如果不相等的话则需要再次调整参数使之正好相等为好。接着试验M19定位功能,定位要求准确 无偏移,然后试着执行换刀,主轴刀具很顺利的交换到刀库,无异常的碰撞声。 2、加工中心换刀点高度变化的故障 换刀点高度,实际上是机床Z轴的一个坐标值。当机床遇到意外碰撞或修改某些参数后,有时会导致机床主轴出现下移或上升的故障,上下偏移的主轴刀柄环形槽无法与机械手有效配合,表现为换刀困难或加工的产品尺寸发生变化。 在检修中遇到此类故障就需要调整主轴换刀点参数64#Z TOOL CHANGE OFFSET,即Z轴换刀偏置值。查33#参数,Z RATIO为138718,这个意思是说1英寸的调整量为138718,。在主轴上安装一把刀,执行自动换刀,当Z轴到达换刀点高度时马上压下急停按钮,然 后将换刀机械手手动旋转到主轴附近靠近刀具,观察机械手是否与刀柄环形槽吻合,若吻合即说明参数调整真确,如有偏差还需要继续用 上述方法调整参数直到完全吻合时才可以执行自动换刀,否则会使机械手与刀具发生碰撞、挤压导致机械手(刀库)或刀具损坏。 3、加工中心主轴刀具夹紧故障 生产车间的操作人员反映说机床加工质量下降,表现为刀纹变粗,光洁度、平面度出现不同程度下降,使用新刀具也是如此。我们停 机检查,在主轴上安装检验棒,用百分表打主轴近端部跳动与远端跳动,均不合格;当用手来回扳动检验棒时跳动更大,这说明刀具夹紧 存在问题。 刀具夹紧、松开功能由松拉刀气缸和蝶形弹簧配合执行,松刀时由气缸压下主轴内的蝶形弹簧使拉杆上的钢珠缩回刀具松开,拉刀时 气缸抬起蝶形弹簧带动拉杆拉紧刀具。拉杆上的蝶形弹簧一般为 81片左右(对于VF3),采用面对面、背靠背组装而成,这些碟形弹簧使 用多年后会疲劳断裂或失去弹性,一旦断裂数量多了或弹性下降就会影响到拉紧刀具,造成主轴刀具松动,轻则影响加工质量,重则损坏 主轴锥孔,在这种情况下就必须更换蝶形弹簧了。从主轴内拆下拉杆,购买和原蝶形弹簧性能接近、尺寸完全相同的备件,安装时注意弹 簧的正反,严格按照原来的规律组装否则会影响到拉杆行程与拉紧力。更换后以后再用检验棒打百分表,主轴近端部跳动与远端跳动,均 合格,试切工件刀纹变细、光洁度变好,满足了产品的工艺要求。 4、加工中心主轴头下滑故障 主轴头下滑故障,即在机床压下急停开关或断电后主轴整体自动往下滑若干距离,给设备及人身带来一定的安全隐患。 检查过程中,控制主轴头移动的Z轴伺服电机抱闸正常,Z轴丝杠、导轨润滑良好未见异常。在排除了不是上述原因后,初步判断是给主轴起配重作用的液压平衡油缸或氮气缸出现问题。主要原因是主轴后面与液压平衡油缸连通的氮气缸长时间使用慢慢漏气导致氮气压力 下降造成的。按常规处理办法就是先往氮气缸内充氮气,使其压力达到厂家规定的75.9Kg/cm2(1150PSI)。于是找到压力较高的氮气瓶往机床侧部的氮气缸内充氮气,但这次充气后只使用了几天,就又出现下滑情况,继续充氮气仍然有下降现象。进一步检查,发现液压平衡 缸外面渗出很多油,这在以前是没有出现过的。原来氮气压力不能保持就是因为这儿漏油所致。于是一方面联系经销商购买新的平衡油缸,一方面每天给氮气缸内充氮气维持生产。几天后新液压平衡油缸到货,于是加紧拆装进行更换,期间需要注意的是拆之前要卸了主轴 刀具,将工作台开到机床中央,缓慢下降主轴,使主轴轻轻接触在工作台上的结实支撑物上方,防止主轴下滑受到碰撞,然后关机进行修理。更换后往液压平衡油缸内加油时可用平衡缸自有的活塞将液压油DAT25#吸进去一部分,连接好液压缸和氮气缸,然后用设备专用充气管往氮气缸内充气使压力达到75.9Kg/cm2(1100PSI),之后开机试车,先执行Z轴回零,取走支撑物,再执行其它轴回零,然后压下急停 开关主轴头不再下滑,使用一段时间后,设备主轴头再没有出现下滑现象,说明更换起到了效果,解决了设备故障,保证了人事及设备安全。 三、总结 通过以上对数控设备主轴相关故障案例的分析,我们在处理数控加工中心故障前,先要弄清楚故障发生前的设备运行状态,有无异

龙门机床加工中心主轴系统改型设计

龙门机床加工中心主轴系统改型设计

龙门镗铣床加工中心主轴部分的改型设计 学院机械学院 专业机械设计制造及其自动化 班级 学号 姓名 指导教师

辽宁科技大学2015,04

目录 龙门镗铣床加工中心主轴部分的改型设计 (2) 摘要 (7) 第一章绪论 (9) 1.1 我国机床行业发展趋势 (9) 1.1.1 我国机床发展史 (9) 1.1.2 我国机床行业今年的发展 状况 (10) 1.1.3 我国机床行业未来发展的 趋势 (10) 1.2 本课题的提出 (12) 1.2.1 龙门镗铣床及镗铣加工中 心简介 (12) 1.2.2本课题提出的意义 (13) 1.3 本课题研究的主要任务 (14) 1.4可行性分析 (15) 第二章主轴系统的设计 (17) 2.1 设计参数 (17) 2.2 主轴箱体方案设计 (17) 2.2.1 加工中心主轴型号的选择 (17)

2.2.2 电机型号的选择 (18) 2.2.3 电机主轴轴颈的确定.. 19 2.2.4 电机转速的确定 (19) 2.2.5 加工中心变速箱总体结构 设计 (20) 2.3 主要结构的设计与计算 (21) 2.3.1 带传动的设计 (21) 2.4齿轮传动设计 (24) 2.4.1 轴Ⅰ上的第一组啮合齿轮 (24) 2.4.2 轴Ⅰ上的第二组啮合齿轮 (28) 2.4.3 轴Ⅱ上的第一组啮合齿轮 (33) 2.2.4 轴Ⅱ上的第二组啮合齿轮 (37) 2.4.5 第Ⅲ轴啮合齿轮 (42) 2.5轴的尺寸设计及强度校核 (46) 2.5.1 轴Ⅰ的尺寸设计 (46) 2.5.2 轴Ⅱ的尺寸设计错误!未定 义书签。

常见的加工中心刀库问题及解决方法

1常见的过载报警及解决方法 故障现象:某配套FANUC-0M系统的数控立式加工中心,在加工中经常出现过载报警,报警号为434,表现形式为Z轴电动机电流过大,电动机发热,停上40min左右报警消失,接着再工作一阵,又出现同类报警。 分析及处理过程:经检查电气伺服系统无故障,估计是负载过重带不动造成。 为了区分是电气故障还是机械故障,将Z轴电动机拆下与机械脱开,再运行时该故障不再出现。由此确认为机械丝杠或运动部位过紧造成。调整Z轴丝杠防松螺母后,效果不明显,后来又调整Z轴导轨镶条,机床负载明显减轻,该故障消除。 2数控机床转台分度不良的故障维修 故障现象:一台配套FANUCOMC,型号为XH754的数控机床,转台分度后落下时错动明显,声音大。 分析及处理过程:转台分度后落下时错动明显,说明转台分度位置与鼠齿盘定位位置相差较大;如果回零时位置同时也有错动,则可调节第4轴栅格偏移量(参数0511)来解决:如果转台传动有间隙,则可调节第4轴间隙补偿(参数0538);如果机械螺距有误差,则

相应调整第4轴螺补。本例中发现转台回零后也有错动,调整0511数值后解决 3刀库不停转的故障维修 故障现象:一台配套FANUC0MC系统,型号为XH754的数控机床,刀库在换刀过程中不停转动。 分析及处理过程:拿螺钉旋具将刀库伸缩电磁阀手动钮拧到刀库伸出位置,保证刀库一直处于伸出状态,复位,手动将刀库当前刀取下,停机断电,用扳手拧刀库齿轮箱方头轴,让空刀爪转到主轴位置,对正后再用螺钉旋具将电磁阀手动钮关掉,让刀库回位。再查刀库回零开关和刀库电动机电缆正常,重新开机回零正常,MDI方式下换刀正常。怀疑系干扰所致,将接地线处理后,故障再未出现过。 4换刀不能拔刀的故障维修 故障现象:一台配套FANUC0MC系统,型号为XH754的数控机床,换刀时,手爪未将主轴中刀具拔出,报 警。 分析及处理过程:手爪不能将主轴中刀具拔出的可能 原因有: ①刀库不能伸出;②主轴松刀液压缸未动作;③松刀

加工中心的主轴部件

加工中心的主轴部件 1 主轴部件精度 加工中心主轴部件由主轴动力、传动及主轴组件组成,它是加工中心成型运动的重要执行部件之一,因此要求加工中心的主轴部件具有高的运转精度、长久的精度保持性以及长时fdl 运行的精度稳定性。 加工中心通常作为精密机床使用,主轴部件的运转精度决定了机床加工精度的高低.考核机床的运转精度一般有动态检验和静态检验两种方法。静态检验是指在低速或手动转动主轴情况下,检验主轴部件各个定位面及工作表面的跳动量.动态检验则需使用一定的仪器在机床主轴额定转速下.采用非接触的检测方法检验主轴的回转精度。由于加工中心通常具有自动换刀功能,刀具通过专用刀柄由安装在加工中心主轴内部的拉紧机构紧固.因此主轴的回转精度要考虑由于刀柄定位面的加工误差所引起的误差。 加工中心主轴轴承通常使用C级轴承,在二支承主轴部件中多采用4-1、2-2组合使用,即前支承和后支承分别用四个向心推力轴承和一个向心球轴承,或前、后支承都使用两个向心推力轴承组成主轴部件的支承体系.对于轻型高精度加工中心,也有前、后支承各使用一个向心推力轴承组成主轴部件的支承体系,该种结构适宜高精度、高速主轴部件的场合.简单的主轴轴承组合,可以大大降低主轴部件的装配误差和热传导引起的主轴隙丧失,但主轴的承载能力会有较大幅度的下降. 2 主轴部件结构 主轴部件主要由主轴、轴承、传动件、密封件和刀具自动卡紧机构等组成 ⑴主轴 主轴前端有7:24的锥孔.用于装夹BT40刀柄或刀杆.主轴端面有一瑞面键.既可通过它传递刀具的扭矩,又可用于刀具的周向定位.主轴的主要尺寸参数包括:主轴的直径、内孔直径、悬伸长度和支承跨距。评价和考虑主轴主要尺寸参数的依据是主轴的刚度、结构上艺性和主轴组件的工艺适用范围.主轴材料的选择主要根据刚度、载荷特点、耐磨性和热处理变形大小等因素确定。主轴材料常采用的有45 钢、Gcr15 等,需经渗氮和感应加热悴火.

加工中心(5)

一是非判断题:30 1 有安全门的加工中心在安全门打开的情况下也能进行加工。(X) 2 若泵的代号为YB-25,其含义为:叶片式液压泵,压力等级为25MP。(/) 3 塑性材料切削时前角、后角应越小越好。(X) 4 加工中心主轴的特有装置是主轴准停和拉刀换刀。(/) 5 只要G指令格式应用正确定能加工出合格零件。(X) 6 全闭环的数控机床的定位精度主要取决于检测装置的精度。(/) 7 数控机床操作面板上有倍率修调开关,操作人员加工时可随意调节主轴或进给的倍率。(X) 8 单孔加工时应遵循先中心占领头后钻头钻孔,接着镗孔或铰孔的路线。(/) 9 数控机床具有机、电、液集于一体的特点,因此只要掌握机械或电子或液压技术的人员,就可作为机床维护人员。(X) 10 为排除缸内的空气,对要求不高的液压缸,可将油管设在缸体的最高处。(X) 11 单位时间内流过某过流截面的液体的体积称为流速,常用单位为m/min。(X) 12 数控机床和普通机床一样都是通过刀具切削完成对零件毛坯的加工,因此二者的工艺路线是相同的。(X) 13 对于具有几个相同几何形状的零件,编程时只要编制某一个几何形状的加工程序即可。(/) 14 大型数控机床多数采用闭环控制系统。(X) 15 自动换刀装置的形式有回转刀架换刀、更换主轴换刀、更换主轴箱换刀、带刀库的自动换刀系统。(/) 16 数控机床编程人员在编程的过程中,必须对加工工艺过程、工艺路线、刀具、切削用量等进行正确、合理的确定和选择。(X) 17 合理选择数控机床是十分重要的,对于非常复杂的曲面零件应选用加工中心。(X) 18 G41/G42和G40之间可以出现子程序和镜像加工。(X) 19 转子的动能转换成电能,而后又变成热能,消耗在转子电路中称反接制动。(X) 20 测量零件的正确度高,则该零件的精确度亦高。(X) 21 在数控机床上也能精确测量刀具的长度。(/) 22 液压缸的功能是将液压能转化为机械能。(X) 23 主轴上刀具松不开的原因之一可能是系统压力不足(/) 24 数控系统的参数是依靠电池维持的,一旦电池电压出现报警,就必须立即关机,更换电池。(X) 25 精加工时,进给量是按表面粗糙度的要求选择的,表面粗糙度小应选较小的进给量,因此表面粗糙度与进给量成正比。(/) 26 轮廓加工中,在接近拐角处应适当降低进给量,以克服“超程”或“欠程”现象。(X) 27 保证数控机床各运动部件间的良好润滑就能提高机床寿命。(X) 28 数控车床加工凹槽完成后需快速退回换刀点,现用N200 G00 X80.;N210 Z50.;程序完成退刀。(/) 29 在加工Z-X平面上的轮廓时应从Y方向切入和切出工件。(X) 30 精镗循环G76只能在有主轴准停功能的机床上使用。(/) 二单项选择题:35 1 在数控机床的操作面板上“ON”表示(C)。 A 手动 B 自动 C 开 D 关 2 斜面的自锁条件是斜面倾角(B)摩擦角。

加工中心主轴组件监控系统的设计

优秀设计 目录 前言 (1) 第一章加工中心介绍 (5) 1.1加工中心 (5) 1.1.1加工中心简介 (5) 1.1.2 加工中心的特点和用途 (6) 1.1.3.加工中心的工作原理 (7) 1.1.4加工中心的主轴部件 (7) 1.1.4.1主轴部件精度 (7) 1.1.4.2 主轴部件结构 (8) 第二章传感器介绍与选择 (12) 2.1.传感器简介 (12) 2.2传感器的选取 (14) 2.2.1.1磁电式转速传感器的工作原理 (14) 2.2.1.2磁电式转速传感器的型号和技术参数: (15) 2.2.1.7 KMI15-1磁电阻式转速传感器技术参数 (20) 2.2.2加工中心主轴运行轨迹的监测: (20) 2.2.2.1.电涡流位移(振动)传感器的工作原理及特点 (20) 2.2.2.2 M307997电涡流位移传感器参数 (21) 2.2.3对加工中心主轴齿轮轴向移动的监测 (21) 2.2.3.1 KMZ10B传感器介绍 (21) 2.2.3.2 KMZ10B 传感器参数 (21) 第三章信息采集与处理 (22) 3.1 A/D转换器的分类与性能指标 (22) 3.1.1 A/D转换器分类 (22) 3.2 A/D转换器和单片机 (23) 3.2.1 ADC0804转换器: (23) 3.2.2 AT89C51单片机 (25) 3.2.3 AD转换器与AT89C51单片机接口电路图: (26) 3.3 与PC机通信接口 (26)

3.3.1 MAX487芯片介绍 (27) 第四章加工中心主轴组件的监测的实验分析 (28) 4.1 DRVI可重构虚拟仪器实验平台介绍: (28) 4.2加工中心-轴心轨迹测量: (28) 4.3加工中心主轴-磁电传感器转速测量: (30) 总结 (34) 致谢 (35) 参考文献 (36)

加工中心常见故障及对策

一、手轮故障 原因: 1.手轮轴选择开关接触不良 2.手轮倍率选择开关接触不良 3.手轮脉冲发生盘损坏 4.手轮连接线折断 解决对策: 1.进入系统诊断观察轴选开关对应触点情况(连接线完好情况),如损坏更换开关即可解决 2.进入系统诊断观察倍率开关对应触点情况(连接线完好情况),如损坏更换开关即可解决 3.摘下脉冲盘测量电源是否正常,+与A,+与B 之间阻值是否正常。如损坏更换 4.进入系统诊断观察各开关对应触点情况,再者测量轴选开关,倍率开关,脉冲盘之间连接线各触点与入进系统端子对应点间是否通断,如折断更换即可。 二、X Y Z 轴及主轴箱体故障 原因: 1.Y Z 轴防护罩变形损坏 2.Y Z 轴传动轴承损坏 3.服参数与机械特性不匹配。 4.服电机与丝杆头连接变形,不同轴心 5.柱内重锤上下导向导轨松动,偏位 6.柱重锤链条与导轮磨损振动 7.轴带轮与电机端带轮不平行 8.主轴皮带损坏,变形

解决对策: 1.防护罩钣金换 2.检测轴主,负定位轴承,判断那端轴承损坏,更换即可 3.调整伺服参数与机械相互匹配。(伺服增益,共振抑制,负载惯量) 4.从新校正连结器位置,或更换连接 5.校正导轨,上油润滑 6.检测链条及导轮磨损情况,校正重锤平衡,上黄油润滑 7.校正两带轮间平行度,动平衡仪校正 8.检测皮带变形情况损坏严重更换,清洁皮带,调节皮带松紧度 三、导轨油泵,切削油泵故障 原因: 1. 导轨油泵油位不足 2. 导轨油泵油压阀损坏 3. 机床油路损坏 4. 导轨油泵泵心过滤网堵塞 5. 客户购买导轨油质量超标 6. 导轨油泵打油时间设置有误 7. 切削油泵过载电箱内断路器跳开 8. 切削油泵接头漏空气 9. 切削油泵单向阀损坏 10. 切削油泵电机线圈短路 11. 切削油泵电机向相反

主轴准停装置

主轴准停装置 数控机床为了完成ATC(刀具自动交换)的动作过程,必须设置主轴准停机构。由于刀具装在主轴上,切削时切削转矩不可能仅靠锥孔的摩擦力来传递,因此在主轴前端设置一个突键,当刀具装入主轴时,刀柄上的键槽必须与突键对准,才能顺利换刀;为此,主轴必须准确停在某固定的角度上。由此可知主轴准停是实现ATC过程的重要环节 有2种方式,即机械式与电气式 机械方式:(1)机械凸轮机构(2)光电盘方式进行粗定位,然后有一个液动或气动的定位销插入主轴上的销孔或销槽实现精确定位,完成换刀后定位销退出,主轴才开始旋转。采用这种传统方法定位,结构复杂,在早期数控机床上使用较多。 而现代数控机床采用电气方式定位较多。 (1)用磁性传感器检测定位,在主轴上安装一个发磁体与主轴一起旋转,在距离发磁体旋转外轨迹1~2mm处固定一个磁传感器,它经过放大器并与主轴控制单元相连接,当主轴需要定向时,便可停止在调整好的位置上。 (2)主轴编码器检测定位,这种方法是通过主轴电动机内置安装的位置编码器或在机床主轴箱上安装一个与主轴1∶1同步旋转的位置编码器来实现准停控制,准停角角度可任意设定。 为什么加工中心要有主轴准停? 数控机床为了完成ATC(刀具自动交换)的动作过程,必须设置主轴准停机构。由于刀具装在主轴上,切削时切削转矩不可能仅靠锥孔的摩擦力来传递,因此在主轴前端设置一个突键,当刀具装入主轴时,刀柄上的键槽必须与突键对准,才能顺利换刀:为此,主轴必须准确停在某固定的角度上。由此可知主轴准停是实现ATC过程的重要环节。 当主轴电机跟主轴之间有减速比的话,1:10以下(非1:1直连)的建议采用:(2)主轴编码器检测定位 主轴准停有时不准如何解决? 反复执行M19定位查看是否频繁的出现准停不准的现象 1.如果每次都不准,但每次准停的位置相同,就通过调整参数进行修正,伺服主轴在系统参数上调整,变频主轴在变频器上调整 2.如果偶尔出现不准,且偏差不大,检查电机定位系统,如果有外部定位开关的,先检查定位开关的灵敏性,如果没有检查伺服与电机编码器线 3.如果频繁出现,且定位偏差每次不一样,时大时小,通常是应用内部定位的,检查电机与主轴的连接,是否出现松动不同步的情况

立式加工中心主轴组件的结构设计定稿版

立式加工中心主轴组件 的结构设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

摘要 加工中心由于备有刀库并能自动更换刀具,使得工件在一次装夹中可以完成多工序的加工。加工中心一般不需要人为干预,当机床开始执行程序后,它将一直运行到程序结束。加工中心还赋予了专业化车间一些诸多优点,如:降低机床的故障率,提高生产效率,提高加工精度,削减废料量,缩短检验时间,降低刀具成本,改善库存量等。由于加工中心的众多优势,所以它深受全球制造企业的青睐。 加工中心主要由主轴组件、回转工作台、移动工作台、刀库及自动换刀装置以及其它机械功能部件组成。其中的主轴组件是机床重要的组成部分,其运动性能直接影响机床加工精度与表面粗糙度。本文在查阅大量国内外文献的基础上,通过研究分析不同加工中心主轴组件的性能,综合地比较了其特点,并拟定了一个较为合理的主轴组件结构方案。同时,还就主轴、轴承以及丝杠等重要零件的机械性能进行了探讨,并对这些零件的刚度和强度进行了校核。此外,本设计中所采用的陶瓷轴承能有效地增加主轴的刚度,从而提高了加工中心的可靠性和稳定性。 关键词:主轴组件,加工中心,数控机床

Spindle unit design of Vertical machining center ABSTRACT Machining center evolved from the need to be able to perform a variety of operations and machining sequences on a workpiece on a single machine in one setup. Machining center requires little operator intervention, and once the machine has been set up, it will machine without stopping until the end of the program is reached. Some of the other advantages that machining centers give a manufacturing shop are greater machine uptime, increased productivity, maximum part accuracy, reduced scrap, less inspection time, lower tooling costs, less inventory and so on. Because of their many advantages, machining centers become widely accepted by manufacturing enterprises in the world. Machining centers are equipped with spindle units, rotary workbench, moving workbench, tool magazines and automatic tool changers, and other mechanical function components. Spindle unit is the important motion part of the metal cutting machine tool. Its movement behavior affects the machining accuracy and surface roughness of part to be machined. Through referring to a variety of technical literatures, the characteristics of some kinds of spindle units are compared with each other based on analysis and research work on different machining centers. A reasonable scheme can be studied out. Meanwhile,

相关文档
最新文档