排列组合二项式概率专题.doc

排列组合二项式概率专题.doc
排列组合二项式概率专题.doc

排列组合、二项式、概率

1.若国际研究小组由来自3个国家的20人组成,其中A国10人,B国6人,C国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有()种.

A.

10

20

6

A

B.

532

1064

6

A A A

C.

532

1064

6

C C C

D.532

1064

C C C

2.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有

A.70种

B. 80种

C. 100种

D.140种

3.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有

A.70种

B. 80种

C. 100种

D.140种

4.(2017全国2理科6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1

人完成,则不同的安排方式共有()

A.12种 B.18种 C.24种 D.36种

5.(2018全国1理科15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女

生入选,则不同的选法共有_____________种.(用数字填写答案)

6.(2020全国2理科14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小

区,每个小区至少安排1名同学,则不同的安排方法共有种。

7.若5

(1)

ax-的展开式中3x的系数是80,则实数a的值为

A.-2 B.22 C.34 D.2

8.(2015全国1理科)

9.(2018全国3理科5)

5

2

2

x

x

??

+

?

??

的展开式中4x的系数为()

A.10 B.20 C.40 D.80 10.(2019全国3理科)

11.(2020全国1理科8) 2

5()()y x x y x

++的展开式中33x y 的系数为

A. 5

B. 10

C. 15

D. 20

12.一袋中有红、黄、蓝三种颜色的小球各一个,每次从中取出一个, 记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好 取5次球时停止取球的概率为( )

A .81

5 B .8114 C .8122 D .81

25

13.(2015全国1理科4)

14.(2018全国2理科8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .

1

12

B .

1

14

C .

1

15

D .

118

15.(2018全国1理科10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三

个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△AB

C 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随

机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则

A .p 1=p 2

B .p 1=p 3

C .p 2=p 3

D .p 1=p 2+p 3

16.(2019全国1理科6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是

A .

516 B .1132 C .21

32 D .1116

17.(2019全国1理科15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜

利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.

18.(2020全国2理科3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,。志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者

A .10名

B .18名

C .24名

D .32名

19.(2018全国3理科8)某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,

()()46P X P X =<=,则p =( )

A .0.7

B .0.6

C .0.4

D .0.3

20.(2018卷1)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;

(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

21.(2020卷1)甲、乙、丙三位进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最获胜的概率都为1

2

终获胜的概率.

7. (本小题满分13分)

为了解今年某校高三毕业班准备报考飞行员学生的体重情

况,将所得的数据整理后,画出了频率分布直方图(如图),

已知图中从左到右的前3个小组的频率之比为1:2:3,其中第

2小组的频数为12.

(Ⅰ)求该校报考飞行员的总人数;

(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞

行员的同学中(人数很多)任选三人,设X表示体重超过60公斤

的学生人数,求X的分布列和数学期望.

8.(本小题满分13分)某地区有甲,乙,丙三个单位招聘工作人员,已知一大学生到这三个单位应聘的概率分别是0.4,0.5,0.6,且他是否去哪个单位应聘互不影响,用ξ表示他去应聘过的单位数,求ξ的分布列及数学期望;

9、(本小题满分13分)假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X.

(Ⅰ)求X的分布列;

(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.

10. (本小题满分13分)

按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高2012级一班50名学生在上学期参加活动的次数统计如图所示.

(I)求该班学生参加活动的人均次数x;

P.(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率

0(III)从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

11.(2011年辽宁理19)(本小题满分12分)

某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n 小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.

(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X 的分布列和数学期望;

(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:

分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

附:样本数据x 1,x 2,…,x a 的样本方差()()(

)

2222

111n s x x x x x x n ?

?=-+-+???+-?

???,

其中x 为样本平均数.

12. 某选手欲参加“开心辞典”节目,但必须通过一项包含5道试题的达标测试。测试规定:

对于提供的5道试题,参加者答对3道题即可通过。为节省测试时间,同时规定:若答题不足5道已通过,则停止答题,若答题不足5道,但已确定不能通过,也停止答题。

假设该选手答对每道题的概率均为

2

3

,且各题对错互不影响。 (Ⅰ) 求该选手恰好答完4道题就通过点的概率;

(Ⅱ)设在一次测试中该选手答题数为ξ,求ξ的分布列和数学期望.

13.(本题满分13分)某市对该市小微企业资金短缺情况统计如下表:

(Ⅰ)试估计该市小微企业资金缺额的平均值;

(Ⅱ)某银行为更好的支持小微企业健康发展,从其第一批注资的A 行业4家小微企业和 B 行业的3家小微企业中随机选取4家小微企业,进行跟踪调研.设选取的4家小微企业 中是B 行业的小微企业的个数为随机变量ξ,求ξ的分布列. (Ⅰ)解:由统计表得:该市小微企业资金缺额的平均值

100.05300.1500.35700.3900.260x =?+?+?+?+?=(万元)-----4分

(Ⅱ) ξ的所有可能取值为0,1,2,3

4

4471

(0)35C P C ξ===,31434712(1)35C C P C ξ===,22434

718(2)35

C C P C ξ===,

1343474

(2)35

C C P C ξ===,

所以ξ的分布列为

14.(本小题满分13分)

某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的以O 为圆心的转盘一次,并获得相应金额的返券,假定指针等可能地指向任一位置(不指向各区域的边界). 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;

(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望.

2. 解:(Ⅰ)设指针落在A,B,C 区域分别记为事件A,B,C.

则111

(),(),()632

P A P B P C =

==……………………………………3分 若返券金额不低于30元,则指针落在

A 或

B 区域.

111

()()632P P A P B ∴=+=

+=

……………………………………6分

即消费128元的顾客,返券金额不低于30元的概率是12

. (Ⅱ)由题意得,该顾客可转动转盘2次.

随机变量X 的可能值为0,30,60,90,120. ……………………………7分

111

(0);

224111

(30)2;

23311115

(60)2;

263318111

(90)2;

369111

(120).

6636P X P X P X P X P X ==?===??===??+?===??===?=………………………………10分

所以,随机变量X 的分布列为:

其数学期望

11511

030609012040

4318936EX =?+?+?+?+?= ………………………13分

(20)离散形随机分布

1.若国际研究小组由来自3个国家的20人组成,其中A 国10人,B 国6人,C 国4人,按

分层抽样法从中选10人组成联络小组,则不同的选法有( )种.

A .10

20

6

A

B .532

1064

6

A A A

C .5321064

6

C C C

D .532

1064C C C

2.若5(1)ax -的展开式中3x 的系数是80,则实数a 的值为 A .-2

B .

C

D .2

3.一袋中有红、黄、蓝三种颜色的小球各一个,每次从中取出一个, 记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好 取5次球时停止取球的概率为( )

A .81

5 B .8114 C .8122 D .81

25

4.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有

A.70种

B. 80种

C. 100种

D.140种

5、2

6

1(1)()x x x x

++-的展开式中的常数项为___5-______.

……………12分

6.(本小题满分13分)设在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不再放回,若以ξ表示取出次品的个数. 求ξ的分布列,期望及方差. 解析:ξ

的可能值为0,1,2. 若ξ=0表示没有取出次品,其概率为03210312

6

(0)11C C P C ξ===;

同理()1211

2102103391

1,(2).2222C C C C P P C C ξξ====== ∴ξ的分布为

ξ

1

2

p

6

11

922

122

∴69110131122222E ξ=++=,16191115012.21122222244D ξ?

?????=-+-+-= ? ? ??

?????

7. (本小题满分13分)

为了解今年某校高三毕业班准备报考飞行员学生的体重情 况,将所得的数据整理后,画出了频率分布直方图(如图), 已知图中从左到右的前3个小组的频率之比为1:2:3,其中第 2小组的频数为12.

(Ⅰ)求该校报考飞行员的总人数;

(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X 表示体重超过60公斤 的学生人数,求X 的分布列和数学期望. 解:(Ⅰ)设报考飞行员的人数为n ,前三小组的频率分别为321,,p p p ,

则由条件可得:???

?

?

=?++++==1

5)013.0037.0(32321

1312p p p p p p p

解得375.0,25.0,125.0321===p p p ………………………………………………4分

又因为n

p 12

25.02==,故48=n ……………………………………………………6分

(Ⅱ)由(Ⅰ)可得,一个报考学生体重超过60公斤的概率为

8

5

5)013.0037.0(3=?++=p p ………………………………………………………8分

所以x 服从二项分布,k

k k C k x p -==33)8

3()85()(

∴x

0 1 2 3

p

51227 512135

512225

512

125

则8

15

512125351222525121351512270=?+?+?+?

=Ex ………………………………13分

(或: 8

15853=?

=Ex ) 8.(本小题满分13分)某地区有甲,乙,丙三个单位招聘工作人员,已知一大学生到这三个单位应聘的概率分别是0.4,0.5,0.6,且他是否去哪个单位应聘互不影响,用ξ表示他去应聘过的单位数,求ξ的分布列及数学期望;

9、(本小题满分13分)假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X .

(Ⅰ)求X 的分布列;

(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y ,求Y 的数学期望.

解:(Ⅰ)∵X 的所有可能取值为0,1,2,3,4,(4,0.5)X

B , ·

············ 1分 ∴4

4

11(0)216P X C ??=== ???,4

1411(1)24P X C ??=== ?

??, 4

2

4

13(2)28P X C ??=== ???,4

3411(3)24P X C ??=== ?

??

, 4

4411(4)216

P X C ??=== ?

??, ············································································· 6分 X ∴的分布列为

X

0 1 2 3 4

p

116 14 38 14 116

····································· 7分 (Ⅱ)Y 的所有可能取值为3,4,则 ···································································· 8分

1

(3)(3)4P Y P X ====

, ·················································································· 9分 3

(4)1(3)4P Y P Y ==-==, ············································································ 11分 Y ∴的期望值1315()34444E Y =?+?=.答:Y 的期望值()E Y 等于15

4. ·

········ 13分 10. (本小题满分13分)

按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高2012级一班50名学生在上学期参加活动的次数统计如图所示.

(I )求该班学生参加活动的人均次数x ;

(II )从该班中任意选两名学生,求他们参加活动次数恰好相等的概率0P . (III )从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.

解:由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20. --2分

(I )该班学生参加活动的人均次数为

x =

10

23

501155*********=

=?+?+?. --4分 (II )从该班中任选两名学生,他们参加活动次数恰好相等的概率为

4920

2

50

220225250=++=C C C C P . --8分 (III )从该班中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为

事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知

4925

)()()1(2

50

12012525012515=+=+==C C C C C C B P A P P ξ; 494

)()2(2

50

1

2015====C C C C P P ξ. --10分 ξ的分布列:

ξ

0 1 2

P

4920 4925 49

4 ξ的数学期望:49

492491490=

?+?+?

=ξE . --13分

11. (2011年辽宁理19)(本小题满分12分)

某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲

和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.

(I )假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X

的分布列和数学期望;

(II )试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种

乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:

分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

附:样本数据x 1,x 2,…,x a 的样本方差()()()

2222111n s x x x x x x n ?

?=-+-+???+-?

???,

其中x 为样本平均数.

解析:(I )X 可能的取值为0,1,2,3,4,且

()48110,70P X C === ()1344488

1,35C C P X C === ()22

444

8182,35C C P X C === ()31

44488

3,35

C C P X C ===()48110,70P X C ===

即X 的分布列为

X 0

1

2

3

4

P

1

70 835 1835 835 170

X 的数学期望是:

()181881

0123427035353570

E X =?

+?+?+?+?=. (II )品种甲的每公顷产量的样本平均数和样本方差分别是:

()1

4033973904043884004124064008x =++

+++++=甲, ()()()()

222

2

2222213310412012657.258

s =+-+-++-+++=甲. 品种乙的每公顷产量的样本平均数和样本方差分别是:

()1

4194034124184084234004134128x =+++++++=乙, ()()()()

222

2

2222217906411-121568

s =+-+++-+++=乙, 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.

12. 某选手欲参加“开心辞典”节目,但必须通过一项包含5道试题的达标测试。测试规定:

对于提供的5道试题,参加者答对3道题即可通过。为节省测试时间,同时规定:若答题不足5道已通过,则停止答题,若答题不足5道,但已确定不能通过,也停止答题。

假设该选手答对每道题的概率均为

2

3

,且各题对错互不影响。 (Ⅰ) 求该选手恰好答完4道题就通过点的概率;

(Ⅱ)设在一次测试中该选手答题数为ξ,求ξ的分布列和数学期望. 解:(Ⅰ)该选手恰好答题4道而通过的概率27

831)3

2

(3

2

3==C P ……3分 (Ⅱ)由题意可知,ξ可取的值是5,4,3……4分

31)32()31()3(33=+==ξP 2710

278311)4(=

--==ξP

278)31()32()5(2

224=

==C P ξ ξ的分布列为

…………………………10分

所以ξ的数学期望为

13.(本题满分13分)某市对该市小微企业资金短缺情况统计如下表:

(Ⅰ)试估计该市小微企业资金缺额的平均值;

(Ⅱ)某银行为更好的支持小微企业健康发展,从其第一批注资的A 行业4家小微企业和 B 行业的3家小微企业中随机选取4家小微企业,进行跟踪调研.设选取的4家小微企业 中是

ξ

3 4 5

P

3

1 2710 27

8

B 行业的小微企业的个数为随机变量ξ,求ξ的分布列. (Ⅰ)解:由统计表得:该市小微企业资金缺额的平均值

100.05300.1500.35700.3900.260x =?+?+?+?+?=(万元)-----4分

(Ⅱ) ξ的所有可能取值为0,1,2,3

4

4471

(0)35C P C ξ===,31434712(1)35C C P C ξ===,22434

718(2)35C C P C ξ===,1343474

(2)35

C C P C ξ===,

所以ξ的分布列为

14.(本小题满分13分)

某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的以O 为圆心的转盘一次,并获得相应金额的返券,假定指针等可能地指向任一位置(不指向各区域的边界). 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;

(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望.

2. 解:(Ⅰ)设指针落在A,B,C 区域分别记为事件A,B,C.

111

(),(),()632

P A P B P C =

==……………………………………3分 若返券金额不低于30元,则指针落在A 或B 区域.

111

()()632P P A P B ∴=+=

+=

……………………………………6分

即消费128元的顾客,返券金额不低于30元的概率是12

. (Ⅱ)由题意得,该顾客可转动转盘2次.

随机变量X 的可能值为0,30,60,90,120. ……………………………7分

111

(0);

224111

(30)2;

23311115

(60)2;

263318111

(90)2;

369111

(120).

6636P X P X P X P X P X ==?===??===??+?===??===?=………………………………10分

所以,随机变量X 的分布列为:

其数学期望

11511

030609012040

4318936EX =?+?+?+?+?= ………………………13分

……………12分

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

高中数学排列组合与概率统计习题

高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) (1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作 为点的坐标,在同一直角坐标系中所确定的不同点的个数是C (A)32(B)33(C)34(D)36 解分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标,不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标,不同点的个数为1163P P g 不同点的个数总数是1111636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真 数,则可以得到不同的对数值的个数为 (A)64(B)56(C)53(D)51 解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 == =,应减去4个 所示求不同的对数值的个数为29287453()C ---=个 (3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生 不能全排在一起,则不同的排法数有 (A )3600(B )3200(C )3080(D )2880 解①三名女生中有两名站在一起的站法种数是23P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是66P ,其中的 三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空743342274534522880A A C A A C A --= (4 )由100+展开所得x 多项式中,系数为有理项的共有 (A )50项(B )17项(C )16项(D )15项 解1000100110011r 100r r 100100100100100100=C )+C )++C )++C --L L

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

排列组合二项式定理知识点

第十六章 排列、组合、二项式定理 一、排列 )!(!)())((m n n m n n n n P m m n -= +---=4444434444421Λ个相乘 121 (如:)!(!3553453 5-=??=P ) 二、组合 !)!(!m m n n P P C m m m n m n -== (如:123345335533 353 5????= -==!)!(!P P C ) m n n m C C -=n ,m n m n m C C C 11+-=+n (如:253C C =5,36253C C C =+5) 三、二项式定理 1.二项式定理:000b a C b a n n n -=+)(111b a C n n ??+-n n n b a C ??+0Λ (1)展开式共有n+1项,其中第r+1项:r r n r n r b a C T ??=-+1 (2)其中r n C (0,1,2…)叫二项式系数 2.二项式系数的性质 (1)在二项展开式中与首末两端“等距离”的两项的二项式系数相等。(对称性) (2)展开式中二项式系数最大的项: 若n 是偶数,是中间一项即第12 +n 项,二次项系数为2n n C ; 若n 是奇数,是中间两项即第21+n 、2 1 +n +1项,二次项系数为21 -n n C 、21 +n n C ; 【区别】展开式中系数最大的项:?? ?≥≥+++的系数 的系数的系数 的系数r r T T T T r r 121?求出r (3)二项式系数的和为n 2,即n n n n C C C 210=+++Λn 【区别】所有系数的和:令字母为1 (4)偶数项二项式系数和等于奇数项二项式系数和,即1 31202-=++=++n n ΛΛn n n C C C C 3.二项式定理的主要应用 (1)赋值求职; (2)证明某些整除问题或求余数; (3)证明关于指数式与多项式的不等式; (4) 进行近似计算。

排列组合概率

1。排列组合: 可“区分”的叫做排列 abc P33 不可“区分”的叫做组合 aaa C33 用下列步骤来作一切的排列组合题: (1)先考虑是否要分情况考虑 (2)先计算有限制或数目多的字母,再计算无限制,数目少的字母 (3)在计算中永远先考虑组合:先分配,再如何排(先取再排) 例子: 8封相同的信,扔进4个不同的邮筒,要求每个邮筒至少有一封信,问有多少种扔法? 第一步:需要分类考虑(5个情况)既然信是一样的,邮筒不一样,则只考虑4个不同邮筒会出现信的可能性。 第二步:计算数目多或者限制多的字母,由于信一样就不考虑信而考虑邮筒,从下面的几个情况几列式看出每次都从限制多的条件开始作。先选择,再考虑排列。 5个情况如下: a. 5 1 1 1:4个邮筒中取一个邮筒放5封信其余的3个各放一个的分法:C(4,1)=4 b.4 2 1 1:同上,一个邮筒4封信,其余三个中间一个有两封,两个有一封:C(4,1) * C(3,1)=12 c. 3 3 1 1: C(4,2) =6 d. 3 2 2 1: C(4,1) * C(3,2) = 12

e. 2 2 2 2 :1 4+12+6+12+1=35种放法 [原创]如何解决排列后的组合问题(大家讨论哦) 很多CDer问的排列组合的问题中最多的是关于排列后的组合问题,这种题目确实很头疼,且考场上时间紧迫,头脑紧张,更没有时间考虑这些问题,所以出错多在此处。 根据我的经验: 如果排列后重新组合一般是两种排列的组合,这时可以看排列中和组合中的两组事务的性质,如果有一方是同质的或者是随机的,则不用重新组合;需要组合的情况只在两者都是异质或者非随机的时候。 例题1:从10个人中取出2个人住进2个屋子,有多少种住法? 解答:C10,2,不用排列 可以这样考虑,取出2个人是随机的,房子没有说有区别,两个随机,所以不用排列其实两个中有一个是随机的,就不用考虑排列了 两个都是有顺序或者编号的才用考虑排列 (这个答案可能不对) 例题2:从10个人中取出2个人住进A、B,2个屋子,有多少种住法? 解答:C10,2,不用排列 这样考虑,从10个中取2个出来,是C10,2,这两个是同质的,没有区别,取哪个放在A中还是B中是没有区别的,所以不用排列。 例题3:从编号1-10的人中取出2个人住进A、B,2个屋子,有多少种住法? 解答:P2,2×C10,2这时需要排列了 例题4:从10个小球中1取出2个放在A,B两个盒子里,有多少种放法? 答案:C10,2 小球同质 例题5:从编号1-10的小球中取出2个放在2个盒子里,有多少种放法? 答案:C10,2 盒子同质 2。概率 加法原则和乘法原则:问自己这个事儿完成了没有?如果完成了就是加法原则,没有完成就是乘法原则。 例子:从北京到上海可以乘飞机(3种方案),轮船(2种方案),或者火车(5种方案),问从北京到上海乘这3种交通工具共几种方案?答:既然任何一个方案都已经到达了上海,这件事儿已经完成了,所以用加法原则:3+2+5=10种

高中数学-排列组合概率综合复习

高中数学 排列组合二项式定理与概率统计

其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。 例4、设88 018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( ) A .2 B .3 C .4 D .5 例5、组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1) C r -1n -1 C .nr C r -1 n -1 D .n r C r -1n -1 . 例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274 例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 1 84 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 )5)(4)(3)(2)(1(-----x x x x x 4 x

(完整版)排列组合知识点与方法归纳

排列组合知识点与方法归纳 一、知识要点 1.分类计数原理与分步计算原理 (1)分类计算原理(加法原理): 完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办 法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完 成这件事共有N= m1+ m2+…+ m n种不同的方法。 (2)分步计数原理(乘法原理): 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有 m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有 N= m1× m2×…× m n种不同的方法。 2.排列 (1)定义 从n个不同元素中取出m()个元素的所有排列的个数,叫做从n个不 同元素中取出m个元素的排列数,记为 . (2)排列数的公式与性质 a)排列数的公式: =n(n-1)(n-2)…(n-m+1)= 特例:当m=n时, =n!=n(n-1)(n-2)…×3×2×1规定:0! =1 b)排列数的性质: (Ⅰ) =(Ⅱ) (Ⅲ) 3.组合 (1)定义

a)从n个不同元素中取出个元素并成一组,叫做从n个不同元素中取 出m个元素的一个组合 b)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同 元素中取出m个元素的组合数,用符号表示。 (2)组合数的公式与性质 a)组合数公式:(乘积表示) (阶乘表示) 特例: b)组合数的主要性质: (Ⅰ)(Ⅱ) 4.排列组合的区别与联系 (1)排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 (2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系: 二、经典例题 例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是() A .5种 B.6种 C. 7种 D. 8种 解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论:第一类,再买3片软件,不买磁盘,只有1种方法;第二类,再买2片软件,不买磁盘,只有1种方法; 第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法;第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法;于是由分类计数原理可知,共有

排列组合二项式定理知识点

排列组合项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以.有.重.复.元.素.的排列. 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以 从m个不同元素中,每次取出n个元素可重复排列数m- m?…m = m n..例

3! 1 . 3! 如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: m n 种) 二、排列. 1.(1)对排列定义的理解. 定义:从n 个不同的元素中任取 m (贰n )个元素,按照一定顺序 排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺 序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (mcn)个元素排成一列,称为从n 个不同元素中取 出 m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用 符号表 示. ⑷排列数公式: 注意:n n! (n 1)! n!规定 0! = 1 m m m m 1 m m 1 m m 1 On, A n 1 A n A m C n A n mA n A n nA n 1 /规^定 C n C n 1 2.含有可重元素的排列问题. 对含有相同元素求排列个数的方法是:设重集 S 有k 个不同元素a 1, a 2,……a n 其中限重复数为n 1、n ..... n k ,且n = n 计尊+ .. n k ,则S 的排列 例如:已知数字3、2、2,求其排列个数n 喈3又例如:数字5、5、5、 求其排列个数?其排列个数 个数等于n n! n !n 2!...n k

高中数学排列组合概率练习题

高中数学排列组合概率练习题 1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是 (A ) 37 (B ) 47 (C ) 114 (D ) 1314 答案:D 解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是3 9C .所以3 9 613114 C - = . 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有 (A )6种 (B )9种 (C )11种 (D )13种 答案:B 解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法. 3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 (A )30个 (B )20个 (C )35个 (D )15个 答案:A 解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302 32 5=?C C 个,于是最多有30个交点. 推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有2 2 m n C C ?个 变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点. 答案:4 12C 4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 (A ) 15 (B ) 25 (C ) 35 (D ) 45 111213212223313233a a a a a a a a a ?? ? ? ???

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示. pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m 表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m. 排列Pnmn为下标,m为上标 Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n 组合Cnmn为下标,m为上标 Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

高中数学竞赛_排列组合与概率【讲义】

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用 m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地 0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为 n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10 ==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有1 1--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+ 推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1m m n C -+ 8.二项式定理:若n ∈N +,则(a+b)n =n n n r r n r n n n n n n n b C b a C b a C b a C a C +++++---222110.其

排列组合与二项式定理及概率应用综合

第一讲 排列组合概念及简单应用 排列和排列数公式 A m n =n (n -1)(n -2)…(n -m +1)=n ! (n -m )!(m ,n ∈N *,并且m ≤n ) A n n =n !=n ×(n -1)×(n -2)×…×3×2×1. 规定:0!=1. 组合与组合数公式 1.组合数公式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(m ,n ∈N *,并且 m ≤n ) 2.组合数的性质 (1)C m n =C n -m n (2)C m n +1=C m n +C m - 1n 常规题型 一、投信问题 1、个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. (1)从两个口袋里各取一封信,有多少种不同的取法? (2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? 2、五位旅客到一个城市出差,这个城市有6家旅馆,有多少种住宿方法? 3、12名旅客在一辆火车上,共有六个车站,有多少种下车方案? 4、3个同学在一座只有两个楼梯的楼上下楼,有几种下楼方案? 二、染色问题 1、如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数. 2. 如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种. 3.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: ①分类讨论思想;②转化思想;③对称思想. 4.二项式定理知识点: ①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn ②主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。 6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

相关文档
最新文档