遥感卫星影像辐射校正包括辐射定标和大气校正@揽宇方圆

遥感卫星影像辐射校正包括辐射定标和大气校正@揽宇方圆
遥感卫星影像辐射校正包括辐射定标和大气校正@揽宇方圆

北京揽宇方圆信息技术有限公司

遥感卫星影像辐射校正包括辐射定标和大气校正

指在光学遥感数据获取过程中,产生的一切与辐射有关的误差的校正(包括辐射定标和大气校正)。

三者关系如图:大气校正的准备过程为辐射定标

辐射定标

定义(Radiometric Calibration)是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较

时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

绝对定标:通过各种标准辐射源,在不同波谱段建立成像光谱仪入瞳处的光谱辐射亮度值与成像光谱仪输出的数字量化值之间的定量关系

相对定标:确定场景中各像元之间、各探测器之间、各波谱之间以及不同时间测得的辐射量的相对值。

技术流程:

获取空中、地面及大气环境数据,计算大气气溶胶光学厚度,计算大气中水和臭氧含量,分析和处理定标场地及训练区地物光谱等数据,获取定标场地数据时的几何参量和时间,将获取和计算的各种参数带入大气辐射传输模型,求取遥感器入瞳时的辐射亮度,计算定标系数,进行误差分析,讨论误差原因。

方法:

反射率法:在卫星过顶时同步测量地面目标反射率因子和大气光学参量(如大气光学厚度、大气柱水汽含量等)然后利用大气辐射传输模型计算出遥感器入瞳处辐射亮度值,具有较高的精度。

辐亮度法:采用经过严格光谱与辐射标定的辐射计,通过航空平台实现与卫星遥感器观测几何相似的同步测量,把机载辐射计测量的辐射度作为已知量,去标定飞行中遥感器的辐射量,从而实现卫星的标定,最后辐射校正系数的误差以辐射计的定标误差为主,仅仅需要对飞行高度以上的大气进行校正,回避了底层大气的校正误差,有利于提高精度。

辐照度法:又称改进的反射率法,利用地面测量的向下漫射与总辐射度值来确定卫星遥感器高度的表观反射率,进而确定出遥感器入瞳处辐射亮度。这种方法是使用解析近似方法来计算反射率,从而可大大缩减计算时间和计算复杂性。

大气校正

定义:大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。大气校正就是消除这些由大气影响所造成的辐射误差,反演地物真实的表面反射率的过程。

不必要的大气校正:不需要进行大气校正的基本原则就是:训练数据来自所研究的影像(或合成影像),而不是来自从其他时间或地点获取的影像。

必要的大气校正:有时必须对遥感数据进行大气校正。例如,从水体或植被中提取生物物理变量(如:水体中的叶绿素a、悬浮泥沙、温度;植被中的生物量、叶面积指数、叶绿素、树冠郁闭百分比)时,就必须对遥感数据进行大气校正(Haboudane等,2002;Thiemann和Hemann,2002)。如果数据未经校正,就可能会丢失这些重要成分的反射率(或出射率)的微小差别信息。此外,如果需要将某景影像中提取的生物物理量(如:生物量)与另一景不同时相影像中提取的同一生物物理量相比较,就必须对遥感数据进行大气校正。

方法:主要分为两种类型:统计型和物理型。

统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,

另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。但是建立和学习这些物理模型的过程漫长而曲折。模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。例如6s模型,Mortran等。

技术能力说明

北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

公司形象展示

信誉证书、荣誉证书、相关资质证书

卫星遥感影像技术服务ISO(9001)认证证书复印件

高新技术企业认定证明文件

国家A级纳税人

卫星影像质量快速检验系统著作权登记证

历史遥感图像检验系统著作权登记证

锁眼卫星影像处理软件著作权登记证

多时空多光谱数据处理系统著作权登记证

北京揽宇方圆信息技术有限公司

遥感图像的几何校正(配准)

遥感图像的几何校正(配准) 1.实验目的与任务: (1)了解几何校正的原理; (2)学习使用ENVI软件进行几何校正; 2.实验设备与数据: 设备:遥感图像处理系统ENVI 数据:TM数据 3 几何校正的过程: 注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配 准或几何校正。 1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image 3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。BASE图像指参考图像而warp则指待校正影像。选择OK! 4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方, 就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大)如果要放弃该点选择 右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择 你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以 预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参 考影像相对应的位置,而后再进行适当的调整并选点。 5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII.. 当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII... 6.接下来就是进行校正了:在ground control points.对话框中选择: options->warp file(as image to map) 在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters 对话框: 首先点change proj按钮,选择坐标系 然后更改象素的大小,如果本身就是你所需要大小则不用改了 最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了

landsat遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备 Landsa 8遥感影像数据一景,本教程以市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标

地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射 定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。

因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。 注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候;

遥感卫星影像辐射校正和大气校正的方法

北京揽宇方圆信息技术有限公司 遥感卫星影像辐射校正和大气校正的方法 辐射校正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。 利用传感器观测目标的反射或辐射能量时,所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值叫做辐射误差。辐射误差造成了遥感图像的失真,影响遥感图像的判读和解译,因此,必须进行消除或减弱。需要指出的是,导致遥感图像辐射量失真的因素很多,除了由遥感器灵敏度特性引起的畸变之外,还有视场角、太阳角、地形起伏以及大气吸收、散射等的强烈影响。 遥感图像辐射校正主要包括三个方面:(1)传感器的灵敏度特性引起的辐射误差,如光学镜头的非均匀性引起的边缘减光现象、光电变换系统的灵敏度特性引起的辐射畸变等;(2)光照条件差异引起的辐射误差,如太阳高度角的不同引起的辐射畸变校正、地面倾斜、起伏引起的辐射畸变校正等;(3)大气散射和吸收引起的辐射误差改正。 辐射校正的目的主要包括:1、尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声等引起的传感器的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差异;2、尽可能恢复图像的本来面目,为遥感图像的识别、分类、解译等后续工作奠定基础。 辐射校正分为辐射定标和大气校正两部分。 辐射定标是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。大气校正就是消除这些由大气影响所造成的辐射误差,反演地物真实的表面反射率的过程。 辐射校正流程图 1.4.3.2影像辐射校正方法 辐射定标主要分为两种类型:统计型和物理型。统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。但是建立和学习这些物理模型的过程漫长而曲折。模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。例如6s模型,Mortran等。 用于大气辐射传输校正的模型主要有5S模型、6S模型、LOWTRAN模型、MODTRAN模型、ACORN模型、FLAASH模型和ATCOR模型。 1、ACORN模型 一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作波长范围是350-2500nm。在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正,因此大气校正的结果称为拉伸的地表反射率,又称表观反射率,在地形信息已知的情况下,可以将表观反射率转为地表反射率。

遥感图像的辐射校正实验报告

遥感图像的辐射校正实验报告 1. 实验目的和内容 实验目的: (1)复习巩固课堂上所学的对遥感图像的辐射校正,掌握这些校正方法的基本原理和方法,理解遥感图像辐射校正的意义; (2)实际学习对遥感图像进行绝对大气校正、相对大气校正的FLAASH和黑暗像元法; 实验内容: (1)绝对大气校正 将遥感图像的DN值转换为地表反射率、地表辐射率、地表温度等的方法。本次实验通过FLAASH法进行绝对大气纠正。 (2)相对大气校正 校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。本次实验通过黑暗像元法进行相对大气纠正。 2. 图像处理方法和流程 A.绝对大气校正 1、加载影像,打开ENVI,file>>open image file,打开L71120038_03820030128_MTL.txt

2、辐射定标 FLAASH模块需要输入的是经过辐射定标后的BIL/BIP文件,ENVI >> basic tools >>preprocessing > >calibration utilities >> Landsat calibration 3、格式转换 上述计算得到的存储方式为BSQ,FLAASH大气校正对于波段存储的要求

为BIL/BIP格式,ENVI >> basic tools>> convert data (BSQ ,BIL ,BIP) 4、FLAASH大气校正 (1)ENVI>>basic tools>>preprocessing>>calibration utilities>> FLAASH,选择需要校正的数据。选用第二种,设置Single scale factor:10。 (2)设置输入与输出文件 ①进入地理空间数据云,查询影像参数。点击数据资源—LANDSAT系列数据

遥感图像辐射校正

实验名称:遥感图像辐射矫正 实验目的:通过实验,了解并掌握辐射矫正的原理、基本方法,深刻理解遥感辐射矫正的意义。 实验原理:辐射矫正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行矫正,消除或改正辐射误差而引起的影响畸变的过程。 辐射矫正的一般方法有: 1.大气校正:大气会引起太阳光的吸收、散射,也会引起来自目标的反射及散射光的吸收、散射,入射到传感器的除目标物的反射光外,还有大气引起的散射光,消除并校正这些影响的处理过程叫大气校正。 2.太阳高度及地形等引起的畸变校正:视场角和太阳角的关系所引起的亮度变化的校正;地形倾斜的影响校正。 3.传感器的灵敏度特性引起的畸变校正:(1)由光学系统的特性引起的畸变校正。(2)由光电变化系统的特性引起的畸变校正。 辐射误差:传感器观测目标的反射或辐射能量时,观测值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值。

两个基本概念 反射率:反射率是反射辐射通量与入射通量的比值,是0-1之间的无量纲的值 ρλ=Φreflectedλ/ Φiλ 通常用反射率描述各种地物的光谱反射特性。一般分为镜面反射、方向反射、漫反射(各向同性),反射率是地物自身的属性。 朗伯反射体:发光强度和亮度的概念不仅适用于自己发光的物体,也可以应用到反射体。光线射到光滑的表面上,定向地发射出去;射到粗糙的表面上时,它将朝向所有方向漫射。一个理想的漫射面,应是遵循朗伯定律的,即不管入射光来自何方,沿各方向漫射光的发光强度总与cosθ成正比,从而亮度相同。积雪、刷粉的白墙或十分粗糙的白纸表面,都很接近这类理想的漫射面。这类物体称为朗伯反射体。 大气影响的定量分析 进入大气的太阳辐射会发生反射、折射、吸收、散射和透射。其中对传感器接收影响较大的是吸收和散射。

基于6S模型TM遥感影像大气校正

毕业论文 题目:基于6S模型的TM遥感影像大气校正 研究--以张掖地区为例 学院:地理与环境科学学院 专业:地理信息系统 毕业年限:2011年 学生姓名:秦麟 学号:200775000126 指导教师:李净

基于6S模型的TM遥感影像大气校正研究--以张掖地区为例 秦麟 摘要:受大气吸收与散射的影响,电磁波在大气--目标物--遥感器途径传输过程中发生失真,造成目标地物反射辐射能量到达遥感器时被衰减。给计算地表反照率、反射率和地表温度等关键参数带来较大的误差。本文以张掖地区Landsat TM热红外波的遥感图像数据为例,通过利用6S大气辐射传输模型进行大气校正,并在窄波段反照率与宽波段反照率之间存在线性关系的前提下,反演该地区的地表反照率。 关键词:6S模型;大气校正;地表反照率 6S Model Based Atmospheric Correction of Remote Sensing Image in zhangye QIN Lin Abstract : Due to the distortions and noises caused by the presence of the atmosphere on the Sun-target-Sensor path, the space-based and airborne remote sensing information in the solar spectral range do not directly characterize the surface objects. It becomes serious impediments for the quantitative analysis and measurement of resources and environment. This paper discussed the atmospheric correction with 6S model (Second Simulation of Satellite Signal in the Solar Spectrum), reversing surface albedos under the linear relationship between narrow band albedos and broadband albedos in the remote sensing image in zhangye city. Key words: 6S model; atmospheric correction; surface albedo.

遥感数据辐射校正

遥感数据辐射校正的原理及方法 遥感1班 彭睿20123225 摘要由于传感器响应特性和大气的吸收、散射以及其它随机因素影响,导致图像模糊失真,造成图像的分辨率和对比度相对下降,这些都需要通过辐射校正复原。辐射校正包括三部分的内容:传感器端的辐射校正,大气校正,地表辐射校正。 关键字辐射校正大气校正照度校正辐射传输过程ERDAS 引言近年来,随着航天技术、计算机技术、卫星定位技术和地理信息技术的发展,摄影测量与遥感已成为地球空间信息科学的基础技术,遥感图像在人类生活的诸多领域被广泛应用。然而,在遥感成像时,由于各种因素的影响,遥感图像会存在一定的辐射量失真现象,这些失真影响了图像的质量和应用,必须对其做消除或减弱处理,遥感图像辐射校正就是针对遥感图像的这一缺陷而发展起来的。在遥感影像辐射校正中,大气辐射校正是最重要的一部分,本文主要讨论大气辐射校正的方法和过程。 消除遥感图像数据中依附在辐亮度中的各种失真的过程称为辐射量校正(Radiometric Calibration),简称辐射校正。 1.辐射校正概述 辐射校正的目的: 尽可能消除因传感器自身条件、大气条件、太阳位置和角度条件及某些不可避免的噪声引起的传感器所得到的目标测量值与目标的光谱反射率或光谱辐亮度等物理量之间的差异,尽可能恢复遥感图像本来的面目,为遥感图像的分割、分类、解译等后续工作打下基础。 辐射误差来源 1.1 传感器端 1.1.1 光学摄影机引起的辐射误差 1.1.2 光电扫描仪引起的辐射误差 1.2 外部因素 1.2.1 大气 1.2.2太阳辐射 2.辐射校正包括三部分的内容: 2.1.传感器端的辐射校正 2.2.大气校正 2.3.地表辐射校正 3.辐射传输过程:如图-1

landsat遥感影像地温度反演教程大气校正法

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC81280402016208LGN00 2016/7/26 3:26:56 106.11288 30.30647 …………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。

(1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取;

遥感实习2卫星数据的预处理流程

数据预处理的一般过程包括几何校正、图像镶嵌与裁剪、辐射定标与大气校正等环节。

图1 数据预处理一般流程 通常我们直接从数据提供商获取未定标的DN 图像,然后定标为辐射亮度图像,对辐射率亮度图像进行大气校正得到地表反射率图像。 一、辐射定标与大气校正 1、辐射定标Radiometric calibration :将记录的原始DN 值转换为大气外层表面反射率(或称为辐射亮度值)。 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值 方法:实验室定标、机上/星上定标、场地定标 不同的传感器,其辐射定标公式不同。L=gain*DN+Bias 在ENVI 中,定标模块:Basic Tools>Preprocessing>Calibration Utilities>模块 2、大气校正Atmospheric correction :将辐射亮度或者表面反射率转换为地表实际反射率 目的:消除大气散射、吸收、反射引起的误差。 分类:统计型和物理型 目前遥感图像的大气校正方法按照校正后的结果可以分为2种: 1) 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。包括:基于辐射传输模型、基于简化辐射传输模型的黑暗像元法、基于统计学模型的反射率反演 2) 相对大气校正方法:校正后得到的图像,相同的DN 值表示相同的地物反射率,其结果不考虑地物的实际反射率。包括:基于统计的不变目标法、直方图匹配法等。 方法的选择问题,一般而言: 1) 如果是精细定量研究,那么选择基于辐射传输模型的大气校正方法。 2) 如果是做动态监测,那么可选择相对大气校正或者较简单的方法。 3) 如果参数缺少,没办法了只能选择较简单的方法了。 在ENVI 中,Basic tools>preprocessing>calibration utilities>FLAASH 二、数字图像镶嵌与裁剪 1、镶嵌 当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形成一幅或一系列覆盖全区的较大的图像。 在进行图像的镶嵌时,需要确定一幅参考影像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大时,可以利 Digital Numbers Radiance TOA Reflectance Geometric correction Step 1 Step 2 Surface Reflectance Step 3 Step 4 Analysis

envi遥感图像处理之大气纠正

大气校正说明文档 步骤一:辐射定标 本实验采用的是绝对辐射定标,直接建立遥感影像DN 值与接收到的能量的 之间的关系。 建立关系所采用的公式是:offset DN gain L += * 其中,λ λ λ λ λ λ min max min max min max DN DN L L e fullDNrang L L gain --= -= , λ min L offset = Lmax λ和Lmin λ通过参看遥感影像的头文件进行确定。fullDNrange 取的是 255。 具体操作如下: 1) 打开遥感影像文件及其头文件 2) 根据头文件信息计算gain 和offset 的值 3) 在envi 的Basic Tools 中打开 Band Math 像,将本步骤采用的公式 写入band math 中,计算出L 。

至此,就完成了遥感影像的辐射定标过程。 步骤二:未进行大气校正所得到的反射率 本步骤讲述如何从经过辐射定标的遥感影像直接生成地物的反射率的影像,制作该影像的目的是为了与后面经过大气校正后的影像进行对比。 本步骤所采用的公式是:))cos(*/(**2 θπρESUN d L = 其中,L 是由上步所算出来的,d 指的是实际的日地距离,单位是天文距离,ESUN 指的是太阳平均辐射强度,θ为太阳天顶角。 d 值可以由观测时间查阅相关资料获得。ESUN 值也可以由相关资料获取。 θ可以从头文件中获得。 具体操作如下: 1) 查阅相关资料,确定参数θ、d 、ESUN

2)在envi的Basic Tools中打开Band Math像,将本步骤采 用的公式写入band math中 3)确定变量b2为上步所算的L,并由此计算出未进行大气校正的反射率。 由此,我们就得到了未经大气校正的反射率。 步骤三:进行大气校正,得到地物反射率 由于大气的影响,会使得遥感影像的反射率发生较大的变化,为了得到地表

遥感影像辐射校正实习报告

遥感实习报告(4)遥感影像辐射校正 专业: 班级: 姓名: 学号: 成绩: 指导教师: 2013年6月15日

目录 一:实验目的 (3) 二、影像数据 (3) 三、实验内容 (3) 四、实验步骤 (4) (一)、绝对大气校正 (4) (二)、相对大气校正——回归分析法 (7) (三)、多时相影像匹配法 (9) 五、心得体会 (13) 六:程序设计 (14)

一:实习目的: 进一步巩固、掌握遥感影像绝对及相对大气校正基本方法。二:影像数据: 1.交大犀浦校区2003年、2005年SPOT5多光谱影像 影像空间分辨率10米,波段1—近红外(0.78 - 0.89μm);波段2—红色(0.61 - 0.68μm);波段3—绿色(0.50 - 0.59μm);波段4—短波红外(1.58 - 1.75μm)。 2. 交大犀浦校区2006年QuickBird(快鸟)多光谱影像 影像空间分辨2.44—2.88米,波段1—蓝(450-520nm);波段2—绿(520-660nm);波段3—红(630-690nm);波段4—近红外(760-900nm)。 三:实习具体内容: (一)、绝对大气校正 以实测或从光谱数据库中查得的光谱数据,采用基于ELC的大气校正方法,对交大犀浦校区2006年QuickBird多光谱影像中的第1波段影像进行绝对大气校正。 基本步骤: (1)、从QuickBird多光谱影像文件中提取出第1波段影像;(2)、从影像中判读出一些典型地物;

(3)、从以前实测的光谱物据或光谱数据库中,读出步骤2中判读出的那些地物对应QuickBird第1波段的反射率值; (4)、基于步骤3的反射率值,采用基于ELC的大气校正方法,对交大犀浦校区2006年QuickBird多光谱影像中的第1波段影像进行绝对大气校正。 (二)、相对大气校正——回归分析法 以交大犀浦校区2006年QuickBird多光谱影像中的第4波段影像为参考,采用回归分析法,对第1波段影像进行相对大气校正。(三)、多时相影像匹配法 以交大犀浦校区2003年SPOT5多光谱影像中的第3波段(绿波段)影像为参考,采用多时相影像匹配法,对交大犀浦校区2005年SPOT5多光谱影像中的第3波段(绿波段)影像进行相对大气校正。四:实验步骤 (一)、绝对大气校正 1:从QuickBird多光谱影像文件中提取出第1波段影像 启动ERDAS软件在Viewer #1中打开影像:quickbird_multi_2006_xipu..img,在ERDAS软件界面中选择Interpreter Utilities Layer Stack:如图4.1-1

ERDAS 遥感影像校正

ERDAS 遥感影像校正 图像几何校正 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。 图2-1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下: 表2-1 几何校正计算模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换)(由于多项式法原理比较直观,使用上较为灵活且可以用于各种类型的图像,因而遥感图像几何纠正的空间变换一般采用多项式法。) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Lantsat卫星图像正射校正 Spot Spot卫星图像正射校正 3、图像校正的具体过程 数据源采用具有地理参考信息的SPOT全色影像作为标准影像,选到一定量的地面控制点,采用多项式拟合方法对卫星图像进行校正。 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下: ERDAS图表面板菜单条:Session→Title Viewers 然后,在Viewer1中打开需要校正的Lantsat图像:tmAtlanta,img 在Viewer2中打开作为地理参考的校正过的SPOT图像:panAtlanta,img 第二步:启动几何校正模块(Geometric Correction Tool) Viewer1菜单条:Raster→ Geometric Correction →打开Set Geometric Model对话框(2) →选择多项式几何校正模型:Polynomial→OK →同时打开Geo Correction Tools对话框(3)和Polynomial Model Properties对话框(4)。 在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数: →定义多项式次方(Polynomial Order):2(若此处定义的次方数为T,则需配准的点数为(T+1)*(T+2)/2,若为2,责应该配置6个点)

ERDAS遥感图像的辐射校正

遥感图像的辐射校正 实验目的:通过实习操作,掌握遥感图像辐射校正的基本原理和和方法,理解遥感图像辐射校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像辐射校正。 由于遥感检测系统、大气散射和吸收等原因引起的图像模糊失真、分辩率和对比度下降等辐射畸变,其中,大气散射是图像辐射畸变的主要因素,实验中主要是消除由大气散射引起的辐射误差。 大气校正有两种方法,一种是直方图图,一种是线性回归法。 1、直方图法(注意:是否满足应用该方法的前提条件) 打开TM影像,通过视窗viewer的图标,查找最小灰度值,利用空间建模模块(Modeler)的建模工具(Model Maker)图像象元灰度值减去该最小灰度。 点击modeler → model maker ,打开建模对话框见下图: 双击输入要校正的某一波段的影像,双击输入运算方程式,双击输出校正后的新 图像名称,点击工具栏中的运行图标,计算机自动进行运算。

2、线性回归分析法 在视窗viewer打开要校正的图像,Raster→Profile Tools 弹出对话框,选择spectral→ ok,弹出Spectral Profile对话框如下: 利用Spectral Profile 中的图标选取一系列由暗到亮的目标地物点,在对话框中得到地物点在各个波段的的光谱曲线,通过Spectral Profile对话框菜单栏的viewer → Tabular Data查看地物点在各个波段的的具体光谱灰度值。

利用一系列目标地物点的灰度值建立线性回归方程L b=aL a+b,求出线性方程的常数项a、b,该值b即为大气影响值,在空间建模工具中,图像灰度值减去该值即可消除大气散射对图像影响。

浅析遥感图像的几何校正原理及方法

浅析遥感图像的几何校正原理及方法 摘要:几何校正,就是清除遥感图像中的几何变形,是遥感影像应用的一项重要的前期处理工作。本文简单分析了几何校正的原理和基本方法,并以ERDAS软件为例,对青海海东地区遥感影像进行了几何校正,从而直观地表述了遥感图像几何校正的完整过程。结果表明,几何校正的精度受多方面因素影响,最主要的是控制点GCP的选取数量和选取位置。本次校正精度小于0.5个像元,符合要求。 关键词:遥感、ERDAS、几何校正、GCP 引言:遥感20世纪60年代发展起来的对地观测综合性技术。狭义遥感指从远距离、高空,以至外层空间的平台上,利用可见光、红外、微波等遥感器, 通过摄影、扫描等各种方式,接收来自地球表层各类地物的电磁波信息,并对这些信息进行加工处理,从而识别地面物质的性质和运动状态的综合技术。遥感已然成为地理数据获取的重要工具。但是遥感技术的成图规律决定了遥感图像不能直接被应用,因为遥感图像在成像时, 由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响, 使得遥感图像存在一定的几何变形[2] , 即图像上的像元在图像坐标系中的坐标与其在地图坐标系等参考坐标系统中的坐标之间存在差异, 其主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲[3] 。而且随着当今遥感技术的飞速发展,人们对遥感数据的需求也多源化,它们可以是来自不同的波段, 不同的传感器, 不同的时间。这些多源数据在使用时, 必须具有较高的空间配准精度。这就需要对原始影像进行高精度的几何校正。因此, 几何校正是遥感影像应用的一项重要的前期处理工作。 ERDAS IMAGINE 是美国ERDAS 公司开发的遥感图像处理系统,它以先进的图像处理技术友好灵活的用户界面和操作方式、面向广阔应用领域的产品模块、服务于不同层次用户的模型开发工具以及高度RS/GIS 集成功能为遥感及相关应用领域的用户提供内容丰富且功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势[5]。基于此软件强大的功能性和灵活的操作性,本文采用erdas软件对海东地区影像图进行几何纠正。 2 研究区概况与研究方法 海东地区位于青海省东北部,"海东"以位于青海湖东而得名。地处祁连山支脉大板山南麓和昆仑山系余脉日月山东坡,属于黄土高原向青藏高原过渡镶嵌地带,海拔在1650~2835米之间。境内山峦起伏,沟整纵横,气候属于高原气候,高寒、干旱、日照时间长,太阳辐射强,昼夜温差大。年平均气温6.9℃,年均降水量为323.6 毫米,总蒸发量为1644毫米。本文采用校正过的2004年的海东地区参考影像对2009年对应影像进行校正。 3 几何校正的原理与方法 遥感图像几何校正包括光学校正和数字纠正。本文主要介绍数字纠正。 数字纠正是通过计算机对图像每个像元逐个地解析纠正处理完成的,其包括两方面,一是像元坐标变换,二是像元灰度值重新计算(重采样)。 (三) 数字图像灰度值的重采样 校正前后图像的分辨率变化、像元点位置相对变化引起输出图像阵列中的同名点灰度值变化,如图3所示

遥感大气校正

实验四遥感图像的大气校正 实验目的:通过实习操作,掌握遥感图像大气校正的基本方法和步骤,掌握遥感图像波段计算及其应用。 实验内容: 环境小卫星的数据读取; 辐射定标、图像配准、大气校正; 植被反演、植被覆盖变化监测 1、实验相关知识及背景 ◆传感器定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面 温度等物理量的处理过程;传感器定标可分为绝对定标和相对定标,绝对定标是获取图像上目标物的绝对辐射值等物理量。 ◆遥感图像的大气校正方法很多,这些校正方法按照校正后的结果可以分为2种:绝 对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 ◆ENVI下FLAASH大气校正工具是基于MODTRAN4+辐射传输模型,FLAASH对图 像文件有以下几个要求: (1)数据是经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。 (2)数据带有中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。 (3)数据类型支持四种数据类型:浮点型(floating)、长整型(long integer )、整型(integer)和无符号整型(unsigned int)。数据存储类型:ENVI标准栅格格式文件,且是BIP或者BIL。 (4)波谱范围:400-2500nm ◆浑善达克地区位于内蒙古草原锡林郭勒高原中部。近年来频频发生在京津地区的沙 尘暴与该地区生态环境恶化相关。据统计,京津地区沙尘暴70%的沙源来自于这个区域。通过对该区域植被覆盖度的定量反演,植被覆盖的变化检测,可以实现草原植被的高频率、大范围、高实时的变化监测。 2、实验步骤 根据环境小卫星CCD数据特点及草原植被变化监测的要求,采用以下处理流程: 一、数据预处理: https://www.360docs.net/doc/f211097741.html,D数据读取; 2.辐射定标; 3.大气校正; 4.研究区裁剪; 二、反演模型建立 1.归一化植被指数; 2.植被覆盖度;

浅谈遥感图像的几何校正

浅谈遥感图像的几何校正 摘要 遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。ERDAS IMAGINE是一款遥感图像处理系统软件。遥感图像的几何处理是遥感信息处理过程中的一个重要环节,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。 关键词:遥感,erdas imagine,几何纠正

1.前言 遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。具体地讲,是指在高空和外层空间的各种平台上,运用各种传感器获取反应地表特征的各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状,位置,性质,变化及其与环境的相互关系的一门现代应用技术科学。遥感图像处理硬件系统也从光学处理设备全面转向数字处理系统,内外存容量的迅速扩大,处理速度急速增加,使处理海量遥感数据成为现实,网络的出现将使数据实时传输和实时处理成为现实。遥感图像处理软件系统更是不断翻新,从开始的人机对话操作方式发展到视窗方式,未来将向智能化方向发展。ERDAS IMAGINE是一款遥感图像处理系统软件。ERDAS IMAGINE是美国ERDAS 公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势。 遥感图像作为空间数据,具有空间地理位置的概念,在应用遥感图像之前,必须将其投影到需要的地理坐标系中。因此,遥感图像的几何处理是遥感信息处理过程中的一个重要环节。 遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,获得的遥感图像相对于地表目标存在一定的几何变形,使得图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,造成形状或位置的失真,这主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲,且其精度直接影响到后续处理工作的质量。要在这样的遥感图像上进行研究,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。 2.国内外发展状况 2.1国内发展状况

基于遥感图像大气校正的意义与发展

基于遥感图像大气校正的意义与发展 随着多光谱、多时相传感器的发展,定量遥感也获得了很好的发展契机。虽然对于影像分类、变化检测的情况不需要进行大气校正,但大气校正作为光学遥感信息定量化研究中必不可少的一步,已受到越来越多的重视。近年来,传统的大气校正方法也在不断改进,越来越多的大气校正模型将更多的大气参数纳入定量分析范围,以提高大气校正的精度和适用性。 标签:大气校正;定量遥感;模型 引言 随着近年来定量遥感的迅速发展,尤其是越来越多地将多传感器、多时相遥感数据利用于土地利用分析、土地覆盖变化监测、全球资源环境分析、气候变化监测等领域,遥感图像大气校正方法的研究越来越受到重视。大气是影响遥感定量分析与应用的重要因素,因此消除大气效应、卫星姿态角和太阳高度角等因素对结果的影响也成为了决定定量遥感分析精度的重要前提。尤其是近年来高光谱技术的发展,极大地提高了高光谱影像的分辨率。因此,对参数更为详细的描述方法及适用性更强的大气校正方法必不可少。 1 大气校正的意义 大气校正广泛应用于定量遥感中。为了实现反演模型的时空扩展,大气校正的精度直接决定了后续定量分析的精度。定量反演的目的是获取地球信息,精确识别地物,尤其是在生物特性方面具有广泛的应用,比如水体特性分析及生物指数分析。 定量遥感在海洋湖泊、水体污染程度、水体生物量组成等方面有着广泛的应用。在水体特征研究中,大气的衰弱作用使得卫星遥感信号不能正确表现自然水体的表观光学特性和内在光学特性,对水体样本层次的变化不敏感。尤其在蓝绿波段,大气对光谱数据的污染最为严重。此外,被动遥感信号从大气顶层出发,经两次大气散射和吸收及地面目标反射才被记录,所以大气条件对信号污染作用使传感器接收到的辐射信息存在较大误差,定量分析与处理过程中需剔除。比如环境卫星的CCD图像数据具有较高空间分辨率、时间分辨率和较宽的刈幅。在接受到的辐射信息中,有90%属于大气信号,而能反映水体生物光学信号的仅占5%~15%。 定量遥感在林业方面也有这广泛的应用,比如从植被中提取生物量、叶面积指数、叶绿素、树冠郁闭百分比等。在对植被指数进行分析时,太阳光照角度和观测视角以及大气、云的条件的变化都很大,因此得到的是大气上界的双向反射率信息(也称表现反射率)。此外,大气中水蒸气和气溶胶对辐射的散射和吸收有较大影響。因此,如何分离地气耦合效应,得到准确的地面反射率信息是卫星遥缚中基础但极为重要的工作。归一化植被指数NDVI及ARVI等可部分校正大

遥感影像相对辐射校正实验

相对辐射校正 打开待进行校正的同一地区的两个时相的影像.本实验以突泉县为例 1.打开两幅影像,观察是否数据无误(包括波段顺序是否正确,影像有无较大偏 移). 2.观察两幅影像的目视效果,或者通过ENVI菜单Basic Tools中的statistics的 compute statistics来获取两幅影像的像元DN值分布.将两幅中DN值差异大,或者更接近真实值的作为主影像;将DN值差异小,或者偏离真实值的影像作为从影像,来进行校正. 注意:一定记清楚哪幅为主影像,哪幅为从影像.(突泉县主影像为2007年影像,从影像为2010年影像) 3.获取两时相影像的pif点. Pif点即伪不变特征点,通常选取影像中的深水面,无植被覆盖的沙地,面积较大的建设用地等.PIF点选取应当广泛一些. 首先将两幅影像Link起来.利用ENVI的ROI在主影像上选取pif点.选取的时候每个PIF点应当面积小,准确.在主影像选取时,应当link着从影像,以便观察选取的PIF点是否发生变化.如果发生变化,应当弃选. 选好之后,将ROI存储为ASCII.存储的时候提示以哪幅影像为基准,那么通过两次操作选取不同基准的影像,就得到了两幅影像的PIF点数据.(请将生成的数

据命名时添加县名和年份等必要信息) 4.获得相对辐射校正系数. 这一步利用最小二乘法处理数据.将获得的数据. 创建一个EXCEL空表格.为了方便查找,最好现在就把它重命名一下(我将我的表格命名为”突泉数据”).打开表格.将主影像生成的txt也打开,将里面的从”;ID” 开始的文本拷贝到表格中.注意粘贴后,下方的粘贴选项.选择”使用文本导入向导”,持续”下一步”,最后”完成”.这时,每个数据元分别放在了单独的表格空格中. 将不必要的数据删除,只留下必要的ID和6个波段即可,下图所示.(这其中有必要自己稍微调整一下表头部分,但并不麻烦,此处不赘述.)

遥感专题讲座——定量遥感(三、大气校正)

大气校正 大气校正是定量遥感中重要的组成部分。本专题包括以下内容: ? ? ●大气校正概述 ? ? ●ENVI中的大气校正功能 1大气校正概述 大气校正的目的是消除大气和光照等因素对地物反射的影响,广义上讲获得地物反射率、辐射率或者地表温度等真实物理模型参数;狭义上是获取地物真实反射率数据。用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧等物质对地物反射的影响,消除大气分子和气溶胶散射的影响。大多数情况下,大气校正同时也是反演地物真实反射率的过程。

图1 大气层对成像的影响示意图 很多人会有疑问,什么情况下需要做大气校正,我们购买或者其他 途径获取的影像是否做过大气校正。 通俗来讲,如果我们需要定量反演或者获取地球信息、精确识别地物等,需要使用影像上真实反映对太阳光的辐射情况,那么就需要做大气校正。我们购买的影像,说明文档中会注明是经过辐射校正的,其实这个辐射校正指的是粗的辐射校正,只是做了系统大气校正,就跟系统几何校正 的意义是一样的。 目前,遥感图像的大气校正方法很多。这些校正方法按照校正后的 结果可以分为2种: ??●绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。 ??●相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 常见的绝对大气校正方法有: ●基于辐射传输模型 ? ??MORTRAN模型 ? ??LOWTRAN模型 ? ??ATCOR模型 ? ??6S模型等 ●基于简化辐射传输模型的黑暗像元法

●基于统计学模型的反射率反演; 相对大气校正常见的是: ●基于统计的不变目标法 ●直方图匹配法等。 既然有怎么多的方法,那么又存在方法选择问题。这里有一个总结供 参考: 1、如果是精细定量研究,那么选择基于基于辐射传输模型的大 气校正方法。 2、如果是做动态监测,那么可选择相对大气校正或者较简单的 方法。 3、如果参数缺少,没办法了只能选择较简单的方法了。 2 ENVI大气校正功能 在ENVI中包含了很多大气校正模型,包括基于辐射传输模型的MORTRAN模型、黑暗像元法、基于统计学模型的反射率反演。基于统计的不变目标法可以利用ENVI一些功能实现。其中MORTRAN模型集成在ENVI大气校正扩展模块中。还有直方图匹配等。 2.1 简化黑暗像元法大气校正 黑暗像元法是一种古老、简单的经典大气校正方法。它的基本原理是在假设待校正的遥感图像上存在黑暗像元、地表朗伯面反射和大气性质均一,并忽略大气多次散射辐照作用和邻近像元漫反射作用的前提

相关文档
最新文档