二维流动与传热的数值计算fluent模拟

二维流动与传热的数值计算fluent模拟
二维流动与传热的数值计算fluent模拟

041410138彭东方二维流动与传热的数值计算作业

一次计算图

二次计算图

速度分布云图

温度分布云图

速度矢量图

混合器内等压线分布图

出流口截面上的温度分布图

出流口截面上的压力分布图

出流口截面上的速度分布图

混合器内速度水头等值线图

进行了1000次迭代计算后的出口截面平均温度变化曲线

混合器内的温度分布云图

基于单元的温度分分布图

混合器内的温度梯度

改进后的网格

改进后的出口截面平均温度变化曲线

温度分布云图

等温线分布图

哈工程传热学数值计算大作业

传热学 二维稳态导热问题的数值解法 杨达文2011151419 赵树明2011151427 杨文晓2011151421 吴鸿毅2011151416

第一题: a=linspace(0,0.6,121); t1=[60+20*sin(pi*a/0.6)]; t2=repmat(60,[80 121]); s=[t1;t2]; %构造矩阵 for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s; for j=2:120 for i=2:80 S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1)); end end if norm(S-s)<0.0001 break; %如果符合精度要求,提前结束迭代else s=S; end end S %输出数值解 数值解数据量太大,这里就不打印出来,只画出温度分布。 画出温度分布: figure(1) xx=linspace(0,0.6,121); yy=linspace(0.4,0,81); [x,y]=meshgrid(xx,yy); surf(x,y,S) axis([0 0.6 0 0.4 60 80]) grid on xlabel('L1') ylabel('L2') zlabel('t(温度)')

.60.66666777778L 1 L 2t (温度)

A0=[S(:,61)]; for k=1:81 B1(k)=A0(81-k+1); end B1 %x=L1/2时y方向的温度 A1=[S(41,:)] %y=L2/2时x方向的温度 x=0:0.005:0.6; y=0:0.005:0.4; A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度 B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度 figure(2) subplot(2,2,1); plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线 xlabel('L1');ylabel('t温度'); title('y=L2/2'); legend('数值解','解析解'); subplot(2,2,2); plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线 xlabel('L1');ylabel('差值'); title('y=L2/2时,比较=数值解-解析解'); subplot(2,2,3); plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线 xlabel('L2');ylabel('t温度'); title('x=L1/2'); legend('数值解','解析解'); subplot(2,2,4); plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线 xlabel('L2');ylabel('差值'); title('x=L1/2时,比较=数值解-解析解'); y=L2/2时x方向的温度: 60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961 60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779 61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696 62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577 62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702 63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951 63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318 64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846 64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

计算传热学

1、已知:一块厚度为0.1mm 的无限大平板,具有均匀内热源,q =50×103W/m 3,,导热系数K =10W/m.℃,一侧边界给定温度为75℃,另一侧对流换热,T f =25℃,,h=50W/m 2.℃,求解稳态分布。(边界条件用差分代替微分和能量平衡法),画图。(内,外节点) 2、试以下述一维非稳态导热问题为模型,编写求解一维非稳态扩散型问题的通用程序: 00 00000()()()() L L f x x x x L fL L x x x x T T k s c x x T k h T T W x T k h T T W x T T x τρτ =====???+=????=-+??-=-+?= 其中,x 是空间坐标变量,τ是时间坐标变量,T 是温度(分布),k 是材料的导热系数,s 是内热源强度,ρ是材料的密度,c 是材料的比热,h 0和h L 分别是x 0和x L 处流体与固体壁面间的换热系数,而T f0和T fL 分别是固体壁两侧流体的温度,W 0和W L 是x 0和x L 处(非对流换热)热流密度,T 0(x )是固体壁内初始温度分布。注意k 、ρ、c 、s 、h 0 、h L 、W 0和W L 均可以是温度T 和/或空间坐标x 的函数。 具体要求: 1) 将数学模型无量纲化; 2) 考虑各种可能的边界条件和初始条件组合 3) 提供完整的程序设计说明,包括数学推导过程和程序使用说明 3、对于有源项的一维稳态方程, s dx d T dx d u dx d +=)()(φφρ 已知 x=0,φ=0,x=1, φ=1.源项S=0.5-X 利用迎风格式、混合格式、乘方格式求解φ的分布.

FLUENT传热模拟参考资料整理

FLUENT传热模拟参考资料整理

1、在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 判断网格质量的方面有: Area单元面积,适用于2D单元,较为基本的单元质量特征。 Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1. Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。 Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。 EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。最好是要控制在0到0.4之间。 EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。2D 质量好的单元该值最好在0.1以内,3D单元在0.4以内。 MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Size Change相邻单元大小之比,仅适用于3D单元,最好控制在2以内。 Stretch伸展度。通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Taper锥度。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。 Warpage翘曲。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 以上只是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。 另外,在Fluent中的窗口键入:grid quality 然后回车,Fluent能检查网格的质量,主要有以下三个指标: 1.Maxium cell squish: 如果该值等于1,表示得到了很坏的单元; 2.Maxium cell skewness: 该值在0到1之间,0表示最好,1表示最坏;

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

传热学上机C程序源答案之一维稳态导热的数值计算

一维稳态导热的数值计算 1.1物理问题 一个等截面直肋,处于温度t ∞=80 的流体中。肋表面与流体之间的对流换热系数为 h =45W/(m 2?℃),肋基处温度t w =300℃,肋端绝热。肋片由铝合金制成,其导热系数为λ=110W/(m ?℃),肋片厚度为δ=0.01m ,高度为H=0.1m 。试计算肋内的温度分布及肋的总换热量。 1.2数学描述及其解析解 引入无量纲过余温度θ = t?t ∞t w ?t ∞ ,则无量纲温度描述的肋片导热微分方程及其边界条件: 22 20d m dx θθ-= x=0,θ=θw =1 x=H, 0x θ?=? 其中m = 上述数学模型的解析解为:[()] ()() w ch m x H t t t t ch mH ∞∞--=-? ()()w hp t t th mH m ∞?= - 1.3数值离散 1.3.1区域离散 计算区域总节点数取N 。 1.3.2微分方程的离散 对任一借点i 有:22 2 0i d m dx θ θ??-= ??? 用θ在节点i 的二阶差分代替θ在节点i 的二阶导数,得:211 2 20i i i i m x θθθθ+--+-= 整理成迭代形式:()1122 1 2i i i m x θθθ+-=++ (i=2,3……,N-1) 1.3.3边界条件离散 补充方程为:11w θθ==

右边界为第二类边界条件,边界节点N 的向后差分得:1 0N N x θθ--= ,将此式整理为 迭代形式,得:N 1N θθ-= 1.3.4最终离散格式 11w θθ== ()1122 1 2i i i m x θθθ+-= ++ (i=2,3……,N-1) N 1N θθ-= 1.3.5代数方程组的求解及其程序 假定一个温度场的初始发布,给出各节点的温度初值:01θ,02θ,….,0 N θ。将这些初值代 入离散格式方程组进行迭代计算,直至收敛。假设第K 步迭代完成,则K+1次迭代计算式为: K 11w θθ+= () 11 11 2212i i K K K i m x θθθ+-++= ++ (i=2,3……,N-1) 1 11N K K N θθ-++= #include #include #define N 11 main() { inti; float cha;/*cha 含义下面用到时会提到*/ float t[N],a[N],b[N]; float h,t1,t0,r,D,H,x,m,A,p; /*r 代表λ,x 代表Δx ,D 代表δ*/ printf("\t\t\t 一维稳态导热问题\t\t"); printf("\n\t\t\t\t\t\t----何鹏举\n"); printf("\n 题目:补充材料练习题一\n"); printf("已知:h=45,t1=80, t0=200, r=110, D=0.01, H=0.1 (ISO)\n"); /*下面根据题目赋值*/ h=45.0; t1=80.0; t0=300.0; r=110.0; D=0.01; H=0.1; x=H/N; A=3.1415926*D*D/4; p=3.1415926*D; m=sqrt((h*p)/(r*A)); /*x 代表步长,p 代表周长,A 代表面积*/ printf("\n 请首先假定一个温度场的初始分布,即给出各节点的温度初值:\n");

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

传热学大作业报告 二维稳态导热

传热学大作业报告二维稳态计算 院系:能源与环境学院 专业:核工程与核技术 姓名:杨予琪 学号:03311507

一、原始题目及要求 计算要求: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S 迭代和Jacobi 迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 绘出最终结果的等值线 报告要求: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 计算结果的等温线图 7. 计算小结 二、各节点的离散化的代数方程 左上角节点 )(21 1,22,11,1t t t +=

右上角节点 )(2 15,24,15,1t t t += 左下角节点 C t ?=1001,5 右下角节点 )2(211,24,55,5λ λ x h t t x h t ?++?+= 左边界节点 C t i ?=1001,,42≤≤i 上边界节点 C t j ?=200,1,42≤≤j 右边界节点 )2(415,15,14,5,+-++= i i i i t t t t ,42≤≤i 下边界节点 )42()2(211,51,5,4,5∞+-?+++?+=t x h t t t x h t j j j j λλ ,42≤≤j 内部节点 )(2 1,1,11,1,,j i j i j i j i j i t t t t t +-+-+++= ,4,2≤≤j i 三、源程序 1、G-S 迭代法 t=zeros(5,5); t0=zeros(5,5); dteps=0.0001; for i=2:5 %左边界节点 t(i,1)=100; end for j=2:4 %上边界节点 t(1,j)=200; end t(1,1)=(t(1,2)+t(2,1))/2; t for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end t(1,5)=(t(1,4)+t(2,5))/2;%右上角节点 for i=2:4;%右边界节点 t(i,5)=(2*t(i,4)+t(i-1,5)+t(i+1,5))/4; end for j=2:4; %下边界节点

计算传热学程序设计

中国石油大学(华东) 储建学院热能与动力工程系 《计算传热学程序设计》 设计报告 1引言 有关墙体传热量计算的方法是随着人们对房间负荷计算精度要求的不断提高而不断发展的.考虑辐射强度和周围空气温度综合作用,当外界温度发生周期性的变化时,屋顶内部的温度和热流密度也会发生周期性的变化。 计算题目 有一个用砖墙砌成的长方形截面的冷空气通道,其截面尺寸如图1所示。假设在垂直于纸面方向上冷空气及砖墙的温度变化相对较小,可近似地予以忽略。试计算稳态时砖墙截面的温度分布及垂直于纸面方向1米长度的冷量损失。设砖墙的导热系数为(m·℃)。内、外壁面均为第三类边界条件,外壁面:t f1=30℃,h1=10W(m2·℃);内壁面:t f2=10℃, h2=4W(m2·℃)。

图1 砖墙截面 已知参数 砖墙的基本尺寸,砖墙的导热系数,外壁面的表面传热系数,对应的流体温度,内壁面的表面传热系数,对应的流体温度。 2 物理与数学模型 物理模型 由题知垂直于纸面方向上冷空气及砖墙的温度变化相对较小,可近似予以忽略,墙面为常物性,可以假设: 1)砖墙在垂直于纸面方向上没有导热。 2)由于系统是几何形状与边界条件是对称的,它的中心对称面就是一个绝热边界,这时只需求解1/4个对称区域就可以得到整个区域的解。 数学模型 考虑到对称性,取右下的1/4为研究对象,建立如图2的坐标系。 a 图2 砖墙的稳态导热计算区域 由上述的物理模型与上面的坐标系,该问题的数学模型可直接由导热微分方程简化而来,即 22220T T x y ??+=?? (1) 相应的边界条件是:

1.1 0y T y =?=? 1.5 0x T x =?=? (2) 110 ()f x x T h T T x λ ==?-=-? (3) 111.1 1.1 ()f y y T h T T y λ ==?-=-? (4) 22(0.5,00.6)(0.5,00.6) ()f x y x y T h T T x λ =<<=<

西安交通大学传热学大作业二维温度场热电比拟实验1

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道, 于纸面方向上用冷空气及砖墙的温度变化很小, 可以近似地予以忽略。 在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每 米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在 0℃及 30℃; 第二种情况:内外壁均为第三类边界条 件, 且已知: t 1 30 C,h 1 10.35W / m 2 K 2 t 2 10 C, h 2 3.93W / m 2 K 砖墙导热系数 0.35/ m K 二、数学描写 由对称的界面必是绝热面, 态、无内热源的导热问题。 控制方程: 22 tt 22 xy 边界条件: 第一种情况: 由对称性知边界 1 绝热: 边界 2 为等温边界,满足第一类边界条件: t w 0 C ; 边界 3 为等温边界,满足第一类边界条件: t w 30 C 。 第一种情况: 由对称性知边界 1 绝热: q w 0; 边界 2 为对流边界,满足第三类边界条件: q w ( t )w h 2(t w 可取左上方的四分之一墙角为研究对象, 该问题为二维、 稳 图1-

t f ); n t 边界3 为对流边界,满足第三类边界条件:q w ( ) w h 2 (t w t f )。 w n w 2 w f

0,m 6,n 1~ 7;m 7 ~ 16,n 7 30,m 1,n 1~12;m 2 ~ 16,n 12 三、方程离散 用一系列与坐标轴平行的间隔 0.1m 的二维网格线 将温度区域划分为若干子区域,如图 1-3 所示。 采用热平衡法, 利用傅里叶导热定律和能量守恒定 律,按照以导入元体( m,n )方向的热流量为正,列写 每个节点代表的元体的代数方程, 第一种情况: 边界点: 1 边界 绝热边界) : 边界 图1-3 t m ,1 t 16,n 等温内边界) : 14 (2t m,2 1 4 (2t 15,n t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 t 16,n 1), n 8 ~ 11 边界 等温外边界) : 内节 点: 1 (t t t t ) 4 m 1,n m 1,n m ,n 1 m,n 1 m 2 ~ 5,n 2 ~11;m 6 ~ 15,n 8 ~ 11 t m,n 第二种情况 边界点: 边界 1(绝热边界) : t m ,1 1 4 (2t m,2 t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 4 (2t 15,n t 16,n 1 t 16,n 1), n 8 ~11 4 边界 2(内对流边界) : t6,n 2t 5,n t 6,n 1 t 6,n 1 2Bi 1t 1 ,n 1~ 6 6,n 2(Bi 2) t m,n t m,n

计算传热学数值模拟

1、Jacobi 迭代 在Jacobi 迭代法中任一点上未知值的更新是用上一轮迭代中所获得的各邻 点之值来计算的,即 kk k k l l n l k n k a b T a T /)(1)1()(+=∑≠=- k=1,2,...,L 1×M 1 这里带括号的上角标表示迭代轮数。所谓一轮是指把求解区域中每一节点之值都更新一次的运算环节。显然,采用Jacobi 迭代式,迭代前进的方向(又称扫描方向)并不影响迭代收敛速度。这种迭代法收敛速度很慢,一般较少采用。但对强烈的非线性问题,如果两个层次的迭代之间未知量的变化过大,容易引起非线性问题迭代的发散。在规定每一层次计算的迭代轮次数的情况下,有利于Jacobi 迭代有利于非线性问题迭代的收敛。 2、Gauss-Seidel 迭代 在这种迭代法中,每一种计算总是取邻点的最新值来进行。如果每一轮迭代按T 的下角标由小到大的方式进行,则可表示为: kk k M L k l n l kl k l l n l kl n k a b T a T a T /)(1 11 ) 1(1 1) ()(++ =∑∑?+=--≠= 此时迭代计算进行的方向(即扫描方向)会影响到收敛速度,这是与边界条件的影响传入到区域内部的快慢有关的。 3、例题: 一矩形薄板几何尺寸如图所示,薄板左侧的边界温度T L =100K ,右侧温度T R =300K ,上侧温度T T =200K ,下侧温度T B =200K ,其余各面绝热,求板上个节点的温度。要求节点数目可以变化,写出程序。 解析: ⑴列出描述问题的微分方程和定解条件。 22 220t t x y ??+=??;对于离散化的问题,其微分方程根据热平衡原理得到:

热物理过程的数值模拟-计算传热学3.(DOC)

四、非线笥问题迭代式解法的收敛性 每一层次上满足迭代法求解的收敛条件+相邻次间代数方程的系数变化不太大(亦即未知量的变化不太大←多数情形下非线性问题迭代式解法是可以收敛的)。 使相邻两层次间未知量变化不太大的措施: 1、欠松弛迭代 常用逐次欠弛线迭法(SLUR ):一组临时系数下逐线迭代求解+对所得的解施以欠松弛,再用欠松弛后的解去计算新的系数,常数,以进入下一层次的迭代。 实施:常把欠松弛处理纳入迭代过程,而不是在一个层次迭代完成后再行欠松弛。 )( ) ()()1(n p p n n n p n p t a b bt a t t -∑+=+ω )()1() 1()( n p p n n n p p t a b b t b a t a ω ωω -+++∑=+ ∑+=+')1('b b bt a t a n n n p p )('))(1(',n p p p p t a b b a a ωωω-+==,用交替方向线迭代法求解这一方程,就实现了SLUR 的迭代求解。为一般化起见,上式中b t n 上没有标以迭代层次的符号(J ,GS 时不相同)。 2、采用拟非稳态法 前面已指出,稳态问题的迭代解法与非稳态问题的步进法十分相似。对于非线性稳态问题,从代数方程的一组临时系数进入到另一组临时系数亦好象非稳态问题前进了一个时间层,非稳态问题的物理特性:系数热惯性越大(↑??=τρ/v c a o p ),温度变化越慢,仿此,对稳态非线性问题,可在离散方程中加入拟非稳态项,以减小未知量托两个层次间的变化,即 由 )()1()1()()(n p o p n n n p o p p n n n n p p n t a b b bt a t a V S b a b b bt a t V S b a ++∑=+?-∑?+∑=?-∑++ o p p n n p o p n n n p a V S b a t a b b bt a t +?-∑++∑= +) ()1( 一直进行到b t t n p ,收敛,虚拟时间步τ?的大小通过计算实践确定。 3、采用Jacobi 点迭代法 中止迭代的判据(该层次迭代)除前述变化率判据外,还可以规定迭代的轮数,例如规定进行4-6次ADI 线迭代就结束该层次上的计算。此时,用收敛速度低的丁迭代也就起到了欠松弛的作用。 五、迭代法的收敛速度 1、收敛速度 对给定的代数方程组(包括是临时系数的情形),采用不同的迭代方法求解时,使一定的初始误差缩小成α倍所需要的迭代轮数K 是不相的。1<α

计算传热作业1

储运与建筑工程学院能源与动力工程系 计算传热学课程大作业报告 作业题目:代数方程组的求解 学生姓名:田 学号: 专业班级:能动1 2017年9月23日

目录 一、计算题目 (3) 二、离散方程 (3) 三、程序设计 (4) 3.1 高斯赛德尔迭代法 (4) 3.2 TDMA法 (5) 四、程序及计算结果验证 (6) 五、网格独立性考核.................... 错误!未定义书签。 3.1 高斯赛德尔迭代法 (7) 3.2 TDMA法 (8) 六、结果分析与结论 (8) 3.1 高斯赛德尔迭代法 (9) 3.2 TDMA法 (10)

一、计算题目 分别用高斯赛德尔迭代和TDMA 方法求解方程 2 2dx d dx d u φφρΓ= (1) 在Γ u ρ=-5,-1,0,1,5情况下的解,并表示在图中。 其中,x =0,φ=0;x =1,φ=1. 二、离散方程 采用控制容积法: 即??Γ=e 22w e w dx d dx d u φφ ρ(2) ) )()(()2 2 ( w W P e P E p w p e x x u δφφδφφφφφφρ---Γ=+- +(3) 假设均分网格,则有x x x w e ?==)()(δδ 上式则变为: )2(2)(W P E W E u x φφφφφρ+-Γ=-?(4) 即11)2()2(4-+?+Γ+?-Γ=Γi i i u x u x φρφρφ(5) 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ(6)

三、程序设计 3.1 高斯赛德尔迭代法 由已知公式 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ可设计高斯赛德尔迭代C 语言程序如下: #include #include #include int main() { double e=0,x; int i,j,b,k,d; double a[100]; scanf("%lf%d",&x,&d); for (j=0;j<1/x;j++) { a[j]=0; } b=1/x; a[b]=1; while (1){ for (i=0;i<1/x-1;i++) { a[i+1]=((2-x*d)*a[i+2]+(2+x*d)*a[i])/4; printf("i = %d\n",i); if (i==1/x-3) e=a[i+2]; } if (fabs((a[i]-e))/a[i]<0.00001) break ; } for (k=0;k<=1/x;k++) { printf("%lf ",a[k]); } system("pause"); return 0;

FLUENT系列资料5之蒸汽喷射器内的传热模拟

蒸汽喷射器内的传热模拟 问题描述: 该问题为一个蒸汽喷射器的内部流动和热量交换问题。左侧进入的工作蒸汽12245Pa,下侧进入的引射流体压力为1360.5Pa,右侧出口的压力为6802.5Pa。该问题中所说的压力皆为相对压力,蒸汽皆为饱和水蒸汽。喷射器的结构如图1所示。 图1 喷射器结构图 在本例中将利用FLUENT-2D的非耦合、隐式求解器,针对在喷射器内的定常流动进行求解。在求解过程忠,还会利用FLUENT的网格优化功能对网格进行优化,使所得到的解更加可信。 本例涉及到: 一、利用GAMBIT建立喷射器计算模型 (1)在CAD中画出喷射器的图形 (2)将CAD图形输出为*.sat的文件格式 (3)用GAMBIT读入上面输出的*.sat文件 (4)对各条边定义网格节点的分布,在面上创建网格 (5)定义边界内型 (6)为FLUENT5/6输出网格文件 二、利用FLUENT-2D求解器进行求解 (1)读入网格文件 (2)确定长度单位:MM (3)确定流体材料及其物理属性 (4)确定边界类型 (5)计算初始化并设置监视器 (6)使用非耦合、隐式求解器求解 (7)利用图形显示方法观察流场与温度场

一、前处理——用CAD画出喷射器结构图并导入GAMBIT中 在CAD中按所给的尺寸画出喷射器的结构图,画完后输出为pensheqi.sat的文件(如图2所示)。 CAD中的操作:文件→输出…. 点击保存到你想保存到的文件夹中 图2 输出数据对话框 启动GAMBIT ,建立一个新的GAMBIT文件。 操作:File→NEW… 此时出现的窗口如图3所示。在ID右侧的文本框内填入:f:\文件夹名\pensheqi 点击Accept后,即建立了一个新的文件。

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

fluent 传热模拟

译文说明 ●本文依据FLUENT6.0的HELP文件翻译而成。事先并未征得原文版权所有者FLUENT 公司或其在中国代理人海基公司的同意。 ●本文的写作目的仅在于为在教育与科研领域从事研究工作的人员提供参考与帮助,无意 于将其用于商业目的。 ●对本文在教育与科研领域的转移、存储、复制,本文作者不提供基于任何商业目的或有 损于原文版权所有者的利益、形象等权益的帮助或便利。 ●对出于研究与教学目的人员或机构,中文翻译者愿意并尽其可能的提供帮助、商议或回 应其它形式的要求。 ●一旦原文(英文)版权所有者对中文译文的发布提出异议并明确通知译文作者,同时援 引有效、适用的法律、法规条款,译文作者愿意立刻终止其为本文的发布、传播而所做出的一切形式努力。 注:本文以ADOBE公司的PDF格式发布。如需要相应中文WORD格式文档,请发邮件到west_wing@https://www.360docs.net/doc/f118114366.html,.

11. Modeling Heat Transfer传热模拟 ?11.1 Overview of Heat Transfer Models in FLUENT FLUENT中的传热模型概述 ?11.2 Convective and Conductive Heat Transfer导热与对流换热 o11.2.1 Theory理论 o11.2.2 User Inputs for Heat Transfer有关传热的用户输入项 o11.2.3 Solution Process for Heat Transfer传热计算的求解过程 o11.2.4 Reporting and Displaying Heat Transfer Quantities传热变量的输出与显示 o11.2.5 Exporting Heat Flux Data热流数据的输出 ?11.3 Radiative Heat Transfer辐射传热 o11.3.1 Introduction to Radiative Heat Transfer辐射传热简介 o11.3.2 Choosing a Radiation Model选择辐射模型 o11.3.3 The Discrete Transfer Radiation Model (DTRM)离散传播辐射模型 o11.3.4 The P-1 Radiation Model P-1辐射模型 o11.3.5 The Rosseland Radiation Model Rosseland辐射模型 o11.3.6 The Discrete Ordinates (DO) Radiation Model离散坐标辐射模型 o11.3.7 The Surface-to-Surface (S2S) Radiation Model多表面辐射传热模型 o11.3.8 Radiation in Combusting Flows燃烧过程的辐射 o11.3.9 Overview of Using the Radiation Models辐射模型使用概览 o11.3.10 Selecting the Radiation Model辐射模型的选择 o11.3.11 Defining the Ray Tracing for the DTRM离散传播模型的跟踪射线的定义 o11.3.12 Computing or Reading the View Factors for the S2S Model表面辐射模型中角系数的计算与数据读取 o11.3.13 Defining the Angular Discretization for the DO Model DO辐射模型离散角的定义 o11.3.14 Defining Non-Gray Radiation for the DO Model离散坐标辐射模型中的非灰体辐射 o11.3.15 Defining Material Properties for Radiation有关辐射性能的材料属性定义o11.3.16 Setting Radiation Boundary Conditions辐射边界条件设定 o11.3.17 Setting Solution Parameters for Radiation辐射计算参数的设定 o11.3.18 Solving the Problem问题求解过程 o11.3.19 Reporting and Displaying Radiation Quantities辐射变量的和输出与显示 o11.3.20 Displaying Rays and Clusters for the DTRM DTRM表面束和射线显示 ?11.4 Periodic Heat Transfer周期性传热问题 o11.4.1 Overview and Limitations概述与适用范围

相关文档
最新文档