四、填料吸收传质系数测定

四、填料吸收传质系数测定
四、填料吸收传质系数测定

化工原理实验报告

实验名称:填料吸收传质系数测定

学院:化学工程学院

专业:化学工程与工艺

班级:

姓名:学号:

指导教师:

日期:

一、实验目的

1、熟悉填料塔的构造与操作。

2、观察填料塔流体力学状况,测定压降与气速的关系曲线。

3、掌握液相体积总传质系数Kx a的测定方法并分析影响因素。

4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。

二、基本原理

本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数Kx a,并进行关联,得到Kx a=AL a V b关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。

1、填料塔流体力学特性

气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa’)。当有喷淋量时,在低气速下(c点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd段)。到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。

图一填料层压降—空塔气速示意

2、传质实验

填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。

本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。

y 1

2

整理得相应的传质速率方程为:

G A =K x aV p △x m 即K x a = G A / (

V p △x m )

其中])

()

(ln[)

()x -x (112221e22m e e e x x x x x x ----=?X

G A =L (x 2-x 1) V p=Z?

相关填料层高度的基本计算式为:

OL OL x x e x N H x x dx

a K L Z ?=-Ω?=?12 即OL OL N Z H /= 其中 m x x e

OL x x x x x dx N ?-=-=?21

12 ,H OL =Ωa K L X

式中:G A

——单位时间内氧的解吸量,kmol/(m 2?h)

K x a ——液相体积总传质系数,kmol/(m 3?h)

V p ——填料层体积,m 3

△X m ——液相对数平均浓度差 x 2——液相进塔时的摩尔分数(塔顶) x e2——与出塔气相y 1平衡的摩尔分数(塔顶) x 1——液相出塔的摩尔分数(塔底)

x e1——与进塔气相y 1平衡的摩尔分数(塔底) Z ——填料层高度,m ?——塔截面积,m 2

L ——解吸液流量,kmol/(m 2

?h)

H OL ——以液相为推动力的总传质单元高度 N OL ——以液相为推动力的总传质单元数

由于氧气为难容气体,在水中的溶解度很小,因此传质阻力几乎全部集中在液膜中,即Kx=kx ,由于属液膜控制过程,所以要提高液相体积总传质系数K x a ,应增大液相的湍动程度。

三、实验装置流程

1、基本数据

解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

2、实验流程

下图是氧气吸收解吸装置流程图。氧气由氧气钢瓶供给,经减压阀2进入氧气缓冲罐4,稳压在0.03~0.04[Mpa],为确保安全,缓冲罐上装有安全阀6,由阀7调节氧气流量,并经转子流量计8计量,进入吸收塔9中,与水并流吸收。含富氧水经管道在解吸塔的顶部喷淋。空气由风机13供给,经缓冲罐14,由阀16调节流量经转子流量计17计量,通入解吸塔底部解吸富氧水,解吸后的尾气从塔顶排出,贫氧水从塔底经平衡罐19排出。自来水经调节阀10,由转子流量计17计量后进入吸收柱。

由于气体流量与气体状态有关,所以每个气体流量计前均有表压计和温度计。空气流量计前装有计前表压计23。为了测量填料层压降,解吸塔装有压差计22。

在解吸塔入口设有入口采出阀12,用于采集入口水样,出口水样在塔底排液平衡罐上采出阀20取样。两水样液相氧浓度由9070型测氧仪测得。

图3-2、氧气吸收与解吸实验流程图

1、氧气钢瓶9、吸收塔17、空气转子流量计

2、氧减压阀10、水流量调节阀18、解吸塔

3、氧压力表11、水转子流量计19、液位平衡罐

4、氧缓冲罐12、富氧水取样阀20、贫氧水取样阀

5、氧压力表13、风机21、温度计

6、安全阀14、空气缓冲罐22、压差计

7、氧气流量调节阀15、温度计23、流量计前表压计

8、氧转子流量计16、空气流量调节阀24、防水倒灌阀

四、实验步骤

1、流体力学性能测定

(1)、测定干填料压降

1)、事先吹干塔内填料。

2)、待填料塔内填料吹干以后,改变空气流量,测定填料塔压降,测取6~8组数据。

(2)、测定湿填料压降

1)、测定前进行预液泛,使填料表面充分润湿。

2)、固定水在某一喷淋量下,改变空气流量,测定填料塔压降,测取8~10组数据。

3)、实验接近液泛时,进塔气体的增加量不要过大。小心增加气体流量,使液泛现象平稳变化。调好流量后,等各参数稳定后再取数据。着重注意液泛后填料层压降在几乎不变的气速下明显上升的这一特点。注意气量不要过大,以免冲破和冲泡填料。

(3)、注意空气流量的调节阀要缓慢开启和关闭,以免撞破玻璃管。

2、传质实验

a、将氧气阀打开,氧气减压后进入缓冲罐,罐内压力保持0.04~0.05MPa,不要过高,并注意减压阀使用方法。为防止水倒灌进入氧气转子流量计中,开水前要关闭防倒灌,或先通入氧气后通水。

b、传质实验操作条件选取:水喷淋密度取10~15m3/(m2?h),空塔气速

0.5~0.8m/s氧气入塔流量为0.01~0.02 m3/h,适当调节氧气流量,使吸收后的富氧水浓度控制在不大于19.9mg/l。

c、塔顶和塔底液相氧浓度测定:分别从塔顶与塔底取出富氧水和贫氧水,注意在每次更换流量的第一次所取样品要倒掉,第二次以后所取的样品方能进行氧含量的测定,并且富氧水与贫氧水同时进行取样。

d、用测氧仪分析其氧的含量。测量时,对于富氧水,取分析仪数据由增大到减小时的转折点为数据值;对于贫氧水,取分析仪数据由变小到增大时的转折点为数据值。同时记录对应的水温。

e、实验完毕,关闭氧气减压阀,再关闭氧气流量调节阀,关闭其他阀门。检查无误以后离开。

五、原始实验数据(附页)

六、实验数据处理

根据表6-1的数据,作出干填料层lg△P—lgu关系图:

图6-1、lg△P-lgu关系线

根据表6-2的数据,作出湿填料层g△P—l lgu关系图:

图6-2、lg△P-lgu关系线

3、计算单位时间氧解吸量G A

L=200*1000/18=11.11kmol/h

x1=17.6/(1000*32)/(17.6/1000/32+1000/18)=9.90×10-6

x2=11.9/(1000*32)/(11.9/1000/32+1000/18)=6.69×10-6

∴x1- x2=3.21×10-6

∴G A=L(x1- x2)=3.56631×10-5 kmol/h

4、计算△x m

已知:t=20℃大气压=101.325 kPa

进塔气相浓度y1=0.21,出塔气相浓度y2=0.21

E=(-8.5694×10-5t2+0.07714t+2.56)×106=4.0685×106 kPa

P=101.325+1/2=101.825kPa

∴m=E/P=3.996×104

x e1=x e2=y1/m=y2/m=5.255×10-6

∴△x m=((x1- x e1)–( x2 -x e2))/ln((x1- x e1)/ ( x2 -x e2))=2.73×10-6

5、计算Kxa

Z=0.8m d=0.1m

Vp=1/4πd2H=6.28×10-3 m3

∴Kxa=G A/(Vp*△x m)=208.02kmol/(m3.h.△x)

6、计算H OL

Ω=1/4πd2=7.85×10-3

∴H OL=L/ (Kxa*Ω)=6.8m

七、结果分析与讨论

1、本次实验操作比较简单,记录的数据都很容易从各种仪器读数表上读出来。但是,实验数据总是还有一些误差存在,不过对整个实验结论的影响不是很大。

造成这些误差的原因主要有:

1)、系统误差,人为操作不够严谨,读数时的随意性及视觉误差;

2)、数据处理过程中对有效值的取舍不够精准;

3)、测含氧量的烧杯用自来水洗过,使得其中的含氧量偏高。

2、在测定Kxa的数值过程中,水中含氧量是通过溶氧仪直接测定读数的。分析处理后的数据,发现总传质系数Kxa较偏小,传质高度H OL明显偏大。造成此现象的原因主要是:仪器测得的含氧量,由于所取用的水是自来水,而水中本身就含有一定的含氧量;此外,收集到的富水和贫水直接放置在空气中,这样也会使水中的含氧量增加;仪器使用过程中温度校正等操作的不够精准,也会给实验数据带来一定的误差。

八、思考题解答

1、填料塔在一定喷淋量时。气相负荷应控制在那个范围内进行操作?

水喷淋的密度取10~15(m3/m2h),空塔气速则维持在0.5~0.8(m/s)左右,氧气流量为0.01~0.02(m3/s)左右。

2、通过实验观察。填料塔的液泛值首先从哪个部位开始?为什么?

液泛有塔底开始,直径一定的塔,可供气、液两相自由流动的截面是有限的。二者之一的流量若增大到某个限度,降液管内的液体便不能顺畅地流下;当管内的液体满到上层板的溢流堰顶时,便要漫到上层板,产生不正常积液,最后可导致两层板之间被泡沫液充满。这种现象,称为液泛,亦称淹塔。由定义可知。液泛即从塔底开始,由下至上。

3、欲提高传质系数,你认为应采取哪些措施?

可以通过提高液体的流速,以加强液相湍流程度俩提高来提高传质系数。

实验四填料塔吸收传质系数的测定

4 填料塔吸收传质系数的测定 4.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 4.2 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol / (m 3·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y = m x (6-4) 式中: m 相平衡常数,m =E /P ; E 亨利系数,E =f (t),Pa ,根据液相温度测定值由附录查得; p Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。 4.3实验装置与流程 1〕装置流程

填料吸收传质系数的测定

序号:40 化工原理实验报告 实验名称:填料吸收传质系数的测定 学院:化学工程学院 专业:化学工程与工艺

1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握总传质系数K x a 的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用船只速率方程处理传质问题的办法。 一、 实验原理 本装置先用吸收柱讲将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数a x K ,并进行关联,得到 b a V AL K ?=a x 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实 验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1、填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa 线)。当有喷淋量时,在低气速下(c 点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图1中c 点),持液量开始增大,压降-气速线向上 弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 图一 填料层压降-空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方式为: m p x A x V a K G ???=

实验四填料吸收塔的操作及吸收传质系数的测定

实验四填料吸收塔的操作及吸收传质系数的测定姓名:学号:;学院专业级班; 同组同学姓名:;;。 实验日期:;天气:;室温:大气压:;成绩: . 一、实验目的 1.了解填料吸收塔的结构和操作流程; 2.掌握产生液泛现象的原因和过程。 3.明确吸收塔填料层压降p与空塔气速u在双对数坐标中的关系曲线及其意义,了 解实际操作气速与泛点气速之间的关系 4.了解吸收剂进口条件的变化对吸收操作结果的影响; 5. 掌握气相总容积吸收传质系数Ky,α的测定方法 二、基本原理 吸收是指利用气体中各组分在液相中溶解度的差异而分离气体混合物的操作。在吸收过 程中,所用液体成为吸收剂(或溶剂);气体中被溶解的组分称为吸收质或溶质;不被溶解 的气体组分称为惰性气体或载体;吸收操作所得到的液体称为溶液(主要成分为吸收剂和溶质);剩余的气体为尾气,主要成分为惰性气体,还有残余的吸收质。 1.气液相平衡关系 大多数气体物质A溶解形成稀溶液时,稀溶液上方溶质A的平衡分压p A*与其在溶液 中的 摩尔分数x A成正比: p A* = Ex A (4-1) 这就是亨利定律。式中,E为亨利系数(kPa)。 若气相组成也用平衡摩尔分数y*表示,则(3-4-1)式可写为:

y A* = Ex A/p (4-2) 令E/p= m,则 y A* = mx A (4-3) 式中,m为相平衡系数,量纲为1。 吸收过程中,溶液和气体的总量在不断变化,使得吸收过程的计算比较复杂。为了简便 起见,工程计算中采用在吸收过程中数量不变的惰性气体(如空气)和纯吸收剂为基准,用 物质的量之比(也称为比摩尔分数)来表示气相和液相中吸收质A的含量,并分别用Y A和 X A表示。平衡时,其关系式为: Y A*= mX A/(1?(1?m)X A) 当溶液浓度很低时,X A很小,则1+(1-m)X A?1,式(3-4-4)可简化为: Y A*=mX A 2.填料吸收塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。填料层上方有液体分布装置,可以使液体均匀喷洒在填料塔上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降△P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降△P与空塔气速u的关系可用式△P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为 1.8— 2.0。在有一条喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守△P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时。由于上升气流与下降液体的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在△P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。 3.吸收速率方程式

【报告】填料塔吸收传质系数的测定

【关键字】报告 化工原理实验报告 学院: 专业: 班级: 一、实验目的 1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法; 3.了解气相色谱仪和六通阀的使用方法。 二、实验原理 气体吸收是典型的传质过程之一。由于CO2气体无味、无毒、廉价,所以气体吸收实验常选择CO2作为溶质组分。本实验采用水吸收空气中的CO2组分。一般CO2在水中的溶解度很小,即使预先将一定量的CO2气体通入空气中混合以提高空气中的CO2浓度,水中的CO2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO2气体的解吸过程属于液膜控制。因此,本实验主要测定Kxa 和HOL 。 计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =??* 1 2 式中: L 液体通过塔截面的摩尔流量,kmol / (m2·s); Kxa 以△X 为推动力的液相总体积传质系数,kmol / (m3·s); HOL 液相总传质单元高度,m ; NOL 液相总传质单元数,无因次。 令:吸收因数A=L/mG ])1ln[(11 1 121A mx y mx y A A N OL +----= 测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y1和y2; (4)平衡关系。

本实验的平衡关系可写成 y = mx 式中:m 相平衡常数,m=E/P; E 亨利系数,E=f(t),Pa,根据液相温度由附录查得; P 总压,Pa,取1atm。 对清水而言,x2=0,由全塔物料衡算 可得x1 。 三、实验装置 1.装置流程 1-液体出口阀2;2-风机;3-液体出口阀1;4-气体出口阀;5-出塔气体取样口;6-U型压差计;7-填料层;8-塔顶预分布器;9-进塔气体取样口;10-玻璃转子流量计(0.4~4m3/h);11-混合气体进口阀1;12-混合气体进口阀2;13-孔板流量计;14-涡轮流量计;15-水箱;16-水泵 图7-1 吸收装置流程图 本实验装置流程:由自来水源来的水送入填料塔塔顶经喷头喷淋在填料顶层。由风机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体混合罐,然后再进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。 2.主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网波纹规整填料或θ环散装填料,填料层总高度2000mm.。塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。填料塔底部有液封装置,以避免气体泄漏。 (2)填料规格和特性:金属丝网波纹规整填料:型号JWB—700Y,规格φ100×100mm,比表面积700m2/m3。 (3)转子流量计: 介质 条件 常用流量最小刻度标定介质标定条件 CO22L/min0.2 L/min CO220℃ 1.0133×105Pa (4)空气风机:型号:旋涡式气机 (5)二氧化碳钢瓶; (6)气相色谱分析仪。 四、实验步骤 1.实验步骤 (1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项; (2)打开混合罐底部排空阀,排放掉空气混合贮罐中的冷凝水; (3)打开仪表电源开关及风机电源开关,进行仪表自检; (4)开启进水阀门,让水进入填料塔润湿填料,仔细调节玻璃转子流量计,使其流量稳定在某一实验值。(塔底液封控制:仔细调节液体出口阀的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气);

实验四填料塔吸收传质系数的测定

实验四填料塔吸收传质 系数的测定 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

4填料塔吸收传质系数的测定 4.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 4.2实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2)

])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y =m x (6-4) 式中: m 相平衡常数,m =E /P ; E 亨利系数,E =f (t),Pa ,根据液相温度测定值由附录查得; p 总压,Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 可得x 1。 4.3实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

(完整版)13液液传质系数的测定

液液传质系数的测定 A 实验目的 (1) 掌握用刘易斯池测定液液传质系数的实验方法; (2) 测定醋酸在水与醋酸乙酯中的传质系数; (3) 探讨流动情况、物系性质对液液界面传质的影响机理。 B 实验原理 实际萃取设备效率的高低,以及怎样才能提高其效率,是人们十分关心的问题。为了解决这些问题,必须研究影响传质速率的因素和规律,以及探讨传质过程的机理。 近几十年来,人们虽已对两相接触界面的动力学状态,物质通过界面的传递机理和相界面对传递过程的阻力等问题进行了研究,但由于液液间传质过程的复杂性,许多问题还没有得到满意的解答,有些工程问题不得不借助于实验的方法或凭经验进行处理。 工业设备中,常将一种液相以滴状分散于另一液相中进行萃取。但当流体流经填料、筛板等内部构件时,会引起两相高度的分散和强烈的湍动,传质过程和分子扩散变得复杂,再加上液滴的凝聚与分散,流体的轴向返混等问题影响传质速率的主要因素,如两相实际接触面积、传质推动力都难以确定。因此,在实验研究中,常将过程进行分解,采用理想化和模拟的方法进行处理。 1954年刘易斯[1] (Lewis)提出用一个恒定界面的容器,研究液液传质的方法,它能在给定界面面积的情况下,分别控制两相的搅拌强度,以造成一个相内全混,界面无返混的理想流动状况,因而不仅明显地改善了设备内流体力学条件及相际接触状况,而且不存在因液滴的形成与凝聚而造成端效应的麻烦。本实验即采用改进型的刘易斯池 [2] [3] 进行实验。由于刘易斯池具有恒定界面的特点,当实验在给定搅拌速度及恒定的温度下,测定两相浓度随时间的变化关系,就可借助物料衡算及速率方程获得传质系数。 () * W W W W W C C K dt dC A V -=?- (1) () 0* 0000C C K dt dC A V -=? (2) 若溶质在两相的平衡分配系数m 可近似地取为常数,则

实验四填料塔吸收传质系数的测定

4填料塔吸收传质系数的测定 实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= ?(6-3)

2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2 ; (3)平衡关系。 本实验的平衡关系可写成 y=m x(6-4) 式中:m相平衡常数,m=E/P; E亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得; p总压,Pa,取压力表指示值。 对清水而言,x2=0,由全塔物料衡算 可得x1。 实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。 图6—1吸收装置流程图 2〕主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填

实验五填料塔液侧传质膜系数的测定

实验五 填料塔液侧传质膜系数的测定 一、实验目的 填料塔在传质过程的有关单元操作中,应用十分广泛。实验研究传质过程的控制步骤,测定传质膜系数和总传质系数,尤为重要。 本实验采用水吸收二氧化碳,测定填料塔的液侧传质膜系数、总传质系数和传质单元高度,并通过实验确立液侧传质膜系数与各项操作条件的关系。 通过实验,学习掌握研究物质传递过程的一种实验方法,并加深对传质过程原理的理解。 二、实验原理 图1 双膜模型浓度分布图 图2 填料塔的物料衡算图 双膜模型的基本假设,气侧和液测得吸收质A 的传质速率方程可分别表达为 气膜 G A = k gA (p A -p Ai ) (1) 液膜 G A = k lA (C Ai -C A ) (2) 式中:G A -A 组分的传质速率,kmol ·s -1 A -两相接触面积,m 2; p A -气侧A 组分的平均分压,P a ; p Ai -相界面上A 组分的分压,P a ; C A - 液侧A 组分的平均浓度,kmol ·m 3; C Ai -相界面上A 组分的浓度,kmol ·m 3; k g -以分压表达推动力的气侧传质膜系数,kmol ·mv ·s -1·Pa -1; k l -以物质的量浓度表达推动力的液侧传质膜系数,m ·s -1。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为 G A = K GA (p A -p A *) (3) G A = K LA (C A *-C A ) (4)

式中: p A *为液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; C A *为气相中A 组分的实际分压所要求的液相平衡浓度,kmol · m 3; K G 为以气相分压表示推动力的总传质系数或简称为气相传质总系数,kmol ·m 2·s -1·Pa -1; K L 为以液相浓度表示推动力的总传质系数,或简称为液相传质总系数,m ·s -1。 若气液相平衡关系遵循亨利定律:C A = Hp A ,则 (5) (6) 当气膜阻力远大于液膜阻力时,则相际传质过程受气膜传质速率控制,此时,K G = k g ;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,K L =k l 。 如图2所示,在逆流接触的填料层内,任意截取一微分段,并以此为衡算系统,则由吸收质A 的物料衡算可得: A L L A dC F dG ρ= (a) 式中:F L 为液相摩尔流率,kmol ·s -1; ρL 为液相摩尔密度,kmol ·s 3; 根据传质速率基本方程,可写出该为分段的传质速率微分方程: dG A = K L (C A *-C A )aSdh (b) 联立(a)和(b)两式可得: (c) 式中:a 为气液两相接触的比表面积,m 2/m 3, S 为填料塔的横截面积,m 2 本实验采用水吸收纯二氧化碳,且已知二氧化碳在常温下溶解度较小,因此,液相摩尔流率F L 和摩尔密度ρL 的比值,亦即液相体积流率(V s )L 可视为定值,且设总传质系数K L 和两相接触比表面积a ,在整个填料层内为一定值,则按下列边值条件积分(c)式,可得填料层高度的计算公式: h=0 C A =C A ,2 h=h C A =C A ,1; (7) 令 ,且称H L 为液本传质单元高度(HTU );

填料吸收塔的操作及吸收传质系数的测定

五、数据处理 由PV=nRT ,→ P 0V 0/T 0=PV/T, 得: 101V 0/273.15=121*400/299.15,→V 0=434 L 。 又填料塔内径:35mm ,填料层高度:400mm ,→V 填=0.25*π*0.0352*0.4=3.85*10-4m 3 G B =434/(22.4*1000)/(0.25*π*0.0352)=20.15 kmol/(m 2*h ) 吸收剂流量为2L/h 时,L S =2*0997/(18*0.25*π*0.0352)=115kmol/(m 2*h ) 吸收剂流量为4L/h 时,L S =4*0997/(18*0.25*π*0.0352)=230kmol/(m 2*h ) 表格如下: m 、K Ya 的计算 亨利定律:y*=mx ,y*= P*A /P ,根据左图不同液相浓度下温度—平衡分压关系曲线, 吸收剂为2L/h 时,t2约为28℃,x1为2.64%,P*A ≈5.6kPa , →m=5.6/(121*2.64%)=1.75 →ΔY 1=20.03%-1.75*2.64%=15.41% ,ΔY 2=4.94%-1.75*0=4.94% ,ΔY m =9.18% ,G a =20.15*(20.03-4.94)%=3.04kmol/(m 2*h ) ,K Ya =3.04/(0.4*9.18%)=82.71 kmol/(m 2*h ) 吸收剂为4L/h 时,t2约为28.5℃,x1为1.40%,P*A ≈3.2kPa , →m=3.2/(121*1.40%) =1.89 →ΔY 1=17.99%-1.89*1.40%=15.34% ,ΔY 2=2.06%-1.89*0=2.06% ,ΔY m =6.61% ,G a =20.15*(17.99-2.06)%=3.20kmol/(m 2*h ) ,K Ya =3.20/(0.4*6.61%)=121.03kmol/(m 2*h ) 丙酮液相浓度在1%、 2%、3%的温度(℃)—平衡分压(kPa )

实验四填料塔液相传质系数的测定lun

实验四填料塔液相传质系数的测定 环工021 伦裕旻15号 一、实验目的: 吸收是传质过程的重要操作,应用非常广泛。为强化吸收过程,必须研究传质过程的控制步骤,测定传质膜系数和总传质系数。 本实验采用水吸收CO2,测定填料塔的液相传质膜系数、总传质系数和传质单元高度,并通过实验确定液相传质系数和各项操作条件的关系。 通过本实验,学习并掌握研究物质传质过程的一种实验方法,并加深对传质过程原理的理解。 二、实验原理: 三、 根据双膜模型的基本假设,气相和液相的吸收质A的传质速率方程可分别表达为 气膜D A=KgA(P A—P A i) (1) 液膜G A=K1A(C Ai—C A)(2) 公式中G A——A组分的传质速率,kmol.S-1; A——两相接触面积,m2; P A————气相A组分的平均分压,pa P A i——相界面A组分的分压,pa C A————液相A组分的平均浓度,kmol.m-3 Kg——以分压表达推动力的气相传质膜系数,kmol.m-3 K1————以物质的浓度表达推动力的液相传质膜系数,m.s-1 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: D A=K G A(P A—P A*) (3) G A=K L A(C A*—C A)(4) 式中P A*为液相中A组分的实际浓度所要求的气相平衡分压,pa C A*为气相中A组分的实际分压所要求的饿液相平衡浓度,kmol.m-3

K G 为以气相分压表示推动力的总传质系数或 简称为气相传质总系数,kmol.m -2. S -1. pa -1 K L 为以液相浓度表示推动力的总传质系数或 简称为液相传质总系数,m .S -1; 若气液相平衡关遵循亨利定理:A A HP C =,则 : 1 111Hk K k g G += (5) 1 11k K H k g L += (6) 当气膜阻力远大于液膜阻力时,则相际传质过程受气膜传质速率控制,此时, g L K K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时 l L K K =。 如图2所示,在逆流接触的填料塔层内,任意截取一微分段,并以此为衡算系统,则由 吸收质A 的物料衡算可得: A L L A dC F dG ρ= (a) 式中L F 为液相摩尔流率,kmol .S -1; L ρ为液相摩尔密度,kmol .S -1; 根据传质速率基本方程,可写出该微分段的饿传质速率微分方程: Sdh C C K dG A A L A α)*(-= (b) 联立(a )和(b)两式可得, )(*.c C C dC S K F dh A A A L L L -= ρα 式中α为气液两相接触的比表面积,3 2 .-m m ;S 为填料塔的横截面积,2 m 。 本实验采用水吸收2CO ,且已知2CO 在常温下溶解度较小,因此,液相摩尔流率L F 和摩 尔密度L ρ的比值,亦即液相体积流率L S V )()可视为定值,且设总传质系数L K 和两相接触 比表面积α,在整个填料层内为一个定植,按下列边值条件积分 )c (式可得填料层高度的计算公式: 0=h 2,A A C C =

填料塔吸收传质系数的测定实验doc

填料塔吸收传质系数的测定 一、实验目的 1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法; 3.了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 二、基本原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。本实验采用水吸收空气中的CO 2组分。一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。因此,本实验主要测定K x a 和H OL 。 a) 计算公式 填料层高度Z 为: OL OL x x x Z N H x x dx a K L dZ z ?=-= =??*120 式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s); K x a 以△X 为推动力的液相总体积传质系数,kmol / (m 3·s); H OL 液相总传质单元高度,m ; N OL 液相总传质单元数,无因次。 令:吸收因数A=L/mG ])1ln[(11 1 121A mx y mx y A A N OL +----= b) 测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。

本实验的平衡关系可写成 y = mx 式中: m 相平衡常数, m=E/P ; E 亨利系数,E =f(t),Pa ,根据液相温度由附录查得; P 总压,Pa ,取1atm 。 对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。 三、实验装置 1〕装置流程 本实验装置(如图1所示)流程:由自来水来的水经离心泵加压后送入填料塔塔顶经喷头喷淋在填料顶层。由压缩机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体中间贮罐,然后再直接进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气经转子流量计后放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

实验五填料塔液传质膜系数测定

实验五填料塔液传质膜系数测定

————————————————————————————————作者:————————————————————————————————日期:

实验五 填料塔液侧传质膜系数的测定 一、实验目的 填料塔在传质过程的有关单元操作中,应用十分广泛。实验研究传质过程的控制步骤,测定传质膜系数和总传质系数,尤为重要。 本实验采用水吸收二氧化碳,测定填料塔的液侧传质膜系数、总传质系数和传质单元高度,并通过实验确立液侧传质膜系数与各项操作条件的关系。 通过实验,学习掌握研究物质传递过程的一种实验方法,并加深对传质过程原理的理解。 二、实验原理 图1 双膜模型浓度分布图 图2 填料塔的物料衡算图 双膜模型的基本假设,气侧和液测得吸收质A 的传质速率方程可分别表达为 气膜 G A = k gA (p A -p Ai ) (1) 液膜 G A = k lA (C Ai -C A ) (2) 式中:G A -A 组分的传质速率,kmol ·s -1 A -两相接触面积,m 2; p A -气侧A 组分的平均分压,P a ; p Ai -相界面上A 组分的分压,P a ; C A - 液侧A 组分的平均浓度,kmol ·m 3; C Ai -相界面上A 组分的浓度,kmol ·m 3; k g -以分压表达推动力的气侧传质膜系数,kmol ·mv ·s -1·Pa -1 ; k l -以物质的量浓度表达推动力的液侧传质膜系数,m ·s -1。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为 G A = K GA (p A -p A *) (3) G A = K LA (C A *-C A ) (4)

2-4液液传质系数

2-4 液液传质系数的测定 (验证性实验) 实际萃取设备效率的高低,以及怎样才能提高它的效率,是人们十分关心的问题。为了解决这些问题,必须研究影响传质速率的因素和规律,以及探讨传质过程的机理。近几十年来,人们虽已对两相接触面的动力学状态,物质通过界面的传递机理和相界面对传递过程的阻力等问题进行研究,但由于液液传质过程的复杂性,许多问题还没有得到满意的解答,有些工程问题不得不借助于实验的方法或凭经验来处理。这些都说明对基本理论还有待于进一步的研究。本实验的提出,旨在使学生能够直接了解测定液液传质系数的一种实验方法,并通过改变不同的实验条件,如流动情况、物系性质等,从而进一步探讨各因素对液液界面传质的影响机理和对传质速率的影响程度。 一. 实验原理 工业设备中,常将一种液相以滴状分散于另一液相中进行萃取。但当流体流经填料、筛板等内部构件时,会引起两相高度的分散和强烈的湍动,传质过程和分子扩散差别很大,再加上液滴的凝聚与分散,流体的轴向返混等问题,使得影响传质速率的主要因素,如两相实际接触面积、传质推动力等都难以确定。因此在实验研究中,常将过程进行分解,采用理想化和模拟的方法进行处理。“液液传质系数的测定—单液滴实验”就是“理想化”实验方法的一个例子。它将研究萃取塔中液滴群的传质行为及机理简化为研究单个液滴的运动行为和传质机理,然后概括所得结果,再作进一步的工作,去解决液滴群的传质问题,Lewis 于1954年提出用一个恒定界面的容器,研究液液传质的方法则是另一种理想化的实验方法。从Lewis Cell 装置的特点来看,它能在给定界面面积的情况下,分别控制两相的搅拌强度,以造成一个相内全混、界面无返混的理想流动状况,因而明显地改善了设备内流体力学条件及相际接触面积对测定传质系数的影响因素,而且不存在单液滴技术中因液滴的形成与凝聚而造成端效应的麻烦。因此,这种方法被许多研究者所采用,并且得到不断地改进。本实验即采用一改进型的Lewis 池进行各种实验。由于Lewis 池具有恒定界面的特点,当实验在给定的搅拌速度及恒定的温度下,测定各相浓度随时间的变化关系,就可方便地用物料衡算及速率方程获得传质系数。 )()(o o o w w w t o o t w w C C K C C K Adf dC V Adf dC V -=-==-** (1) 式中:V w 、V o ——t 时刻水相和有机相的体积 A ——界面面积 K w 、K o ——以水相浓度和有机相浓度表示的总传质系数 C w *——与有机相浓度成平衡的水相浓度

填料塔吸收传质系数的测定

6 填料塔吸收传质系数的测定 6.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 6.2 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定Kxa 和HOL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol / (m 2 ·s); K xa △X 为推动力的液相总体积传质系数,kmol / (m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y = mx (6-4) 式中: m m=E/P ; E E =f(t),Pa ,根据液相温度测定值由附录查得; p Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。 6.3实验装置与流程 1〕装置流程

第八章 传质过程导论

第八章传质过程导论 第一节概述 8-1 物质传递过程(传质过程) 传质过程 ? 相内传质过程 ? 相际传质过程 相内传质过程:物质在一个物相内部从浓度(化学位)高的地方向浓度(化学位)高的地方转移的过程。 实例:煤气、氨气在空气中的扩散,食盐在水中的溶解等等。 相际传质过程:物质由一个相向另一个相转移的过程。 相际传质过程是分离均相混合物必须经历的过程,其作为化工单元操作在工业生产中广泛应用,如蒸馏、吸收、萃取等等。 几种典型的相际传质过程 ●吸收:物质由气相向液相转移,如图8-1所示 A 图8-1 吸收传质过程 ●蒸馏:不同物质在汽液两相间的相互转移,如图8-2所示。 相界面 B 图8-2 蒸馏传质过程 ●萃取,包括液-液萃取和液-固萃取 液-液萃取:物质从一个相向另一个相转移。例如用四氯化碳从水溶液中萃取碘。 液-固萃取:物质从固相向液相转移。

●干燥:液体(通常为水)由固相向气相转移 其它相际传质过程:如结晶、吸附、气体的增湿、减湿等等。 传质过程与动量传递、热量传递过程比较有相似之处,但比后二者复杂。例如与传热过程比较,主要差别为: (1)平衡差别 传热过程的推动力为两物体(或流体)的温度差,平衡时两物体的温度相等;传质过程的推动力为两相的浓度差,平衡时两相的浓度不相等。 例如1atm,20oC 下用水吸收空气中的氨,平衡时液相的浓度为0.582 kmol/m3 ,气相的浓度为3.28×10 - 4 kmol/m3 ,两者相差5个数量级。 (2)推动力差别 传热推动力为温度差,单位为oC ,推动力的数值和单位单一;而传质过程推动力浓度有多种表示方法无(例如可用气相分压、摩尔浓度、摩尔分数等等表示),不同的表示方法推动力的数值和单位均不相同。 8-2浓度及相组成的表示方法 1. 质量分数和摩尔分数 ● 质量分数:用w 表示。以A 、B 二组分混合物为例,有 w A = (8-1) ● 质量分数:用x 或y 表示。以A 、B 二组分混合物为例,有 x A = (8-2) 2. 质量比与摩尔比 ● 质量比:混合物中一个组分的质量对另一个组分的质量之比,用w 表示。以A 、B 二组分混合物为例,有 (8-3) ● 摩尔比:混合物中一个组分的摩尔数对另一个组分的摩尔数之比,用X 表示。以A 、B 二组分混合物为例,有 (8-4) 使用质量比或摩尔比在某些计算如吸收、干燥计算中较为方便。 3. 浓度 包括质量浓度和摩尔浓度,后者较常用。 第二节 扩散原理 8-3基本概念和费克定律 分子扩散:物质依靠分子运动从浓度高的地方转移到浓度低的地方,称为分子扩散。分子扩 B A A A m m m m m +=B A A A n n n n n +=B A AB m m w =B A AB n n X =

填料塔中传质系数的测定

实验六吸收实验 一、实验目的 二、基本原理 三、计算方法、原理、公式 四、设备参数和工作原理 五、操作步骤 六、实验报告要求 七、思考题 八、注意事项

实验目的 1、了解填料吸收装置的基本流程及设备结构; 2、了解填料特性的测量与计算方法; 3、气液两相逆向通过填料层的压降变化规律以及 液泛现象; 4、喷淋密度对填料层压降和泛点速度的影响; 5、测定在操作条件下的总传质系数K; 6、了解吸收过程的基本操作与控制方法。

1、填料塔流体力学特性: 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。 在双对数坐标系中用压降对气速作图得到一条斜率为1.8-2的直线(图中aa线)。而有喷淋量时,在低气速时(C点以前)压降也比例于气速的 1.8-2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c 点),持液量开始 log b c d a a log△P U 填料层压降空塔气速关系图

1、填料塔流体力学特性: 增大,压降-气速线向上弯曲,斜率变大,(图中cd 段)。到液泛点(图 中d 点)后在几乎不变的气速下,压 降急剧上升。 测定填料塔的压降和液泛速度,是为了计算填料塔所需动力消耗和确 定填料塔的适宜制作范围,选择合适的气液负荷。log b c d a a log △P U 填料层压降空塔气速关系图

2、传质实验: 填料塔与板式塔内气液两相的接触情况有着很大的不同。在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料高度。填料层高度计算方法有传质系数法、传质单元法以及等板高度法。总体积传质系数KYa是单位填料体积、单位时间吸收的溶质量。它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。

填料塔吸收传质系数的测定

化工原理实验报告 学院: 专业: 班级: 一、实验目的 1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法; 3.了解气相色谱仪和六通阀的使用方法。 二、实验原理 气体吸收是典型的传质过程之一。由于CO2气体无味、无毒、廉价,所以气体吸收实验常选择CO2作为溶质组分。本实验采用水吸收空气中的CO2组分。一般CO2在水中的溶解度很小,即使预先将一定量的CO2气体通入空气中混合以提高空气中的CO2浓度,水中的CO2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO2气体的解吸过程属于液膜控制。因此,本实验主要测定Kxa 和HOL 。 计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =??* 1 2 式中: L 液体通过塔截面的摩尔流量,kmol / (m2·s); Kxa 以△X 为推动力的液相总体积传质系数,kmol / (m3·s); HOL 液相总传质单元高度,m ; NOL 液相总传质单元数,无因次。 令:吸收因数A=L/mG ])1ln[(11 1 121A mx y mx y A A N OL +----= 测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y1和y2; (4)平衡关系。 本实验的平衡关系可写成 y = mx 式中: m 相平衡常数,m=E/P ; E 亨利系数,E =f(t),Pa ,根据液相温度由附录查得; P 总压,Pa ,取1atm 。

对流传质系数的类比求解三传类比2013解读

对流传质问题的求解 (1)对流传质系数的理论求解方法。 (2)雷诺类似律。 对流传质系数的类比求解(动量、热量与质量传递的类似律) 在(1)对流传质系数的理论求解方法。一般只适用于具有简单边界条件的层流传质过程。实际过程中层流传质问题并不多见,为了强化传质过程,在实际传质设备中多采用湍流操作。对于湍流传质问题,由于其机理的复杂性,尚不能用分析方法求解,一般用类比的方法或由经验公式计算对流传质系数。一下讨论运用质量传递与动量传递、热量传递的类似性,求解湍流传质系数的方法。 动量、热量和质量三种传递过程之间存在许多类似之处,主要体现在以下几点: 1. 三传类比的基本概念 (1)传递过程的机理类似。 (2)描述传递过程的数学模型(包括数学表达式及边界条件)类似。 (3)数学模型的求解方法类似。 (4)数学模型的求解结果类似。 根据三传的类似性,对三种传递过程进行类比和分析,建立一些物理量间的定量关系,该过程即为三传类比。探讨三传类比,

不仅在理论上有意义,而且具有一定的实用价值。它一方面将有利于进一步了解三传的机理,另一方面在缺乏传热和传质数据时,只要满足一定的条件,可以用流体力学实验来代替传热或传质实验,也可由一已知传递过程的系数求其它传递过程的系数。 由于动量、热量和质量传递还存在各自特性,所以类比方法具有局限性,一般需满足以下几个条件: (1)物性参数可视为常数或取平均值; (2)无内热源; (3)无辐射传热; (4)无边界层分离,无形体阻力; (5)传质速率很低,速度场不受传质的影响。 2. 动量、热量和质量传递的类似律 (1) 雷诺类似律1874年,雷诺通过理论分析,首先提出了类似律 概念。 图5 雷诺类似律模型 雷诺认为,图5当湍流流体与壁面间进行动量、热量和质量传递时,湍流中心一直延伸到壁面,故雷诺类似律为单层模型。

相关文档
最新文档