基因芯片综述

基因芯片综述
基因芯片综述

基因芯片综述

摘要:基因芯片是国际上20世纪90年代发展起来的一项顶尖技术,它是固体芯片表面构建微流体单元和系统,以实现对细胞、蛋白质、核酸以及其它生物组分大信息的检测。高密度的基因芯片能够在同一时间内分析大量的基因,从而准确破译遗传密码。本文参阅了一些文献资料,对基因芯片的认识进行了综述。

关键词:基因芯片技术原理应用

基因芯片(gene chip)又称DNA芯片,是指将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过杂交信号的强弱判断靶分子的数量。用该技术可将大量的探针同时固定于支持物上,所以一次可对大量核酸分子进行检测分析,从而解决了传统核酸印迹杂交技术操作复杂、自动化程度低、检测目的分子数量少、效率低等不足。它能在同一时间内分析大量的基因,使人们准确高效地破译遗传密码。[1]

发展历史

俄罗斯科学院恩格尔哈德分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。当时用的是多聚寡核酸探针。几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际专利。在这些技术储备的基础上,1994年在美国能源部防御研究计划署、俄罗斯科学院和俄罗斯人类基因组计划1000多万美元的资助下研制出了一种生物芯片,并用于检测尽地中海病人血样的基因突变,筛选了一百多个外地中海贫血已知的突变基因。这种生物芯片的基因译码速度比传统的Sanger 和MaxaxGilbert法快1000倍,是一种有希望的快速测序方法。抢先发展技术,尽快占领市场是市场经济竞争中取得胜利的信条。生物芯片目前正处于激烈的技术竞争状态中。Pac kard仪器公司发展的是诊断用的以凝胶为基础的中等密度的芯片。而Affymetrix公司则已成功地应用了光导向平板印刷技术直接在硅片上合成寡核苷酸点阵的高密度芯片而领先于芯片分析领域。该公司与惠普公司合作开发出专用的能扫描40万点点阵的基因芯片扫描仪,同时又开发出同时可平行通过几块芯片的流路工作站和计算机软件分析系统。组合成一套较完整的芯片制造、杂交、检测扫描和数据处理系统。不久GenralScanningInc与制造点样头的Telechem公司和制造机械手的Cartesian 公司研制的300型(两激光)4000型和5000型(四激光)激光共聚扫描仪和相应的分析软件,构成一套用户可任意点样制作芯片的工作系统。

欧洲各公司也不甘落后,纷纷投入竞争,例如GeneticCo.UK研制出QBot点样

器,Q-Pix克隆挑拣仪及Q-Fill制芯片设备。Sequenom则推出250位点的Spectrochip 并采用质谱法测读结果,而德国肿瘤研究所则用就位合成的肽核酸低密度(8cm×12cm 片上1000个点)的作表达谱及诊断用的探针芯片。如今,DNA芯片已经在基因序列分析、基因诊断、基因表达研究、基因组研究、发现新基因及各种病原体的诊断等生物医学领域表现出巨大的应用前景。

原理:分子生物学中的核酸分子原位杂交技术,即利用核酸分子碱基之间互补配对的原理,通过各种技术手段将核苷酸固定到固体支持物上,随后将处理好的样品与其进行杂交,以实现对所测样品基因的大规模检验。[2]

主要类型

目前已有多种方法可以将寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种,即原位合成(in situ synthesis )与合成点样两种。支持物有多种如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等。

原位合成法主要为光引导聚合技术(Light-directed synthesis ),它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引导聚合技术是照相平板印刷技术(photolithography )与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽阵列提供了一条快捷的途径。

以合成寡核苷酸探针为例,该技术主要步骤为:首先使支持物羟基化,并用光敏保护基团将其保护起来。每次选取择适当的蔽光膜(mask )使需要聚合的部位透光,其它部们不透光。这样,光通过蔽光膜照射到支持物上,受光部位的羟基解保护。因为合成所用的单体分子一端按传统固相合成方法活化,另一端受光敏保护基的保护,所以发生偶联的部位反应后仍旧带有光敏保护基团。因此,每次通过控制蔽光膜的图案(透光与不透光)决定哪些区域应被活化,以及所用单体的种类和反应次序就可以实现在待定位点合成大量预定序列寡聚体的目的。

该方法的主要优点是可以用很少的步骤合成极其大量的探针阵列。例如,合成48 (65536 )个探针的8 聚体寡核苷酸序列仅需 4 × 8=32 步操作,8 小时就可以完成。而如果用传统方法合成然后点样,那么工作量的巨大将是不可思议的。同时,用该方法合成的探针阵列密度可高达到106/c m2 。不过,尽管该方法看来比较简单,实际上并非如此。主要原因是,合成反应每步产率比较低,不到95% 。而通常固相合成反应每步的产率在99% 以上。因此,探针的长度受到了限制。而且由于每步去

保护不很彻底,致使杂交信号比较模糊,信噪比降低。为此有人将光引导合成技术与半异体工业所用的光敏抗蚀技术相结合,以酸作为去保护剂,使每步产率增加到98% 。原因是光敏抗蚀剂的解离对照度的依赖是非线性的,当照度达到特定的阈值以上保护剂就会解离。所以,该方法同时也解决了由于蔽光膜透光孔间距离缩小而引起的光衍射问题,有效地提高了聚合点阵的密度。另据报导,利用波长更短的物质波如电子射线去除保护可使点阵密度达到1010/cm2 。

除了光引导原位合成技术外,有的公司如美国Incyte Pharmaceutic als 等使用压电打印法(Piezoelectric printing) 进行原位合成。其装置与普通的彩色喷墨打印机并无两样,所用技术也是常规的固相合成方法。做法是将墨盒中的墨汁分别用四种碱基合成试剂所替代,支持物经过包被后,通过计算机控制喷墨打印机将特定种类的试剂喷洒到预定的区域上。冲洗、去保护、偶联等则同于一般的固相原位合成技术。如此类推,可以合成出长度为40到50个碱基的探针,每步产率也较前述方法为高,可达到99% 以上。

尽管如此,通常原位合成方法仍然比较复杂,除了在基因芯片研究方面享有盛誉的Affymetrix 等公司使用该技术合成探针外,其它中小型公司大多使用合成点样法。

后一方法在多聚物的设计方面与前者相似,合成工作用传统的DNA 或多肽固相合成仪以完成,只是合成后用特殊的自动化微量点样装置将其以比较高的密度涂布于硝酸纤维膜、尼龙膜或玻片上。支持物应事先进行特定处理,例如包被以带正电荷的多聚赖酸或氨基硅烷。现在已有比较成型的点样装置出售,如美国Biodot 公司的点膜产品以及Cartesian Tec hnologies 公司的PixSys NQ/PA 系列产品。前者产生的点阵密度可以达到400/cm2 ,后者则可达到2500/cm2 。

基因芯片具体的制作流程。

(1)芯片的设计与制备芯片制备方法主要包括两种类型: (1)点样法: 首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列, 然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定。该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法: 该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法、压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。

(2)靶基因的标记靶基因的制备和标记是基因芯片技术流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中

提取RNA, 进行逆转录,并加入耦联有标记物的d NTP,从而完成对靶基因的标记过程, 对于阵列密度较小的芯片可以用同位素, 所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因, 通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异, 即把不同来源的靶基因用不同激发波长的荧光素标记, 并使它们同时与基因芯片杂交, 通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱,常用的双色荧光试剂有Cy3 -dNTP和Cy5 -d NTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息。

(3)芯片杂交与杂交信号检测基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片杂交温度高,杂交时间短, 条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较, 从而得到待测样品的相应信息。由于基因芯片获取的信息量大, 对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式。目前, 一个大型的基因芯片数据库正在构建中,将各实验室获得的基因芯片结果集中起来,以利于数据的交流及结果的评估与分析。[3]

应用

基因芯片技术以一种全新、系统的科研思维方式研究生物体,使揭示早期发育、分化、衰老、癌变等一系列复杂生命现象成为可能。基因芯片在生命科学研究领域中的应用几乎是全方位的,已经广泛应用于DNA测序、基因表达分析、检测基因突变和基因组的多态性、基因诊断、药学研究和环境保护及其他领域。

(1)DNA测序基因芯片的思想是在基因测序的早期提出来的,主要是因为当时传统的Sanger-Coulson及Maxam-Gilbert测序速度不够快,不足以解决人类基因组的大量工作。因此,基因芯片早期主要用来研究基因结构,适应于这种目的的主要是寡核苷酸芯片。参照已知基因的序列,在载体上设计、合成成千上万种寡核苷酸探针,与生物样品的靶序列进行分子杂交,从而产生杂交图谱,并排列出靶DNA的序列。将已经荧光标记的待测DNA样品与设计在基因芯片上的成千上万已知序列片段杂交,若二者完全配对,则杂交信号较强;若有单个或多个碱基不配对,则信号较弱。目前基因芯片主要用于已知序列的重测序(resequencing)。重测序是指人类基因组计划中的基因测序完成后,由于个体基因组的序列之间存在差异,需要对个别群体或个人进行再测序。由于序列已知,由基因芯片进行重测序将大大提高效率。

(2)基因表达分析基因表达分析是目前基因芯片应用最多的一个方面,自动化和快速

是它的主要优势。基因表达是根据基因的DNA模板进行mRNA和蛋白质合成的过程,基因表达分析直接涉及基因的功能。自Stanford大学的Schena M等8首次发表了用DNA微阵列研究基因表达的论文后,基因芯片用于研究基因表达已成为近年来研究的热门课题。在人类基因组中只有大约5%的序列表达,通过直接测序等手段来了解功能基因相当费时、费力,而应用基因芯片进行的基因表达水平检测,可自动、快速地检测出成千上万种基因的表达状况,大大提高了基因表达研究的效率,为疾病的诊断和治疗提供了有益的保障。在利用基因芯片技术检测表达水平的时候看家基因的选择极其重要,是否选择了一个突变率低表达稳定的基因作为看家基因将决定试验的成败。基因芯片检测表达水平一般采用平行对比的方法,至今已在细菌、酵母菌、植物、哺乳动物等方面进行了研究。现在这种方法已经成功地被用于进化研究、药物、毒物或各种因素对机体的影响等方面的研究。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片已为期不远。(3)检测基因突变和基因组的多态性有关实验结果已经表明DNA芯片技术可快速、准确地研究大量患者样品中特定基因所有可能的杂合变异。Hacia等用含96000个寡核苷酸探针的基因芯片来检测遗传性乳腺癌和卵巢癌基因BRCA1第11个外显子3.45kb长度内的所有可能的杂合性突变(LOH),其准确率达99%。Kurg等11以寡核苷酸阵列为基础,将地中海贫血病人的DNA的5ˊ端固定在玻片上经PCR扩增,加入四种荧光素标记的双脱氧核苷酸,通过颜色的改变检测突变取得成功,并提出该法可以高可信度检测杂交突变,用于DNA的突变分析和多态性分析。田振军等应用cDNA基因芯片对安静对照组和运动性心肌肥大组小鼠心肌组织的基因表达差异进行筛选,结果证明具有显著性表达差异的基因有71条,其中上调表达的基因有3条,下调表达的基因有34条,证实了运动性心肌肥大相关基因的多样性。林嘉颖等以10例肺腺癌组织标本为材料,与含有13824个寡核苷酸探针的基因芯片进行杂交,发现了119条与肺腺癌发生发展有关的基因,这些基因可作为肺腺癌分子靶的候选基因。随着遗传病与癌症相关基因发现数量的增加,检测基因突变和基因组的多态性对于疾病的早期发现与防治具有重要意义。

(4)基因诊断从正常人的基因组中分离DNA并与DNA芯片上的方阵杂交,就可得到标准图谱,从病人基因组中分离出DNA并与方阵杂交就可得到病变图谱。比较、分析这两种图谱就能得出病变的DNA信息并进行治疗。以往诊断疾病主要依据患者的临床表现和既往史,但这不能区分一些重要的亚型,利用基因芯片的特点,检测病变组织中特征性基因的变化,为疾病的早期诊断和分型开辟了一个新的领域。这种基因芯片诊断技术以其快速、高效、敏感、经济平行化、自动化等特点,将成为现代化的诊断新技术。例如膀胱癌,就缺乏一种理想的免疫组织学或分子标志物来区分亚型。丹麦的Dyrskjot等用基因芯片检测了40例膀胱癌组织将其分为三期:Ta期、T1期和T2~4期。并选出32个基因可以明确地区分良性膀胱癌和肌肉侵入性膀胱癌,和病理学分期密切相关。美国Affymetrix公司生产的检测逆转录酶基因的HIV芯片,可以判断被检查者是否携带艾滋病毒,还有诊断有无药物代谢缺乏症的细胞色素p450芯片,以及检测核磷蛋白基因(p53)是否突变来判断癌症的芯片。

许多疾病(传染病、遗传病、肿瘤、心血管疾病等)都与基因突变有关,利用基因芯片,可以快速检测这些突变,从而实现对疾病快速、简便、高效的诊断。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断现已成为基因芯片中最具有商业价值的领域。

(5)药学研究基因芯片所具有的高集成度与组合化学相结合,使得其在药学研究中具有重大意义,其作用主要表现在以下几个方面:1)寻找药物作用靶位点:基因芯片技术可对生物体整个基因组的基因表达进行测定,有助于识别药物相应的靶序列,分析整个基因组药物作用,监视药物治疗反应中的基因表达改变,并检查药效,从而在蛋白质或核酸中找出最佳的药物作用靶点。2)进行药物作用机制的研究:用于药理学研究。药物与细胞相互作用,将引起细胞外部形态及内部正常代谢过程的一系列变化。其内部生理活动的变化可集中表现在其基因表达的变化上,基因芯片能够确定靶组织的基因表达模式,可将药物作用的所有靶基因全部显示出来,从而提供了在全基因组的基础上了解药物作用机制的线索。由基因芯片所获得的大量信息也可以用来阐述直接药效下的药物反应个体差异,从基因组的高度在分子水平上解释药物作用的原理。3)药物筛选与新药设计:传统的新药研究是以体外培养的人体细胞及动物模型为对象,但两者均不同于正常人体内条件,利用基因芯片技术可以了解组织细胞在正常状态和病理情况下的基因表达变化。用基因芯片大规模平行分析基因表达情况,从而进行新药的研究与开发可以节省大量的动物试验甚至临床试验,而且还可以进一步分析药物对靶细胞及非靶细胞的毒性作用,确定药物临床应用的可行性及最佳的用药剂量,从而为新药的开发提供一种高速度,高灵敏度的安全指标,降低了用药风险。

(6)环境保护及其他领域在环境保护方面,基因芯片也有广泛的用途。一方面可以快速检测污染微生物或有机化合物对环境、人体、动植物的污染和危害,同时也可以采用毒物检测芯片对环境中众多的化学物质对人类基因的潜在毒性进行筛选,探查毒物开启或关闭那些基因,制备防治危害的基因工程药品,或寻找到能够治理污染源的基因产品。此外,基因芯片技术在病毒检测、劳动卫生学、食品卫生学研究以及农、林、畜、牧业等领域也正发挥着越来越大的作用。

问题与展望

基因芯片技术充分利用了生物学、信息学等当今前沿科技成果,发展至今,在诸多领域已呈现出广阔的应用前景。当然,作为一项新诞生的技术,它也同样有许多问题需要解决有学者也指出,基因芯片技术作为一种预测手段还不稳定,应慎重选择。首先该技术需要大量的已测知的、准确的DNA、cDNA片段的信息,充分利用这些信息才能使芯片技术成为大规模、集成化、整体获取生物信息的有效手段,现在尚缺乏公开可得的、经证实准确的基因序列。其次是目前研究芯片技术的费用还比较高昂,尽管芯片或微阵列可以重复多次使用但每次杂交反应后,其敏感性都要降低。此外,样品制备和标记还比较复杂,各研究机构中仍没有一个统一的质量控制标准,各实验室不能分享数据和资料库等。但相信随着功能基因组学和蛋白组学研究的深入和芯片技术的完善这些问题最终将会得到很好的解决,基因芯片技

术的建立得益于人类基因组计划的实施。在进入后基因时代的如今,基因芯片技术必将得到更广阔的发展空间。[4]

参考文献:

[1] 耿明杰郑翠芝. 基因芯片及其研究进展[J] 黑龙江畜牧兽医职业学院学报第1卷第1期2002年8月

[2] 张骞盛军. 基因芯片技术的发展和应用[J]中国医学科学院学报V ol.30 No.3 2008年6月

[3] 刘秀珍张如意栾海云李淑翠基因芯片技术及应用[J]滨州医学院学报2007年2月第30卷第1期

[4] 陈岩潘龙. 基因芯片技术研究进展[J] Journal of Qiqihar University of Medicine 2011,V ol.32,No.17

信息材料-基因芯片简介

基因芯片 Gene Chip 羽【内容摘要】 基因芯片技术是生物芯片的一种,它是生命科学领域里兴起的一项高新技术,它集成了微电子制造技术、激光扫描技术、分子生物学、物理和化学等先进技术。本文简要阐述了基因芯片的定义、特点、分类、工作原理及应用,并提出了基因芯片进一步发展所存在的问题。 Gene chip technology is a kind of biological chip which is a new technology integrating the microelectronics manufacturing technology, laser scanning technology, molecular biology, physics and chemistry and other advanced technology. Gene chip used a large number of specific oligonucleotide fragment or gene fragment as a probe, and fixed wafer, glass sheet, plastic sheet or nylon substrate fixed on the support which combined with the device for photoelectric measurement regularly form a two-dimensional array, and the probe will hybridize with the gene in labeled sample lead to the change electrical signal. The article describes the definition and characteristics of gene chip as well as the classification, working principle and application briefly. And put forward some existing problems for the further development of gene chip in the end. 【关键词】 Gene Chip DNA mRNA蛋白质遗传疾病核苷酸序列蚀刻打印【正文】 一、生物芯片 生物芯片是指将成千上万的靶分子(比如DNA、RNA或蛋白质等)经过一定的方法有序地固化在面积较小的支持物(如玻璃片、硅片、尼龙膜等)上,组成密集分子排列,然后将已经标记的样品与支持物上的靶分子进行杂交,经洗脱、激光扫描后,运用计算机将所得的信号进行自动化分析。 这种方法不仅节约了试剂与样品,而且节省了大量的人力、物力与时间,使检测更为快速、准确、敏感,是目前生物检测中效率高、最为敏感和最具前途的

基因芯片发展史

基因芯片的制备及应用摘要基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法将大量DNA探针片段有序地固化予支持物的表面然后与已标记的生物样品中DNA分子杂交再对杂交信号进行检测分析就可得出该样品的遗传信息。基因芯片技术目前国内外都取得了较大的进展该技术可用于DNA测序基因表达及基因组图的研究基因诊断新基因的发现药物筛选给药个性化等等所以为二十一世纪生物医药铺平道路将为整个人类社会带来深刻广泛的变革促进人类早日进入生物信息时代。关键词基因芯片微阵列基因诊断药物筛选一、基因芯片的制备基本过程1 DNA方阵的构建选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物并作相应处理然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针或者通过液相化学合成寡核苷酸链探针或PCR技术扩增基因序列再纯化、定量分析由阵列复制器或阵列机及电脑控制的机器人准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上再由紫外线交联固定后即得到DNA微阵列或芯片。2 样品DNA或mRNA的准备。从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统好于传统PCR 技术他们在靶DNA上设计一对双向引物将其排列在丙烯酰胺薄膜上这种方法无交叉污染且省去液相处理的繁锁Lynx Therapeutics公司提出另一个革新的方法即大规模平行固相克隆这个方法可以对一个样品中数以万计的DNA片段同时进行克隆且不必分离和单独处理每个克隆使样品扩增更为有效快速。在PCR扩增过程中必须同时进行样品标记标记方法有荧光标记法、生物素标记法、同位素标记法等。3 分子杂交样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测杂交的严格性较低、低温、时间长、盐浓度高若用于突变检测则杂交条件相反。芯片分子杂交的特点是探针固化样品荧光标记一次可以对大量生物样品进行检测分析杂交过程只要30min。美国Nangon公司采用控制电场的方式使分子杂交速度缩到1min甚至几秒钟。德国癌症研究院的Jorg Hoheisel等认为以肽核酸为探针效果更好。4 杂交图谱的检测和分析用激光激发芯片上的样品发射荧光严格配对的杂交分子其热力学稳定性较高荧光强不完全杂交的双键分子热力学稳定性低荧光信号弱不到前者的1/351/52不杂交的无荧光。不同位点信号被激光共焦显微镜或落射荧光显微镜等检测到由计算机软件处理分析得到有关基因图谱。目前如质谱法、化学发光法、光导纤维法等更灵敏、快速有取代荧光法的趋势。二、基因芯片的应用 1 测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列准确率达99。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1 基因序列差异结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2到83.5之间示了二者在进化上的高度相似。2基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列其中14个为完全序列31个为EST检测该植物的根、叶组织内这些基因的表达水平用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交经激光共聚焦显微扫描发现该植物根和叶组织中存在26个基因的表达差异而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列来检测体外培养的T细胞对热休克反应后不同基因表达的差异发现有5个基因在处理后存在非常明显的高表达11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。 3 基因诊断从正常人的基因组中分离出DNA 与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可

基因芯片文献综述

基因芯片文献综述 摘要:基因芯片技术是伴随着人类基因组计划的实施而发展起来的生命科学领域里的前沿生物技术。目前,人们对疾病的分类和诊断的水平已经有了进一步的提高,基于基因芯片的特征选择技术在其中起到了关键性的作用。经过十几年的发展,基因芯片技术也在不断完善、成熟,并广泛运用于生命科学的各个领域。本文重点介绍基因芯片技术的进展、分类、应用现状及发展前景。 关键词:基因芯片技术背景,分类,应用,展望 Gene Chip Literature Review Abstract: The gene chip technology is accompanied by implementation of the Human Genome Project and developed the field of life sciences in the forefront of biotechnology. Currently,people on the classification and diagnosis of disease levels have been further improved,microarray-based feature selection technique in which played a key role.After ten years of development,gene chip technology is constantly being improved, mature and widely used in various fields of life sciences.This article focuses on the progress of gene chip technology,classification, application status and development prospects. Keywords: gene chip technology background,classification, applications,outlook

生物芯片及应用简介

生物芯片及应用简介 简介 生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

生物芯片研究进展分子生物学论文

生物芯片研究进展 摘要 生物芯片是切采用生物技术制备或应用于生物技术的微处理器是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统或称缩微芯片实验室。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。本文主要阐述了生物芯片技术种类和应用方面的近期研究进展。 关键词 生物芯片,疾病诊断,研究运用,基因表达 基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,下面主要介绍四类基因芯片。 一、光引导原位合成技术生产寡聚核苷酸微阵列 开发并掌握这一技术的是Affymetrix公司,Affymetrix采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。 原位合成法主要为光引导聚合技术(Light-directed synthesis),它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引导聚合技术是照相平板印刷技术(photolithography)与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 Affymetrix公司已有诊断用基因芯片成品上市,根据用途可以分为三大类,分别为基因表达芯片、基因多态性分析芯片和疾病诊断芯片,基因表达分析芯片和基因多态性分析芯片主要用于研究机构和生物制药公司,可以用来寻找新基因、基因测序、疾病基因研究、基因制药研究、新药筛选等许多领域,Affymetrix公司主要生产通用寡聚核苷酸芯片;疾病诊断芯片则主要用于医学临床诊断,包括各种遗传病和肿瘤等,目前Affymetrix公司生产

基因芯片的数据分析

基因表达谱芯片的数据分析 基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。然而每次实验都产生海量数据,如何解读芯片上成千上万个基因点的杂交信息,将无机的信息数据与有机的生命活动联系起来,阐释生命特征和规律以及基因的功能,是生物信息学研究的重要课题[1]。基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析,假如分类还没有形成,非监督分析和聚类方法是恰当的分析方法;假如分类已经存在,则监督分析和判别方法就比非监督分析和聚类方法更有效率。根据研究目的的不同[2,3],我们对基因芯片数据分析方法分类如下。(1)差异基因表达分析:基因芯片可用于监测基因在不同组织样品中的表达差异,例如在正常细胞和肿瘤细胞中;(2)聚类分析:分析基因或样本之间的相互关系,使用的统计方法主要是聚类分析;(3)判别分析:以某些在不同样品中表达差异显著的基因作为模版,通过判别分析就可建立有效的疾病诊断方法。 1 差异基因表达分析(difference expression, DE) 对于使用参照实验设计进行的重复实验,可以对2样本的基因表达数据进行差异基因表达分析,具体方法包括倍数分析、t检验、方差分析等。 1.1倍数变化(fold change, FC) 倍数分析是最早应用于基因芯片数据分析的方法[4],该方法是通过对基因芯片的ratio值从大到小排序,ratio 是cy3/cy5的比值,又称R/G值。一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。由于实验条件的不同,此阈值范围会根据可信区间应有所调整[5,6]。处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图等。该方法的优点是需要的芯片少,节约研究成本;缺点是结论过于简单,很难发现更高层次功能的线索;除了有非常显著的倍数变化的基因外,其它变化小的基因的可靠性就值得怀疑了;这种方法对于预实验或实验初筛是可行的[7]。此外倍数取值是任意的,而且可能是不恰当的,例如,假如以2倍为标准筛选差异表达基因,有可能没有1条入选,结果敏感性为0,同样也可能出现很多差异表达基因,结果使人认为倍数筛选法是在盲目的推测[8,9]。 1.2 t检验(t-test) 差异基因表达分析的另一种方法是t检验[10],当t超过根据可信度选择的标准时,比较

基因芯片技术的应用现状及展望

基因芯片技术的应用现状及展望 1基因芯片 1.1基本概念和原理 又称DNA 微阵列、DNA 芯片, 通过微加工技术和微电子技术在固体芯片表面构建成的微型生物化学分析系统,能够通过检测 基因的丰度来确定基因的表达模式和表达水平。由于常用硅芯片或玻片作为固相支持物, 并且在制备过程中运用了计算机芯片的制备技术, 所以称为基因芯片技术。基因芯片的工作原理与核酸分子杂交的方法是一致的, 都是运用已知核酸序列作为探针与互补的靶核苷酸序列进行杂交, 然后通过信号检测进行定性和定量分析。与传统的核酸杂交不同的是基因芯片是在一微小的片基如硅片、玻片和塑料片等表面上集成了大量的核酸分子识别探针, 能够在同一时间内平行分析大量的基因, 进行大量信息的筛选与检测, 实现对生物样品快速、并行、高效地进行检测或医学诊断。 1.2研究背景 80 年代初, 科学家提出了固相核酸杂交的设想, Bains等首 先对固相杂交DNA 测序进行了有益的探索; 其后, 俄罗斯、美国及英国的科学家分别报道了用杂交测定核酸序列的方法。1991 年, Affymetrix公司Fodor 等建立了原位光刻合成技术, 为寡核苷酸在片原位合成制作高密度基因芯片奠定了基础, 标志着核酸检测技术已发展到了一个新的阶段。1994年, 俄美科学家共同研制了用于B- 地中海贫血基因突变筛查的基因芯片, 测序的速度提高

了近1 000 倍, 被认为是一种全新的快速测序方法。鉴于基因芯片潜在的巨大商业价值, 90年代中期开始, 国外更多的商业公司加入了芯片开发的行列。1996 年底, Affymetr ix 公司推出可应用的基因芯片和较完整的芯片制造、杂交、扫描及数据分析系统, 其它如GeneralScanningInc、Telechem、Cartesian 等公司亦相继研制出芯片用激光共聚焦扫描仪及分析软件。到目前为止, 芯片技术在基础研究, 尤其是在基因表达方面已得到应用, 而在医学应用方面也已开发出少数基因诊断等相关芯片。但由于芯片和检测系统价格昂贵、专利及许多技术问题还有待解决, 因此目前尚未大规模的应用。在我国, 较早从事基因芯片研究的机构有清华大学、复旦大学、东南大学等。其中, 清华大学处于领先地位, 并得到国家重点支持。其它如东南大学在分子印章法制备高密度基因芯片、复旦大学在硅导电玻璃介质生物芯片制备、西安超群公司在三维立体基因芯片制造等方面也都取得了一定成果。 1.3基因芯片的分型 视分类方法不同可以分为以下几种主要类型: a.无机片基和有机合成物片基的基因芯片 b.原位合成和预先合成然后点样的基因芯片 c.基因表达芯片和DNA测序芯片 另外根据所用探针的类型不同分为cDNA微阵列(或cDNA微阵列芯片)和寡核苷酸阵列(或芯片),根据应用领域不同而制备的专用芯片如毒理学芯片(Toxchip)、病毒检测芯片(如肝炎病

生物芯片的市场分析

生物芯片的市场分析 全球市场总额很小 企业收入增长缓慢 全球的市场有多大?国内的市场又有多大?前景如何?现在国内没有公开的文章回答这些问题。国内的市场小,人们对生物芯片的技术和应用还没有普遍的认识。介绍生物芯片技术的论文、报告和新闻唾手可得,前几年投资炒作的文章也能找到几篇大作,但关于生物芯片的市场,现在国内还看不到一篇专题文章,也没有一家芯片公司或咨询公司做过有意义的市场调查;曾有公司在网上做过消费者调查,响应者却寥寥无几。我从网上找到了3家国际知名市场研究公司的公开数据,翻译过来,列举如下:2003年7月24日,国际知名的市场研究和数据分析公司Research and Markets公司发布了定价998美元的159页的报告《美国生物芯片和设备的市场和业务》,这份报告认为,2002年的全球生物芯片市场规模是11亿美元,将以19.5%的年平均增长率增长,2007年将达到27亿美元。2003年底,雷曼兄弟(Lehman Brother)公司发布的分析报告指出,全球芯片市场约有8亿美元的规模。2004年3月30日,英国伦敦的大型国际咨询公司Frost & Sullivan公司出版了价值4,950美元的关于全球芯片市场的分析报告:《世界DNA芯片市场的战略分析》。报告认为,全球DNA生物芯片市场每年平均增长6.7%,2003年的市场总值是5.96亿美元,2010年将达到9.37亿美元。 比较这3家公司估计的2003年生物芯片市场的市场规模:Frost & Sullivan公司仅考虑了生物芯片市场中的DNA芯片市场,为6亿美元;雷曼兄弟估计为8亿美,Research and Markets公司估计为13亿美元,我们发现,这3家单位估计的全球生物芯片市场总额的数据相差不远,在8-13亿美元,他们估计的数据体现了这个产业的客观市场规模应该在这个范围内。台湾生物芯片协会估计的市场是2003年为2.2亿美元,其中医疗芯片销售额6,500万美元,研究芯片销售额1.55亿美元,数额偏低,估计没有包括生物芯片仪器市场。 全球生物芯片霸主是以医药个体化为目标的Affymetrix公司,今年继续在全球市场上领先,很多专家估计其市场份额占全球1/3至1/2。如果我们清楚了Affymetrix公司的市场情况,也就知道了全球一半的市场。根据Affymetrix公司《2003年年度报告》披露的信息,我们能看到这个霸主的一些市场业绩。假设市场份额正如专家们所估计的那样,Affymetrix公司占了全球1/2至1/3的市场,按Affymetrix公司的营业额估算,2003年全球市场也就6-9亿美元左右。如果最近5年的市场增长速度保持下去,今后5年的全球市场增长2倍,至2008年,全球市

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.360docs.net/doc/f14315027.html,/geo/)和ArryExpress (http:// ;https://www.360docs.net/doc/f14315027.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

物联网综述报告

物联网综述报告 姓名:孟然 学号:03 专业:电子与通信工程

物联网技术综述 摘要:物联网是继计算机、互联网与移动通信网之后的又一次信息产业革命的浪潮,是一个全新的技术领域。虽然目前国内对物联网也还没有一个统一的标准定义,但从物联网本质上看,物联网是现代信息技术发展到一定阶段后出现的一种聚合性应用与技术的提升,将各种感知技术、现代网络技术和人工智能与自动化技术聚合与集成应用,使人与物智慧对话,创造一个智慧的世界。本文首先介绍了物联网的概念,简要介绍了物联网的当前发展状况。对物联网的关键技术:RFID,ZigBee,云计算等技术进行了分析。并指出了物联网的主要的应用领域,最后展望了物联网未来的研究方向。 [关键字] 物联网;RFID;云计算。 一、物联网的概念 1999年,麻省理工大学Auto-ID实验室第一次提出“产品电子码”的概念,即把所有物品通过信息传感设备接入互联网,实现智能化识别与管理。迄今十余年,“物联网”的概念已经深入人心,被称为第三次信息技术革命。 物联网的英文名称为“The Internet of Things”,简称IOT,通过射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位跟踪、监控和管理的一种网络,即称为互联网。顾名思义,物联网就是“物物相连的互联网”,其基础仍然是互联网。互联网的核心内容是hooking people together,由此引申,物联网的核心内容便是hooking things together。 二、物联网的发展现状 目前,物联网开发和应用仍处于起步阶段,发达国家和地区均想抓住这个机遇,出台政策、进行战略布局,希望在新一轮信息产业洗牌中占领先机。物联网成为“后危机”时代各国提升综合竞争力的重要手段。 2008年底,IBM向美国政府提出了“智慧地球”的战略,强调传感等感知技术的应用,提出建设智慧型基础设施,并智能化的快速处理、综合运用这些设施,使得整个地球上的物都“充满智慧”。由美国主导的EPCglobal标准在RFID领域呼声最高;德州仪器(TI)、英特尔、高通、IBM、微软则在通信芯片及通信模块设计制造上全球领先。

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

生物芯片及其在食品安全检测中的应用

第9卷第1期2007年3月辽宁农业职业技术学院学报 Journal of Liaoning Agricultural College Vol 19,No 11Mar 12007 收稿日期:2007-01-18 作者简介:丁立群(1963-),女,副教授。 生物芯片及其在食品安全检测中的应用 丁立群1,冯丽娟2 (11辽宁农业职业技术学院,辽宁营口115009;21贵州大学生命科学学院,贵州贵阳550025) 摘 要:生物芯片是一种全新微量分析技术,被誉为21世纪生命支撑平台。本文探讨了生物芯片两大理论基 础—分子生物技术和微细加工技术;综述了包括基因芯片、蛋白芯片和芯片缩微实验室三类生物芯片的研究应用现状;深入探讨了生物芯片在食品安全检测中的应用前景,主要表现在食品毒理学、食品卫生检验、分子水平上阐述食品营养机理、转基因食品的检测。 关键词:生物芯片;食品;安全检测中图分类号:R 155 文献标识码:B 文章编号:1671-0517(2007)01-0018-03 目前,全球食品安全形势不容乐观,主要表现为食源性疾病不断上升,恶性食品污染事件接二连三,食品加工新技术与新工艺带来不确定性危害。世界范围内由于食品安全卫生质量而引起的食品贸易纠纷不断,高新技术应用于食品安全检测具有无限的发展空间。 生物芯片是九十年代初发展起来的一种全新的微量分析技术,综合了分子生物技术、微加工技术、免疫学、计算机等多项技术,生命科学研究中不连续的分析过程,集成在芯片上完成,实现样品检测分析过程的连续化、集成化、微型化和信息化,生物芯片技术作为一代生物技术,在食品领域中具有广阔的基础研究价值和产业化前景。 1 理论基础 生物芯片即在硅片或载玻片或高分子聚合物薄片上,将大量的生物探针(基因探针、基因片段、抗原、抗体)按特定方式固定的排列,形成可供反应的固相载体。在一定条件下,与荧光标记过的待检测样品进行作用,反应结果用化学荧光法、酶标法、同位素法显示,通过精密的扫描仪等光学仪器进行数据采集,并借助计算机软件进行数据分析。其工作原理是将检测样品加在芯片的表面,由于生物分子特异性亲和反应(如核酸杂交反应,抗原抗体反应等)检测样品中的待检测成分分别和芯片上固定化的生物识别分子结合反应,从而实现对样品的分析和检测生物芯片的发展得益于很多新技术,但基本上源自于两大创新领域的结合。生物芯片主要包括四个基本要点:芯片方阵的构建,样品的制 备,生物分子反应和信号的检测。芯片制备是先将玻璃片或硅片进行表面处理,然后使DNA 片断或蛋白质分子按顺序排列在芯片上的过程。生物样品往往是非常复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应。可将样品进行处理,获取其中的蛋白质或DNA ,RNA ,并且加以标记,以提高检测的灵敏度。生物分子反应为芯片上的生物分子之间的反应,是芯片检测的关键一步。通过选择合适的反应条件使生物分子间反应处于最佳状态中,减少生物分子之间的错配率。常用的芯片信号检测方法是将芯片置入芯片扫描仪中,进行信号检测,以获得有关生物学信息。 2 生物芯片的种类 芯片种类较多,根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片;另外根据原理还可分为元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片;以其片基的不同分为无机片基和有机合成物片基;按其应用的不同可以分为表达谱芯片、诊断芯片、检测芯片;按其结构的不同可以分为DNA 阵列和寡核苷酸芯片。其中应用最多,应用 范围最广的生物芯片是基因芯片。211 基因芯片(G ene chip) 所谓基因芯片又称为DNA 微阵列(DNA micro array ),是按特定的排列方式排列固定有大量基因片段(可以是相同的基因片段,也可以是不同的)的硅片,玻璃片或塑料片。它的工作原理是将样品加在芯片上,通过分子杂交方式对样品进行分析,从而大规模高效地获取相关的生物信息。基因芯片技术作为一项新技术,具有快速、准确、灵敏等特点,又能同时检测大量样品,在食品安全检

基因芯片数据功能分析

生物信息学在基因芯片数据功能分析中的应用 2009-4-29 随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。生物信息学在基因组学中发挥着重大的作用, 而另一项崭新的技术——基因芯片已经成为大规模探索和提取生物分子信息的强有力手段,将在后基因组研究中发挥突出的作用。基因芯片与生物信息学是相辅相成的,基因芯片技术本身是为了解决如何快速获得庞大遗传信息而发展起来的,可以为生物信息学研究提供必需的数据库,同时基因芯片的数据分析也极大地依赖于生物信息学,因此两者的结合给分子生物学研究提供了一条快捷通道。 本文介绍了几种常用的基因功能分析方法和工具: 一、GO基因本体论分类法 最先出现的芯片数据基因功能分析法是GO分类法。Gene Ontology(GO,即基因本体论)数据库是一个较大的公开的生物分类学网络资源的一部分,它包含38675 个Entrez Gene注释基因中的17348个,并把它们的功能分为三类:分子功能,生物学过程和细胞组分。在每一个分类中,都提供一个描述功能信息的分级结构。这样,GO中每一个分类术语都以一种被称为定向非循环图表(DAGs)的结构组织起来。研究者可以通过GO分类号和各种GO数据库相关分析工具将分类与具体基因联系起来,从而对这个基因的功能进行描述。在芯片的数据分析中,研究者可以找出哪些变化基因属于一个共同的GO功能分支,并用统计学方法检定结果是否具有统计学意义,从而得出变化基因主要参与了哪些生物功能。 EASE(Expressing Analysis Systematic Explorer)是比较早的用于芯片功能分析的网络平台。由美国国立卫生研究院(NIH)的研究人员开发。研究者可以用多种不同的格式将芯片中得到的基因导入EASE 进行分析,EASE会找出这一系列的基因都存在于哪些GO分类中。其最主要特点是提供了一些统计学选项以判断得到的GO分类是否符合统计学标准。EASE 能进行的统计学检验主要包括Fisher 精确概率检验,或是对Fisher精确概率检验进行了修饰的EASE 得分(EASE score)。 由于进行统计学检验的GO分类的数量很多,所以EASE采取了一系列方法对“多重检验”的结果进行校正。这些方法包括弗朗尼校正法(Bonferroni),本杰明假阳性率法(Benjamini falsediscovery rate)和靴带法(bootstraping)。同年出现的基于GO分类的芯片基因功能分析平台还有底特律韦恩大学开发的Onto-Express。2002年,挪威大学和乌普萨拉大学联合推出的Rosetta 系统将GO分类与基因表达数据相联系,引入了“最小决定法则”(minimal decision rules)的概念。它的基本思想是在对多张芯片结果进行聚类分析之后,与表达模式

基因芯片数据处理流程与分析介绍

基因芯片数据处理流程与分析介绍 关键词:基因芯片数据处理 当人类基因体定序计划的重要里程碑完成之后,生命科学正式迈入了一个后基因体时代,基因芯片(microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。不过分析是相当复杂的学问,正因为基因芯片成千上万的信息使得分析数据量庞大,更需要应用到生物统计与生物信息相关软件的协助。要取得一完整的数据结果,除了前端的实验设计与操作的无暇外,如何以精确的分析取得可信数据,运筹帷幄于方寸之间,更是画龙点睛的关键。 基因芯片的应用 基因芯片可以同时针对生物体内数以千计的基因进行表现量分析,对于科学研究者而言,不论是细胞的生命周期、生化调控路径、蛋白质交互作用关系等等研究,或是药物研发中对于药物作用目标基因的筛选,到临床的疾病诊断预测,都为基因芯片可以发挥功用的范畴。 基因表现图谱抓取了时间点当下所有的动态基因表现情形,将所有的探针所代表的基因与荧光强度转换成基本数据(raw data) 后,仿如尚未解密前的达文西密码,隐藏的奥秘由丝丝的线索串联绵延,有待专家抽丝剥茧,如剥洋葱般从外而内层层解析出数千数万数据下的隐晦含义。 要获得有意义的分析结果,恐怕不能如泼墨画般洒脱随兴所致。从raw data 取得后,需要一连贯的分析流程(图一),经过许多统计方法,才能条清理明的将raw data 整理出一初步的分析数据,当处理到取得实验组除以对照组的对数值后(log2 ratio),大约完成初步的统计工作,可进展到下一步的进阶分析阶段。

图一、整体分析流程。基本上raw data 取得后,将经过从最上到下的一连串分析流程。(1) Rosetta 软件会透过统计的model,给予不同的权重来评估数据的可信度,譬如一些实验操作的误差或是样品制备与处理上的瑕疵等,可已经过Rosetta error model 的修正而提高数据的可信值;(2) 移除重复出现的探针数据;(3) 移除flagged 数据,并以中位数对荧光强度的数据进行标准化(Normalized) 的校正;(4) Pearson correlation coefficient (得到R 值) 目的在比较技术性重复下的相似性,R 值越高表示两芯片结果越近似。当R 值超过0.975,我们才将此次的实验结果视为可信,才继续后面的分析流程;(5) 将技术性重复芯片间的数据进行平均,取得一平均之后的数据;(6) 将实验组除以对照组的荧光表现强度差异数据,取对数值(log2 ratio) 进行计算。 找寻差异表现基因 实验组与对照组比较后的数据,最重要的就是要找出显著的差异表现基因,因为这些正是条件改变后而受到调控的目标基因,透过差异表现基因的加以分析,背后所隐藏的生物意义才能如拨云见日般的被发掘出来。 一般根据以下两种条件来筛选出差异表现基因:(i) 荧光表现强度差异达2 倍变化(fold change 增加2 倍或减少2倍) 的基因。而我们通常会取对数(log2) 来做fold change 数值的转换,所以看的是log2 ≧1 或≦-1 的差异表现基因;(ii) 显著值低于0.05 (p 值< 0.05) 的基因。当这两种条件都符合的情况下所交集出来的基因群,才是显著性高且稳定的差异表现基因。

相关文档
最新文档