Linux内核初始化流程笔记

Linux内核初始化流程笔记
Linux内核初始化流程笔记

Linux内核初始化流程笔记

分类: LINUX

作者:gfree.wind@https://www.360docs.net/doc/f114824896.html,

博客:https://www.360docs.net/doc/f114824896.html, https://www.360docs.net/doc/f114824896.html,

本文的copyleft归gfree.wind@https://www.360docs.net/doc/f114824896.html,所有,使用GPL发布,可以自由拷贝,转载。但转载请保持文档的完整性,注明原作者及原链接,严禁用于任何商业用途。

=============================================================================== =======================

如前文http://https://www.360docs.net/doc/f114824896.html,/space.php?uid=23629988&do=blog&id=3129477的流程,bootloader将kerenel加载到内存中。

全部引导过程是四步

1:boot PROM phase

2:boot Programs phase

3:kernel initialization phase

4:init phase

system初始化,检测内存和cpu,检查设备和创建设备树,设置console

kernel初始化过程

kernel self -initialization 内核自检

loading of kernel modules 载入内核模块

reading of the kernel configuration file in /etc/system 读内核配置文件

staring of the /sbin/init process 运行/sbin/init进程

bootblk是用于装载第二个引导程序ufsboot的主引导程序

bootblk是被PROM的boot设备的引导扇区装载的

ufsboot程序是用了装载两部分核心genunix和unix的

installboot是用来在磁盘分区上安装bootblk的

genunix is the platform-independent generic kernel file ,while unix is the platform-specific kernel component.

整个的引导过程:

PROM from the boot sector of the boot device-->bookblk-->ufsboot-->genunix(是一个独立平台的普通内核文件) and unix(是一个特殊平台内核文件)-->其它

这里加载的kernel镜像,并不是真正的可执行文件,而是一个压缩的镜像文件。主要有两种类型zImage和bzImage(即为Big zImage)。其中zImage小于512KB,而bzImage可以为一个大的压缩镜像文件。zImage可以用于在没有bootloader的情况下,直接启动kernel。而目前一般都是使用bzImage。以我目前的Fedora13为例,执行file /boot/vmlinuz-2.6.33.3-85.fc13.i686.PAE

1./boot/vmlinuz-

2.6.3

3.3-85.fc13.i686.PAE: Linux kernel x86 boot executable bzImage,

version 2.6.33.3-85.fc13.i686.PAE (mock, RO-rootFS, root_dev 0x902, swap_dev 0x3,

Normal VGA

为啥要压缩呢?因为在这一时刻,CPU是工作在实模式下,可访问的内存空间只有1M,所以镜像文件要尽量的小,最好能够小于1M。可是bzImage的大小往往会大于1M,怎么办?比如我的系统中:

1.[root@fgao-vm-fc13 boot]# ls -lh vmlinuz-

2.6.3

3.3-85.fc13.i686.PAE

2.-rwxr-xr-x. 1 root root

3.4M May 7 2010 vmlinuz-2.6.33.3-85.fc13.i686.PAE

这个压缩后的镜像就已经高达3M了,远超过实模式下的1M寻址空间。

解决方法很简单,同样是把kernel的镜像也分为两部分。第一部分为kernel运行在实模式下boot sector(512字节)和kernel setup(合计32K),而第二部分也是大部分代码都是运行在包含模式下。按照Linux的文档,推荐的内存布局如下:

内存地址1M以下包括的kernel代码

1. boot sector:最前面的512字节,该部分代码目前已经无用。原来是用于在没有bootloader 的情况下,启动kernel。目前kernel的启动必须依赖于bootloader。

2. setup:boot sector后面的代码,kernel启动的真正入口,由bootloader直接跳转到这里。

3. stack/heap:实模式下,内核需要的栈和堆,大小为32K。

关于kernel header的描述,可以查看Document/x86/boot.txt。写得很详细

剩下的kernel代码被放置在0x100000即1M内存处,那么毫无疑问,这部分代码是无法在实模式下运行的,只能运行在保护模式下。

既然实模式下内核代码的前512字节已经作废,所以真正的入口为setup,即arch/x86/boot 下面的head.S。

1.# End of setup header #####################################################

2..section ".entrytext", "ax"

3.start_of_setup:

4.#ifdef SAFE_RESET_DISK_CONTROLLER

5.# Reset the disk controller.

6.movw $0x0000, %ax # Reset disk controller

7.movb $0x80, %dl # All disks

8.int $0x13

9.#endif

10.

这里为真正的入口点,从汇编的伪指令也很容易看出——即红色那行。

head.S的代码的注释很清晰,建立stack/heap,检查签名——验证setup,清BSS段,然后call main函数——正常是不会返回的。当返回的时候,打印一些出错信息。

由head.S调用的main,需要注意的是,这时仍然是在实模式下——因为没有人启用CPU的保护模式呢。head.S的主要任务是建立了一个C语言可运行的基本环境,然后由C代码去做进一步处理。

进入实模式下的main,位于arch/x86/boot/main.c。代码注释非常清楚,另一方面这太过于底层,基本上看一遍注释即可。它的工作就是为进入保护模式作准备,然后调用go_to_protected_mode——这个仍然是C函数,先做切换到保护模式下的必要工作,然后调用protected_mode_jump——汇编去做真正的切换。

关于如何protected_mode_jump如何处理,如何enable CPU的保护模式。太多大神做过这

些方面的说明了。另外,本文也只是我的一个笔记,对于这部分的细节,我暂时也没有兴趣。在protected_mode_jum的最后一条语句,将直接跳转到保护模式下kernel的入口地址。这个地址是由header filed中的code32_start定义的,即为保护模式的kernel代码的入口地址。根据Linux的文档,这个地址是由bootloader使用,且可以bootloader来决定保护模式的kernel代码的加载地址。不管bootloader是否会更改保护模式的kernel代码的加载地址,反正在protected_mode_jump中,会使用bootloader确定的地址,然后跳转到保护模式下的kernel入口——这个入口在vmlinux.lds.S定义。

对于32位的PC来说,入口为startup_32,位于head_32.S,再次进入汇编代码,不过也终于进入保护模式了。startup_32干了啥,还是看注释就清楚了,基本上还是一些准备工作,然后解压内核,并将解压后的内核仍然放在0x100000地址上,然后再次跳转到0x100000处,执行解压后的kernel代码。

这时kernel的入口仍然是startup_32,但是却非之前的startup_32。前面的startup_32是位于arch/x86/boot/compressed/head_32.S,而现在这个startup_32为kernel解压后的程序,其代码位于arch/x86/kernel/head_32.S。它的任务还是做一些准备工作,设置GDT,清BSS,初始化内存的page table,建立中断表,等等。。。然后其调用i386_start_kernel->start_kernel。

start_kernel位于init/main.c,这个终于与平台无关了,且进入了C代码。到此,Linux内核的初始化流程基本结束。进入start_kernel后,真正的kernel已经启动,且进入了保护模式。后面的学习,就可以一步一步的看kernel是如何管理内存,进程调度,网络处理等等。

本文只能算是一个笔记,因为大部分都是查阅了别人的文章,几乎没有原创。并且内容如流水账一般,只是简单的将内核初始化流程走了一遍。底层的细节太多了,暂时也没有精力去关注了。

当大致了解了kernel的加载,启动的流程后,很多东西就没有那么神秘了。因为最起码知道了kernel简单的来龙去脉,为以后针对kernel具体部分的学习,做了铺垫。

推荐大家阅读一下我参考的文章:

1. https://www.360docs.net/doc/f114824896.html,/gustavo/blog/post/kernel-boot-process

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.360docs.net/doc/f114824896.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

实验四Linux内核移植实验

合肥学院 嵌入式系统设计实验报告 (2013- 2014第二学期) 专业: 实验项目:实验四 Linux内核移植实验 实验时间: 2014 年 5 月 12 实验成员: _____ 指导老师:干开峰 电子信息与电气工程系 2014年4月制

一、实验目的 1、熟悉嵌入式Linux的内核相关代码分布情况。 2、掌握Linux内核移植过程。 3、学会编译和测试Linux内核。 二、实验内容 本实验了解Linux2.6.32代码结构,基于S3C2440处理器,完成Linux2.6.32内核移植,并完成编译和在目标开发板上测试通过。 三、实验步骤 1、使用光盘自带源码默认配置Linux内核 ⑴在光盘linux文件夹中找到linux-2.6.32.2-mini2440.tar.gz源码文件。 输入命令:#tar –jxvf linux-2.6.32.2-mini2440-20110413.tar对其进行解压。 ⑵执行以下命令来使用缺省配置文件config_x35 输入命令#cp config_mini2440_x35 .config;(注意:x35后面有个空格,然后有个“.”开头的 config ) 然后执行“make menuconfig”命令,但是会出现出现缺少ncurses libraries的错误,如下图所示: 解决办法:输入sudo apt-get install libncurses5-dev 命令进行在线安装ncurses libraries服务。

安装好之后在make menuconfig一下就会出现如下图所示。 ⑶配置内核界面,不用做任何更改,在主菜单里选择退出,并选“Yes”保存设置返回到刚命令行界面,生成相应配置的头文件。 编译内核: #make clean #make zImage 在执行#make zImage命令时会出现如下错误: 错误:arch/arm/mach-s3c2440/mach-mini2440.c:156: error: unknown field 'sets' specified in initializer 通过网上查找资料 于是在自己的mach-mini2440.c中加入 #include

Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻塞型IO和休眠]

Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻 塞型I/O和休眠] Linux设备驱动程序学习(5) -高级字符驱动程序操作[(2)阻塞型I/O和休眠]这一部分主要讨论:如果驱动程序无法立即满足请求,该如何响应?(65865346) 一、休眠 进程被置为休眠,意味着它被标识为处于一个特殊的状态并且从调度器的运行队列中移走。这个进程将不被在任何CPU 上调度,即将不会运行。直到发生某 些事情改变了那个状态。安全地进入休眠的两条规则: (1)永远不要在原子上下文中进入休眠,即当驱动在持有一个自旋锁、seqlock或者RCU 锁时不能睡眠;关闭中断也不能睡眠。持有一个信号量时休眠是 合法的,但你应当仔细查看代码:如果代码在持有一个信号量时睡眠,任何其他的等待这个信号量的线程也会休眠。因此发生在持有信号量时的休眠必须短暂, 而且决不能阻塞那个将最终唤醒你的进程。 (2)当进程被唤醒,它并不知道休眠了多长时间以及休眠时发生什么;也不知道是否另有进程也在休眠等待同一事件,且那个进程可能在它之前醒来并获取了 所等待的资源。所以不能对唤醒后的系统状态做任何的假设,并必须重新检查等待条件来确保正确的响应。 除非确信其他进程会在其他地方唤醒休眠的进程,否则也不能睡眠。使进程可被找到意味着:需要维护一个称为等待队列的数据结构。它是一个进程链表,其中饱含了等待某个特定事件的所有进程。在Linux 中,一个等待队列由一个wait_queue_head_t 结构体来管理,其定义在中。 wait_queue_head_t 类型的数据结构非常简单: 它包含一个自旋锁和一个链表。这个链表是一个等待队列入口,它被声明做wait_queue_t。wait_queue_head_t包含关于睡眠进程的信息和它想怎样被唤

设备驱动加到Linux内核中

7.2.3 设备驱动加到Linux内核中 设备驱动程序编写完后将该驱动程序加到内核中。这需要修改Linux 的源代码,然后重新编译内核。 ①将设备驱动程序文件(比如mydriver.c)复制到/Linux/drivers/char目录下。该目录保存了Linux下字符设备的设备驱动程序。修改该目录下mem.c 文件,在int chr_dev_init()函数中增加如下代码: #ifdef CONFIG_MYDRIVER device_init(); #endif 其中CONFIG_MYDRIVER是在配置Linux内核时赋值。 ②在/linux/drivers/char目录下Makefile中增加如下代码: ifeq ($(CONFIG_MYDRIVER),y) L_OBJ + = mydriver.o endif 如果在配置Linux内核时选择了支持新定义的设备,则在编译内核时会编译mydriver.c生成mydriver.o文件。 ③修改/linux/drivers/char目录下config.in文件,在 comment Character devices 语句下面加上 bool suppot for mydriver CONFIG_MYDRIVER 这样,若编译内核,运行make config,make menuconfig或make xconfig,那么在配置字符设备时就会有选项: Support for mydriver 当选中这个设备时,设备驱动就加到了内核中了。 重新编译内核,在shell中将当前目录cd 到Linux目录下,然后执行以下代码: # make menuconfig # make dep # make 在配置选项时要注意选择支持用户添加的设备。这样得到的内核就包含用户的设备驱动程序。 Linux通过设备文件来提供应用程序和设备驱动的接口,应用程序通过标准的文件操作函数来打开、关闭、读取和控制设备。查看Linux文件系统下的/proc/devices,可以看到当前的设备信息。如果设备驱动程序已被成功加进,这里应该由该设备对应的项。/proc/interrupts纪录了当时中断情况,可以用来查看中断申请是否正常;对于DMA和I/O口的使用,在/proc下都有相应的文件进行记录;还可以在设备驱动程序中申请在/proc 文件系统下创建一个文件,该文件用来存放设备相关信息。这样通过查看该文件就可以了解设备的使用情况。总之,/proc文件系统为用户提供了查

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

嵌入式Linux内核移植详解(顶嵌)

内核移植阶段 内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。 内核和用户界面共同为用户提供了操作计算机的方便方式。也就是我们在windows下看到的操作系统了。由于内核的源码提供了非常广泛的硬件支持,通用性很好,所以移植起来就方便了许多,我们需要做的就是针对我们要移植的对象,对内核源码进行相应的配置,如果出现内核源码中不支持的硬件这时就需要我们自己添加相应的驱动程序了。 一.移植准备 1. 目标板 我们还是选用之前bootloader移植选用的开发板参数请参考上文的地址: https://www.360docs.net/doc/f114824896.html,/thread-80832-5-1.html。bootloader移植准备。 2. 内核源码 这里我们选用比较新的内核源码版本linux-2.6.25.8,他的下载地址是 ftp://https://www.360docs.net/doc/f114824896.html,/pub/linux/kernel/v2.6/linux-2.6.25.8.tar.bz2。 3. 烧写工具 我们选用网口进行烧写这就需要内核在才裁剪的时候要对网卡进行支持 4. 知识储备 要进行内核裁剪不可缺少的是要对内核源码的目录结构有一定的了解这里进 行简单介绍。 (1)arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子 目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体 系结构的子目录。PC机一般都基于此目录。 (2)block/:部分块设备驱动程序。 (3)crypto:常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验 算法。 (4) documentation/:文档目录,没有内核代码,只是一套有用的文档。 (5) drivers/:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目 录:如,/block 下为块设备驱动程序,比如ide(ide.c)。 (6)fs/:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持 一个文件系统, 例如fat和ext2。

嵌入式Linux系统内核的配置、编译和烧写

实验二 嵌入式Linux系统内核的配置、编译和烧写 1.实验目的 1)掌握交叉编译的基本概念; 2)掌握配置和编译嵌入式Linux操作系统内核的方法; 3)掌握嵌入式系统的基本架构。 2.实验环境 1)装有Windows系统的计算机; 2)计算机上装有Linux虚拟机软件; 3)嵌入式系统实验箱及相关软硬件(各种线缆、交叉编译工具链等等)。 3.预备知识 1)嵌入式Linux内核的配置和裁剪方法; 2)交叉编译的基本概念及编译嵌入式Linux内核的方法; 3)嵌入式系统的基本架构。 4.实验内容和步骤 4.1 内核的配置和编译——配置内核的MMC支持 1)由于建立交叉编译器的过程很复杂,且涉及汇编等复杂的指令,在这里 我们提供一个制作好的编译器。建立好交叉编译器之后,我们需要完成 内核的编译,首先我们要有一个完整的Linux内核源文件包,目前流行 的源代码版本有Linux 2.4和Linux 2.6内核,我们使用的是Linux 2.6内核; 2)实验步骤: [1]以root用户登录Linux虚拟机,建立一个自己的工作路径(如用命令 “mkdir ‐p /home/user/build”建立工作路径,以下均采用工作路径 /home/user/build),然后将“cross‐3.3.2.tar.bz2、dma‐linux‐2.6.9.tar.gz、 dma‐rootfs.tar.gz”拷贝到工作路径中(利用Windows与虚拟机Linux 之间的共享目录作为中转),并进入工作目录; [2]解压cross‐3.3.2.tar.bz2到当前路径:“tar ‐jxvf cross‐3.3.2.tar.bz2”; [3]解压完成后,把刚刚解压后在当前路径下生成的“3.3.2”文件夹移 动到“/usr/local/arm/”路径下,如果在“/usr/local/”目录下没有“arm” 文件夹,用户创建即可; [4]解压“dma‐linux‐2.6.9.tar.gz”到当前路径下:

02--基于ARM9的Linux2.6内核移植

基于ARM9的Linux2.6内核移植 姓名 系别、专业 导师姓名、职称 完成时间

目录 摘要................................................... I ABSTARCT................................................ II 1 绪论.. (1) 1.1课题研究的背景、目的和意义 (1) 1.2嵌入式系统现状及发展趋势 (1) 1.3论文的主要工作 (4) 2 嵌入式 Linux系统构成和软件开发环境 (5) 2.1嵌入式Linux系统的体系结构 (5) 2.2嵌入式Linux系统硬件平台 (5) 2.3嵌入式Linux开发软件平台建立 (7) 2.4本章小结 (11) 3 嵌入式Linux的引导BootLoader程序 (12) 3.1 BootLoader概述 (12) 3.2 NAND Flash和NOR Flash的区别 (13) 3.3本章小结 (19) 4 Linux内核的编译、移植 (20) 4.1 Linux2.6内核的新特性简介 (20) 4.2 Linux内核启动流程 (20) 4.3内核移植的实现 (21) 4.4 MTD内核分区 (23) 4.5配置、编译内核 (24) 4.6本章小结 (26) 5 文件系统制作 (27) 5.1 yaffs文件系统简介 (27) 5.2 内核支持YAFFS文件系统 (27) 5.3本章小结 (30) 6测试 (31) 6.1简单测试方法的介绍 (31) 6.2编写简单C程序测试移植的系统 (31) 6.3在开发板执行测试程序 (32)

内核配置与裁剪

内核配置与裁剪 1. Linux内核配置 内核配置的方法很多,make config、make xconfig、make menuconfig、make oldconfig 等等,它们的功能都是一样的。这里用的是make menuconfig。 过去基于2.x的内核为用户提供了四种基本的内核设置编辑器: ?. config 服务于内核设置的一个冗长的命令行界面; ?. oldconfig 一个文本模式的界面,主要包含一个已有设置文件,对用户所发现的内核资 源中的设置变量进行排序; ?. menuconfig 一个基于光标控制库的终端导向编辑器,可提供文本模式的图形用户界 面; ?. xconfig 一个图形内核设置编辑器,需要安装X-Window系统。 前三种编辑器在设置2.6内核时仍可使用,在运行“make xconfig”后,原有的界面被两个新的图形设置编辑器所代替。这需要具体的图形库和X-Window系统的支持。另外,用户还可以通过“make defconfig”命令,利用所有内核设置变量的缺省值自动建立一个内核设置文件。 下面具体介绍Linux内核配置选项: . 代码成熟度选项 Code maturity level options ---> [*] Prompt for development and/or incomplete code/drivers [*] Select only drivers expected to compile cleanly 在内核中包含了一些不成熟的代码和功能,如果我们想使用这些功能,想打开相关的配置选项,就必需打开这一选项。 . 通用设置选项 General setup ---> () Local version - append to kernel release [*] Automatically append version information to the version string [*] Support for paging of anonymous memory (swap)

am335x_linux-3.14.43内核移植笔记

本文主要描述在EVB335X-II以Device Tree的方式移植新TI官网AM335X系列最新的linux-3.14.43版本内核以及移植Debian文件系统的过程及遇到的一些问题。整个Device Tree牵涉面比较广,即增加了新的用于描述设备硬件信息的文本格式(即.dts文件),又增加 了编译这一文本的工具,同时Bootloader也需要支持将编译后的Device Tree传递给Linux 内核。以下是修改步骤: 一、修改uboot,支持Device Tree EVB335X-II在linux-3.2版本内核移植的时候已经有uboot,因此只需在该uboot上增加Device Tree支持即可,以下是修改步骤: 1、修改include/configs/com335x.h文件,增加支持DT的宏定义: /* Flattened Device Tree */ #define CONFIG_OF_LIBFDT 2、修改uboot启动参数,增加dtb文件的加载和启动(由于目前只是移植EMMC版本的EVB335X-II,因此只需修改EMMC的启动参数即可,大概在405行),修改如下: #elif defined(CONFIG_EMMC_BOOT) #define CONFIG_BOOTCOMMAND \ "run mmcboot;" #define CONFIG_EXTRA_ENV_SETTINGS \ "lcdtype=AUO_AT070TN94\0" \ "console=ttyO0,115200n8\0" \ "mmcroot=/dev/mmcblk0p2 rw\0" \ "mmcrootfstype=ext4 rootwait\0" \ "mmcargs=setenv bootargs console=${console} noinitrd root=${mmcroot} rootfstype=${mmcrootfstype} lcdtype=${lcdtype} consoleblank=0\0" \ "mmcdev=" MMCDEV "\0" \ "loadaddr=0x81000000\0" \ "dtbfile=evb335x-ii-emmc.dtb\0" \ "bootenv=uEnv.txt\0" \ "bootpart=" BOOTPART "\0" \ "loadbootenv=load mmc ${mmcdev} ${loadaddr} ${bootenv}\0" \ "importbootenv=echo Importing environment from mmc ...; " \ "env import -t $loadaddr ${filesize}\0" \ "loadaddr-dtb=0x82000000\0" \ "loadimage=load mmc ${bootpart} ${loadaddr} uImage\0" \ "loaddtb=load mmc ${bootpart} ${loadaddr-dtb} ${dtbfile}\0" \ "mmcboot=mmc dev ${mmcdev}; " \ "if mmc rescan; then " \ "echo SD/MMC found on device ${mmcdev};" \ "if run loadbootenv; then " \ "echo Loaded environment from ${bootenv};" \ "run importbootenv;" \ "fi;" \ "run mmcargs;" \

Linux内核驱动加载顺序

Linux内核驱动加载顺序 【问题】 背光驱动初始化先于LCD驱动初始化,导致LCD驱动初始化时出现闪屏的现象。 【解决过程】 1 mach-xxx.c中platform devices列表如下 /* platform devices */ static struct platform_device *athena_evt_platform_devices[] __initdata = { //&xxx_led_device, &xxx_rtc_device, &xxx_uart0_device, &xxx_uart1_device, &xxx_uart2_device, &xxx_uart3_device, &xxx_nand_device, &xxx_i2c_device, &xxx_lcd_device, &xxxpwm_backlight_device, ... }; LCD(xxx_lcd_device)设备先于PWM(xxxpwm_backlight_device)设备。 可见驱动的初始化顺序并不是和这个表定义的顺序始终保持一致的。(记得PM操作 - resume/suspend 的顺序 是和这个表的顺序保持一致的) 2 怀疑和编译顺序有关 Z:\kernel\drivers\video\Makefile:背光驱动(backlight/)的编译限于LCD驱动(xxxfb.o)的编译 obj-$(CONFIG_VT) += console/ obj-$(CONFIG_LOGO) += logo/ obj-y += backlight/ display/ ... obj-$(CONFIG_FB_xxx) += xxxfb.o ak_logo.o obj-$(CONFIG_FB_AK88) += ak88-fb/ 这样编译生成的System.map中的顺序为: 906 c001f540 t __initcall_pwm_backlight_init6 907 c001f544 t __initcall_display_class_init6 908 c001f548 t __initcall_xxxfb_init6 Makefile更改为: obj-$(CONFIG_VT) += console/ obj-$(CONFIG_LOGO) += logo/ obj-y += display/

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

Linux内核裁剪实例

Linux内核裁剪实例 从零开始配置内核是不明智的,建议在某一个默认配置的基础上进行修改,以达到自己产品的实际需求。 裁剪和配置内核的基本原则: ?基于某一个最接近的主板配置来修改; ?必须的、能确定的选项选中; ?不能确定的则不要改变原来配置; ?可选可不选的,建议根据help信息决定或者不选; ?一次改动不要太多,渐进式修改和验证; ?注意及时备份配置文件,出现意外可以回退恢复。 下面给出一些常见功能的配置裁剪实例,很多功能与所采用的主板硬件相关,与其它不同主板的内核配置上不一定完全相同,但还是有一些参考意义。 1.1.1 GPIO子系统配置 Linux 2.6以上内核引入了子系统,GPIO子系统将全部GPIO的操作接口都通过 “/sys/class/gpio/”目录导出,非常方便用户使用。 输入下列命令,进入内核配置菜单: $ make ARCH=arm menuconfig 在主菜单界面中选择“Device Drivers”: [*] Networking support ---> Device Drivers ---> File systems ---> Kernel hacking ---> 进入“Device Drivers”界面,选择并进入“GPIO Support”: [*] SPI support ---> PPS support ---> PTP clock support -*- GPIO Support ---> <*> PWM Support ---> 在“GPIO Support”中选中“/sys/cla ss/gpio…”: --- GPIO Support [*] /sys/class/gpio/... (sysfs interface) *** Memory mapped GPIO drivers: *** … 配置后重新编译内核,使用新内核的系统即可通过“/sys/class/gpio/”访问系统的GPIO 了。

linux笔记

20150526 echo adfkjeroiu > /var/www/html/index.html service httpd restart ifconfig XXX.XXX.XXX.XXX elinks XXX.XXX.XXX.XXX web地址栏:XXX.XXX.XXX.XXX 20150527 方法一:Setup 设置IP 方法二:vim /etc/sysconfig/network-XXX/ifcfg-eth0 onboot=no改onboot=yes service network restart 虚拟机中安装2个linux,有时2个linux无法连接网络,即使是DHCP自动获取,也不可以;解决办法:打开其中一个linux虚拟机,单机“右下角-小电脑图标” —“设置”—“桥接模式(B);直接连接屋里网络” ,确定即可; 20150528 more /etc/issue 查看当前linux是centos还是redhat; man 命令查看当前命令的使用方法及参数 table 当一个命令不记得全部字母,可以双击table补齐; ctrl +c 终止当前程序 ctrl +l 清屏 20150529 ls -l查看命令;(-l显示更多属性) ls –a 查看隐藏文件; cp -r /etc/aaa /home/bbb复制/etc下的aaa 到/home下,并且改名bbb; (-r是整个文件夹的意思,如果,没有-r是复制单个文件) mv /etc/aaa /home/bbb 移动/etc下的aaa 到/home下,并且改名bbb;

rm –r 删除一个文件;(如果要是一个文件夹,就有询问yes或no) rm –rf 删除一个文件夹;(如果要是一个文件夹,就无询问) touch 创建文件; pwd 查看当前路径; cd.. 返回相对路径; cd / 返回绝对路径; cd- 返回刚才的路径; su – root或其它用户切换用户; mkdir 创建新目录; cat 查看文件内容; more或less 逐屏查看文件内容; useradd 新添加的用户,在没有更改密码前,无法登陆; passwd 更改密码;但是,密码必须符合复杂性; groupadd 添加一个组; 20150602 w 查看谁登陆过本计算机以及对方的IP; last 查看用户的登录日志; lastlog 查看每个用户最后登录的情况;(一般用于电脑被黑了之后); more /var/log/secure who /var/log/wtmp 干了些什么? root账户下输入su - username 切换到username下输入 history 能看到这个用户历史命令,默认最近的1000条 Linux查看History记录加时间戳小技巧 1.[root@servyou_web ~]# export HISTTIMEFORMAT="%F %T `whoami` " 2.[root@servyou_web ~]# history | tail 3. 1014 2011-06-22 19:17:29 root 15 2011-06-22 19:13:02 root ./test.sh 4. 1015 2011-06-22 19:17:29 root 16 2011-06-22 19:13:02 root vim test.sh 5. 1016 2011-06-22 19:17:29 root 17 2011-06-22 19:13:02 root ./test.sh 6. 1017 2011-06-22 19:17:29 root 18 2011-06-22 19:13:02 root vim test.sh 7. 1018 2011-06-22 19:17:29 root 19 2011-06-22 19:13:02 root ./test.sh 8. 1019 2011-06-22 19:17:29 root 20 2011-06-22 19:13:02 root vim test.sh 9. 1020 2011-06-22 19:17:29 root 21 2011-06-22 19:13:02 root ./test.sh

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

Linux内核移植开发手册

江苏中科龙梦科技有限公司 Linux内核移植开发手册 修 订 记 录 项 次 修订日期 版 本修订內容修订者审 核 1 2009‐02‐04 0.1 初版发行陶宏亮, 胡洪兵 2 2009‐11‐20 0.2 删除一些 多余文字 陶宏亮, 胡洪兵

DISCLAIMER THIS DOCUMENTATION IS PROVIDED FOR USE WITH LEMOTE PRODUCTS. NO LICENSE TO LEMOTE PROPERTY RIGHTS IS GRANTED. LEMOTE ASSUMES NO LIABILITY, PROVIDES NO WARRANTY EITHER EXPRESSED OR IMPLIED RELATING TO THE USAGE, OR INTELLECTUAL PROPERTY RIGHT INFRINGEMENT EXCEPT AS PROVIDED FOR BY LEMOTE TERMS AND CONDITIONS OF SALE. LEMOTE PRODUCTS ARE NOT DESIGNED FOR AND SHOULD NOT BE USED IN ANY MEDICAL OR LIFE SUSTAINING OR SUPPORTING EQUIPMENT. ALL INFORMATION IN THIS DOCUMENT SHOULD BE TREATED AS PRELIMINARY. LEMOTE MAY MAKE CHANGES TO THIS DOCUMENT WITHOUT NOTICE. ANYONE RELYING ON THIS DOCUMENTATION SHOULD CONTACT LEMOTE FOR THE CURRENT DOCUMENTATION AND ERRATA. JIANGSU LEMOTE TECHNOLOGY CORPORATION LIMITED MENGLAN INDUSTRIAL PARK,YUSHAN,CHANGSHU CITY,JIANGSU PROVINCE,CHINA Tel: 0512‐52308661 Fax: 0512‐52308688 Http: //https://www.360docs.net/doc/f114824896.html,

相关文档
最新文档