圆形钢围堰最小封底厚度计算

圆形钢围堰最小封底厚度计算
圆形钢围堰最小封底厚度计算

圆形钢围堰最小封底厚度计算

一、几何数据及计算参数

钢围堰: R外=23.6m R内=21.2m

施工水位按+15.0m计算

封底砼厚度设为参数h 刃脚处标高为(6.91-h)

水深h1=(8.09+h)m

封底砼:C20,[σW]=6.8 MPa,[σWL]=0.4 MPa,[C]=0.67 MPa。二、围堰受力检算

围堰封底砼最不利受力工况为抽水施工承台时,所以只针对此工况对围堰封底砼进行检算控制。

封底混凝土计算

上浮力:F1=γ水h1A=1×(8.09+h)×3.14×10.62=(352.8h+2854.2)t

混凝土自重G=γ砼hA=2.4×h×3.14×10.62=(846.7h)t

封底混凝土与桩身及围堰的摩擦阻力

F2=(3.14×21.2+12×3.142×2)×h×67=(9509h)t

G+F2>F1得h>0.28m

可假定封底混凝土和围堰及桩身固结

作用封底砼底面向上的压力为:

q=1×(8.09+h)-2.4×h=(8.09-1.4h)t/m2

w=(1/6)×h2=(h2/6)m3

钻孔桩之间的封底砼按简支梁计算,钻孔桩之间的最大距离7.3m M=(1/8)×(8.09-1.4h)×7.32=(53.9-9.3h)t .m

封底砼弯曲拉应力:

σ=(53.9-9.3h)×0.01/ (h2/6)<[σwl]=0.4Mpa

得:h=2.23m

三、结论

圆形钢套箱砼封底最小厚度为2.23m。若封底厚度达不到2.23m,且封底砼与基岩面有夹层的话,那有可能封底砼局部要有裂缝漏水现象。

圆形钢围堰封底砼施工方案

改建铁路南昌枢纽新建西环线工程 沙田赣江特大桥19#墩 圆形双壁钢套箱围堰封底砼专项施工方案 编制:审核: 中铁十七局南昌铁路枢纽西环线工程项目经理部 二00八年元月六日

沙田赣江特大桥19#墩 圆形双壁钢套箱围堰封底砼专项施工方案 一、施工概述 沙田赣江特大桥19#墩为主墩,设计采用12根φ2.0m钻孔桩,桩长26.5米,承台为低桩承台,基础承台尺寸为14×20.16×4m,该墩为先堰后桩法施工,围堰外径23.6米、内径21.2米、壁厚1.2米、总高度12.69米,竖向分成3节,第一节5.4m,第二节3m,第三节4.29m,其中第一节和第二节为双壁,第三节为单壁。其中刃脚高度 1.66米。刃脚底标高+4.36m,承台底标高+7.01m,目前水位标高为11.81m,封底厚度为2.55m,围堰封底砼为C20,理论数量852m3;灌筑方量约900m3。 二、施工方案 1、灌注顺序原则 总体上按照上先低后高,一端向另一端全断面推进的顺序灌注。根据现场实测的基底北低南高的地形,由北向南方向逐步推进。两根导管以桥纵轴线为界,分成上下游两个区域同步作业。具体见附图。 2、施工工艺流程 根据上述原则,围堰下沉到位,并经详细测量平面位置后,开始搭设封底工作平台,并对基底进行高压风清理,并对低洼处用卵石整平,刃脚空隙用水泥袋进行封堵,保证刃脚底平面处于水平状态。待上述准备工作完成后,再进行封底施工,具体施工工艺流程如下: 3、封底前准备工作 ⑴封底砼配合比配置 要求配置的封底砼具有很好的和易性和流动性,具有自流平、自密实的特点。通过多种配合比的比选和优化,具体性能指标如下:

钢围堰计算

钢套箱围堰设计计算资料 一、已知条件: 1. 水深: m 5.7 2. 承台尺寸: m 5.57? 3. 封底砼的设计厚度: []h =m 1 4. 钻孔桩数量及尺寸:m m 162.16?-φ 二、初拟围堰的尺寸: 长?宽?高=m 868?? 三、校核封底砼的厚度: ct f b M k h ???= max 5.3+D <[]h 其中:k —安全系数 65.2=k b —板宽,一般取 1=b CT f —砼抗拉强度(20C ) ct f 21200m t = D —水下砼与井底泥土掺混需增厚度 3.0=d ~m 5.0 21 ??=p k M m qx 其中:=1 矩形板计算跨度 =1 m 6(取其较小者) -k 弯矩系数根据21 选用 75.08 6 21== ,故0673.0=k (简明施工手册—275页) 静水压力形成的荷载-p : 25.7m t p = (m t p 5.7=—单位宽度) m t p k M -=??=??=171.1865.70673.0221max

故:b f M k h ct ???= max 5.31200 1171 .1865.25.3???= +D 5.0+ m m 1875.05.0375.0<=+= 符合强度要求。 围堰简图附后 四、确定壁板21 (见图示) 1. 设5.021= 2. 壁板厚度为mm 6=δ 3. 壁板与纵肋、横肋为四周焊 则 11(0829.0Y M a =-最大, “建筑结构静力计算手册”291页) 4. 静水压力为:m t q 5.7=(单位宽度) 5. 壁板材料[]m t 18000=σ(单位宽度) 6. 计算 1和2 211max ??=q a M []2max 6 1 δσ??=M []22 1 16 1 δσ=?? q a []q a ???=12 16δσ = 6 5.70829.000 6.0180002 ???m 417.0= 取:mm 4001= 则:mm 8002= 五、计算横向加劲肋的强度 1. 横肋采用87575??<的角钢,其235.11,93.27cm A cm W == 2. 横肋采用材料的允许应力[]21800cm kg =σ 3. 横肋按五跨连续梁计算(以大纵肋为支点) 2max ??=q k M 其中:046.0=K cm 120= cm kg m t q 755.7==

钢围堰封底砼检算

钢围堰封底砼检算 (一)封底砼厚度验算 抽水后,封底砼底面上作用的向上水压力: q=13.48(水压力)-(2.4×3.0)(砼重量)=6.28t/m 2 按周边简支支承的圆板,承受均布荷载,板中心的弯矩[桥梁地基与基础397页] M=pa 2(3+μ)/16 式中p=6.28t/m 2圆板上作用的均布荷载 a=11.8m(圆板的计算半径,取自刃脚斜面一半) μ=1/6(砼的侧向变形系数,即泊桑比) M=(6.28×11.82)(3+1/6)/16=173.06t .m 根据《给水排水工程钢筋混凝土沉井结构设计规程》中6.1.13规定,水下封底混凝土的厚度,应按下式计算: t u h h = + t h —水下封底混凝土厚度()mm ; M —每米宽度最大弯矩的设计值()N mm ?; b —计算宽度()mm ,取1000mm ; t f —混凝土抗拉强度设计值()2/N mm ; u h —附加厚度,可取300mm 。 则,0.3 2.67t u h h m = == 实际工程封底混凝土的厚度取为3.0 2.67m m >。

(二)各种荷载 1、各种面积及体积 ①刃脚底围堰内面积f1=π12.12 =459.96m2 ②封底砼体积V1=π(12.12-10.92)×1.3/2+π10.92×3=1176.2m3 ③围堰内外壁空隙体积 V2=π(12.12-10.9 2)×11.3-173320/7850=957.7m3 ④围堰内共12根φ1.8m桩,钢护筒直径取2.2m,其与砼接触表面积 f2=π2.2×3×12=248.8m2 2、浮力F= f1γ水h=459.96×13.48=6200t 3、抗力 ①钢围堰重力含壁内砼(浇注至承台底标高砼重量) P1=340(围堰)+480(壁舱内砼)=820t ②封底砼重量 P2= V1×2.4=1176.2×2.4=2822.9t ③围堰壁内水重量 P3= V2×1=957.7×1=957.7t ④封底砼与钢护筒间的摩擦力(钢护筒与砼摩擦系数10.4t/m2) P4= f2×15=248.8×10.4=2588t 抗浮力P= P1+P2+P3+P4=820+2822.9+957.7+2588=7188.6t (三)封底混凝土受剪计算 封底砼所受剪力F-P2 -P4=6200-2822.9-2588=789.1t

MIDAS双壁钢围堰建模过程

MIDAS结构检算培训资料 之 双壁钢围堰操作例题

一、项目简介 1.1结构简介 某特大桥采用(60.75+100+60.75)m大跨连续梁结构跨越秦淮新河,承台位于主河道,直为径17.4m,高4m,底标高-5.0m,施工最大水位为8.0m,河床以下主要为第四系全新统冲积层(Q4al),下伏基岩为侏罗系上统西横山组(J3)钙泥质砂岩和凝灰质砂岩,承台处地址情况如下图: 图1-1承台处地址情况图 钢围堰为单双壁结合圆形钢围堰,内边线半径比承台半径大10cm。钢围堰壁厚1.0m,外直径尺寸为19.6m、内直径尺寸为17.6m,壁高为15m。钢围堰平面分为8块,立面分为5节,分节高度为4m+4m+5m+5m。 钢围堰壁板系统由内、外面板、面板纵肋、壁板桁架、水平环板、隔板组成。双壁钢围堰内外壁采用6mm厚的钢板,内外壁间距为100cm。每间隔1m设一道水平环形桁架,桁架采用∠75×6mm的角钢焊接而成。竖向每间隔50cm设一道竖肋,竖肋采用∠75×6mm的角钢;横向加劲肋间距为50cm,采用厚15mm、宽180mm的钢板,围堰结构如图:

图1-2 钢围堰立面图图1-3 钢围堰平面图1.2材料设计参数表 表1.1 材料设计参数表 序号材料规格材质 容重 (KN/m3) 备注 1 钢板厚6mm Q235 78.5 面板 2 角钢∠75×6mm Q235 78.5 桁架 3 混凝土C30 25 刃角砼 4 混凝土C2 5 25 封底砼1.3. 材料设计强度值 表1.2 钢材设计强度值(N/mm2) 钢材抗拉、抗压、 抗弯抗剪承压 型号厚度或直径(mm) Q235 ≤16 215 125 325 >16-40 205 120 >40-60 200 115 >60-100 190 110 说明:设计强度按《钢结构设计规范》GB50017-2003取值。 1.4 模型单元 采用Midas对结构进行空间仿真分析,双壁钢围堰内外壁6mm钢板采用平面板单元模拟,竖肋∠75×50×6mm的角钢和桁架∠75×75×6mm的角钢采用梁单元模拟;双壁钢围堰底部设为三向位移约束;在模型中施加流体压力荷载模拟水

水中钢板桩围堰计算及施工应用

水中钢板桩围堰计算及施工应用 摘要:介绍临海大桥主塔横系梁钢板桩围堰设计计算和应用,供同类型桥梁施工借鉴。 关键词:潮汐地区;水中钢板桩围堰;设计计算;应用 1、概况 1.1工程概况 临海大桥位于浙江省临海市区中心,横跨灵江,是临海市江南分区与老城区的交通要道。桥梁总长度746m,其中主桥306m,北引桥216m,南引桥224m。主桥采用(36+110+160)m预应力砼独塔单索面斜拉桥,桥面宽31.2m。 主塔基础位于灵江江心,采用分离式承台钻孔桩基础,两承台之间设横系梁连接。横系梁按预应力构件设计,施加预应力用以平衡倾斜塔柱的水平推力,系梁为矩形截面,宽度为6.0m,高度为3. 0m,长31.532m。 1.2水文地质情况 桥址段灵江为典型半日潮,既受洪水控制,又受潮水控制。5年一遇最高水位为+5.0m。横系梁顶面标高+1.8m,河床顶面标高-2.5m,地质报告中河床顶面以下约11m为淤泥质粘土。 2、钢板桩围堰结构 钢板桩围堰沿横系梁两侧设置,两端与承台钢套箱连接,围堰长31.532m,宽10.6m,钢板桩长15m。钢板桩围堰顶面标高设置为+5.5m,高出最高施工水位0.5m。钢板桩施工完成并抛填

片石挤淤至-2.5m左右后,然后浇筑50cm封底混凝土。围堰内设置一层水平支撑梁和支撑柱,支撑梁采用2I40,支撑柱采用直径2 2.5cm、壁厚5mm的钢管。考虑到横系梁施工和施工后支撑拆除方便,支撑尽量设置在横系梁顶面以上。 3、设计计算 3.1设计说明 3.1.1计算水位取+2.5m;钢板桩采用IV 型拉森桩,重量75kg/m,每1米宽截面模量W=2037cm3,允许应力为[σ]=180 Mpa 。 3.1.2土质按地质报告提供参数。 3.2钢板桩入土深度验算 钢板桩围堰结构如图所示,围堰内抽水后水头差为7.5m,由此引起的水渗流,其最短流程为紧靠板桩的2h,故在此流程中,水对土粒渗透的力,其方向应是垂直向上。对于较薄且面积较大的封底混凝土,按不考虑封底混凝土作用时的涌流问题近似进行计算比较偏于安全。现近似地以此流程的渗流来检算坑底的涌流问题,要求垂直向上的渗透力不超过土在水中的密度,故安全条件如公式所示:式中:-安全系数;-水力梯度; -分别为水的密度及土在水中的密度,; ,其中G 为土粒的比重;n 为土的孔隙率以小数计。 土层按淤泥质粘土,查地质报告中G=1.7、n=0.590,h= 7m,安全系数取1.4。

双壁钢围堰计算书

双壁钢围堰施工及计算1、概述 围堰所处的地理环境水文地质资料 2、钢围堰结构尺寸拟定

3、钢围堰重量计算 3.1 钢板 围堰钢板: 178.512(1210.38)40.006506.0G s kN γδ==??+??= 隔舱钢板: 278.512 1.280.00654.3G s kN γδ==????= 3.2角钢 竖肋角钢: 310.0918012194.4G l k kN =?=??= 横肋角钢: 420.0944.761248.3G l k kN =?=??= 弦杆角钢: 530.09 1.231290119.6G l k kN =?=???=

3.3 灌水和混凝土 围堰壁间混凝土重量: 62544.76(5 1.2 1.6 1.2/2)5639.8G V kN γ==???-?= 加水(4m )重量: 710444.76 1.22148.5w G V kN γ==???= 钢围堰总重: 12345678710.9G G G G G G G G kN =++++++= 4、封底混凝土厚度计算 假设封底混凝土厚度为h , 围堰外壁所围面积: 2253.132 3.14 6.2910.416 4.85360 S m ?= ??+?=外 围堰内壁所围面积: 2253.132 3.14598118.34360 S m ?= ??+?=内 围堰内抽水后围堰浮力: =110164.8510.517309.3F gsh kN ρ=???=浮 有G G F +≥浮封 17309.38710.9 2.9125118.34 F G h m S γ--= ==?浮内 封底混凝土厚度取3m 。 5、水流方向围堰受力分析

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m 3,内摩擦角φ=15o ,卵石重度γ= KN/m 3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m 2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m 3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 (φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。=

基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m 2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ

=1000*1340=<175 Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载: q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢 板桩最大弯矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支 点力T1=,钢板桩最大弯矩M max =*m 剪力图

钢套箱围堰方案

唐龙大桥及接线(赣丰路-唐章路) 水中钢套箱围堰专项施工 方案 编制人:职务:职称: 审核人:职务:职称: 审批人:职务:职称: 江西中煤建设集团有限公司 唐龙大桥及接线(赣丰路-唐章路)项目经理部 二○一七年十二月

目录 一、工程概况 (3) 1.地质情况 (3) 2.气象条件 (3) 3.水文条件 (3) 4.水中围堰 (3) 二、编制目的原则和依据 (3) 1.目的 (3) 2.原则 (4) 3.依据 (4) 三、施工人员、设备和主要材料安排 (4) 1.施工队伍 (4) 2.机械设备 (4) 3.主要材料 (5) 四、钢套箱围堰施工方法 (6) 1.钢套箱围堰施工工艺流程 (6) 2.钢套箱施工前的准备工作 (6) 3.水中抽槽 (7) 4.钢套箱围堰设计情况 (8) 5.钢套箱侧板受力分析及计算 (9) 6.钢套箱施工 (10) 五、抽水止水 (11) 六、承台基坑开挖和承台施工 (11) 七、保证措施 (11) 1.质量保证措施 (12) 2.工期保证措施 (13) 3.安全文明保证措施 (13)

1.水深3米时计算 (15) 2.水深4米时计算 (18) 3.做设静动压按均匀承载计算 (21) 九、钢套箱围堰示意图 (22)

唐龙大桥水中钢套箱围堰施工专项方案 一、工程概况: 唐龙大桥及接线(赣丰路-唐章路)起点为赣丰路交叉口,终点与唐章路相接,道路等级为城市主干线。采用双向六车道布置,设计速度为50km/h,道路红线宽度56米,主桥桥梁宽度为35.5米,路线全长1.09km,总工期为579天。 1、地质情况:本桥位于赣州市南康区唐江镇横江村,横跨上犹江,华南褶皱系、赣西南凹陷(赣州-吉安)拗陷、信丰-于都拗褶断束红色岩系断陷盆地内。地层产状平缓-倾斜,厚度数百余米,分布稳定;地质构造表现为单斜构造或者不规则向斜盖层构造,场区附近无活动性深大断层。区域地质构造稳定。 2、气象条件:桥所处区域属中亚热带季风湿润气候,年平均气温19.3℃,冬无严寒,夏无酷暑,雨量充沛。12月均温8.8℃,7月均温28.6℃,无霜期286天左右,年平均降雨量1443.2毫米,年均日照时数1856.6小时。 3、水文条件:桥位轴线走向近南北,河流走向近东西,勘察区地貌属低山丘陵地段,桥位区地面黄海高程 104.43~125.60m,总体表现为南高北低。现状河流蜿蜒曲折,呈“S”型,宽约200m,水深2.95~3.5m。 4、水中围堰:水中钢套箱围堰只有主墩6#、7#。现在属于沽水季节,水深2.6~3.0m,每墩8根桩,共计16根,桩径2.2米,总桩长320米,承台尺寸为10.1m×9.1m,高度为3.5m。 二、编制目的、原则和依据: 1、目的: 为了加强唐龙大桥建设的施工管理,并对工程的安全、质量、工期、实

双壁钢围堰水下混凝土封底应急救援预案

双壁钢围堰水下混凝土封底应急救援预案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

新建铁路南京枢纽相关工程N J-3标双壁钢围堰水下混凝土封底应急救援预案 编号: 版本号: 受控号: 修改状态: 编制: 复核: 审核: 批准: 有效状态: 中铁四局集团 南京铁路枢纽土建工程NJ-3标二队项目经理部 二00九年四月十日 目录

一、安全生产目的 为了保护施工人员的人身安全及围堰封底的顺利进行,确保在意外情况发生时,抢救队员和全体工作人员能有条不紊地按照预先制定的方案,迅速及时抢救伤员,最大限度降低伤亡伤害程度。 二、指导思想 以“安全责任重于泰山”的思想为指导,坚持“以人为本,以防为主”的方针,切实加强京沪高速铁路工程项目施工中安全管理,严格贯彻执行防范为主、防范在先、防患于未然的原则,决不能掉以轻心,产生麻痹思想和侥幸心理,确保施工的顺利进行。 三、应急救援组织机构及职责 1、组织机构 项目部应急准备和响应领导小组 组长:张汉一 副组长:石金东、章好龙 组员:秦林、马朝、黎功森、陈接富、高勤松、朱仁平、郑峰付威、王琦、李琴、张腾启、郭新亚、李宁、魏光平 各专业工长技术员质检员值勤人员 现场抢救组:石金东、黎功森、朱仁平

危险源风险评估组:张汉一、章好龙、秦林、马朝 技术处理组:秦林、马朝、付威、王琦 善后工作组:张汉一、石金东、章好龙、秦林 后勤供应组:朱仁平、李琴 物资抢救组:高勤松、郑峰、张腾启、郭新亚、李宁、魏光平 消防灭火组:各专业工长技术员质检员值勤人员 保卫疏导组:各专业工长技术员质检员值勤人员 值班电话: 2、组织机构职责 (1)、险情发生后,应急小组接到报告后,由应急小组组长任总指挥,以最快的速度组织救助力量到达现场。 (2)、应急小组成员应协调配合,应急反应小组组长不在位时,由副组长担任指挥,负责组织救助。 3、对于发生的险情,及时采取有效措施控制事态蔓延或扩大,如果事态不能有效控制,应立即向当地有关部门求援。 4、险情发生后,应急领导小组要指派专人将受伤人员迅速送往医院或通知医院人员赶赴现场进行紧急救护。 5、对现场进行保护,进行事故调查,或协助有关部门进行事故调查,并提供各方面条件。 6、负责及时向上级主管部门、监理及指挥部报告,并听从主管机关统一指挥。 7、险情结束后,负责组织或协助主管机关处理善后事宜。

有底钢套箱围堰施工工艺设计工法

有底钢套箱围堰施工工艺工法 (QB/ZTYJGYGF-QL-0204-2011) 桥梁工程有限公司洪伟洋 1 前言 1.1 工艺工法概况 有底钢套箱又名钢吊箱,是为深水高桩承台施工而设计的临时隔水结构,在大跨深水桥梁的基础施工中得到广泛的应用。 1.2 工艺原理 有底钢套箱是通过套箱侧板和底板上的封底混凝土围水,为高桩承台施工提供无水的施工环境。 2 工艺特点 有底钢套箱与无底钢套箱相比,受水深的影响相对较小,水流阻力小利于通航、材料用量少,施工工期短,施工难度小。且利用护筒及其它措施定位较为容易、定位精度高;封底混凝土受底板约束,质量易于保证,数量准确;套箱悬挂于支撑系统上,不接触河床,避免了河床高低不平的影响。 3 适用围 适合于高桩承台,或承台下为较厚的软弱土层、且水深流急时,多采用有底钢套箱作为支撑、防水结构来进行深水基础施工。 4 主要技术标准 《公路桥涵施工技术规》(JTG/T F50) 《铁路桥涵施工规》(TB 10203) 《铁路桥涵工程施工质量验收标准》(TB 10415) 《城市桥梁工程施工与质量验收标准》(CJJ 2) 《钢结构设计规》(GB 50017) 5 施工法 有底钢套箱一般均采用先桩后围堰施工法,围堰的安装主要有墩位组拼和场

外组拼两种。 墩位组拼:采用在岸上加工场分块加工,驳船运输至墩位处,浮吊或其他吊装设备分块吊安,组拼成整体后分节段下沉就位,底板封堵、清理、灌注封底混凝土,抽水、体系受力转换,承台混凝土施工。 场外组拼:采用在岸上加工场分块加工并组拼成节段,然后整体或分节段拖运至墩位处下沉就位,底板封堵、清理、灌注封底混凝土,抽水、体系受力转换,承台混凝土施工。 6 工艺流程及操作要点 6.1 施工工艺流程 有底钢套箱主要有墩位组拼和场外组拼两种,其施工工艺如下: 图1 施工工艺流程图 6.2 操作要点

无底钢套箱围堰施工工艺工法全解

无底钢套箱围堰施工工艺 (QB/ZTYJGYGF-QL-0205-2011) 桥梁工程有限公司廖文华刘涛 1 前言 1.1工艺工法概况 桥梁深水基础的施工,施工技术各有差异,且各具特色。无底钢套箱在深水低承台桩基础的施工中,得到了广泛的应用。 1.2工艺原理 无底钢套箱相对有底钢套箱而言,去掉了底板系统,钢套箱侧面壁板直接插 入河床,并通过吸泥下沉至设计标高,浇筑封底混凝土后,使嵌入河床的钢套箱与河床、共同组成封闭的临时隔水结构。 2工艺工法特点 2.1无底钢套箱一般用于低桩承台施工,此时水中钻孔桩施工已经完成,可利 用钻孔工作平台及钢护筒为无底钢套箱施工提供作业平台。 2.2其结构构造简单,下沉施工干扰小,封底混凝土直接与河床接触,套箱竖向受力小,壁板重复利用率高。 2.3无底钢套箱下沉定位难度大,封底混凝土易漏失,数量不确定,套箱围堰需着床,对河床表面的地质情况及大面平整要求较高。 3 适用范围 无底钢套箱适用于水深10m以内,河床易清淤吸泥,河床覆盖软弱层较薄的低桩承台的施工。 4 主要技术标准 《铁路桥涵地基和基础设计规范》(TB10002.5) 《铁路桥涵工程施工质量验收标准》(TB 10415) 《铁路桥涵施工规范》(TB 10203) 《铁路桥涵设计基本规范》(TB10002.1) 《公路桥涵施工技术规范》(JTG/T F50) 《公路工程质量检验评定标准》(JTGF80-1) 《钢结构设计规范》(GB 50017)

5 施工方法 无底钢套箱与有底钢套箱的施工方法基本相同,包括墩位组拼和场外组拼两种。不同的是套箱定位后,由大型起吊设备配合下沉套箱至床上,并通过高压水破土,吸泥机吸泥,使套箱下沉至河床中的设计标高,施工封底混凝土,套箱内抽水机及内支撑安装,施工承台混凝土。 6 工艺流程及操作要点 6.1施工工艺流程 具体施工工艺流程见图1。 图1无底钢套箱围堰施工工艺流程图 6.2操作要点 6.2.1 无底钢套箱的设计 无底钢套箱围堰与有底钢套箱区别是无底钢套箱底部直接落在河床上。无底钢套箱主要结构由壁板、外圈梁、内支撑、导向架组成。根据结构尺寸、水深及

1、2围堰抗浮力和抗流水压力检算

一、296#墩钢围堰检算 1 钢围堰抗浮力检算 水浮力Q=D,D 由双壁钢围堰自重D1、双壁间填充的混凝土质量D2、双壁间填充水重量D3平衡。 (1)双壁钢围堰底面上作用的向上浮力: 221/426.41/424.8)(27.516.34)718.03t Q ππ=??-???-=( (2)钢壁双围堰自重:D1=299t (3)钢围堰双壁间填充的砼的重量(2.5m 高刃脚混凝土,其中刃脚高度0.8m),砼的重量按2.3t/3m 算: 22222[1/4(26.424.8)0.41/4(26.424.8) 1.7] 2.3310.76t D ππ=??-?+??-??= (4)设需要在双壁钢围堰中注H 高的水就可以使钢围堰完全下沉: 2231/426.41/424.8)64.34D H H ππ=??-???=( 123Q D D D =++? 718.03=299+310.76+64.34H ?H=1.683m 而实际上双壁钢围堰中注水高度为9.16m,大于1.683m ,即使不用钢护筒,围堰在自身自重、双壁钢围堰刃脚混凝土重量以及双壁钢围堰中注水的重量下抗浮力大于浮力而不会浮起。 对于封底混凝土的灌注,由于混凝土密度大于水的密度,它只会使钢围堰更加稳定的下沉,而不会对钢围堰产生额外的浮力。 2 钢围堰抗水流冲击检算 作用于钢围堰上的流水压力可按下式计算(公路桥涵设计通用规范): 22P KA g γν= 式中:

232m /m m /s m /s P A g K γν——流水压力(kN ); ——钢围堰阻水面积(),通常计算至一般冲刷线处; ——水的容重,一般取10kN ; ——标准自由落体加速度(); ——计算时采用的流速(); ——围堰形状系数,其值如下: 方形 1.47 矩形(长边与水流平行) 1.33 圆形 0.73 尖端形 0.67 圆端形 0.60 钢围堰抗水流冲击检算主要是其抗倾覆性和抗滑移的检算。取K=0.73,g=9.812m /s ,ν=2 m/s ,则: 2 2 26.4(27.516.34)294.624m 1020.73294.62429.81 A P =?-=?=???=438.48kN (1)抗滑移检算: 双壁钢围堰自重D1、双壁间填充的混凝土质量D2、双壁间填充水重量D3以及封底混凝土重量D4,共重D 为: D=D1+D2+D3+D4=299+310.76+64.34×9.16+ 221/424.81/422.8)2 2.3ππ??-????(=1543.06t 而P=438.48kN<μmg=0.15×1543.06×9.81=0.15×14752.83=2270.61kN 抗滑移系数为5.2>[K]=1.3,所以满足抗滑移要求。 (2)抗倾覆检算: 27.516.3426.4(1543.0610)201237.2kN<022 -?-??=-438.48 即满足抗倾覆性要求,且抗倾覆稳定系数为83.2。 二、299#墩钢围堰检算 1 钢围堰抗浮力检算 水浮力Q=D,D 由双壁钢围堰自重D1、双壁间填充的混凝土质量D2、双壁间

钢板桩围堰计算书

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 中铁四局集团有限公司设计研究院 2019年4月

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 计算: 复核: 审核: 中铁四局集团有限公司设计研究院 建筑行业甲级铁道行业甲(Ⅱ)级市政行业甲级 二〇一九年四月

目录 一、项目概况 (1) 二、水文地质条件 (1) 三、计算依据 (3) 四、材料参数 (4) 五、围堰工况介绍 (4) 六、围堰计算 (5) 1、外侧围堰计算 (5) 2、内侧围堰计算 (12) 七、结论及建议 (18) 1、结论 (18) 2、注意事项 (19)

一、项目概况 津石高速公路是连接南部港区通往石家庄方向的重要通道,路线主线起自滨海新区南港工业区桩号K0+000,接已建的海滨大道及南港工业区港北路,经大港电厂南、东台子,止于西青区小张庄附近,接已建的津石高速和长深高速共线段桩号K36+500,全长约31.3公里。全线在南港工业区、大港油田、东台子、小张庄4处设置互通式立交。 本标段起点桩号为K29+730,路线沿独流减河北堤后侧台布设,跨越长深高速并设置小张庄互通立交,终点桩号为K31+150,路线长1420m。 本互通立交主线设计速度采用100Km/h,A、B、E、F匝道设计速度采用60Km/h,C、D匝道设计速度采用40 Km/h;主线为双向四车道,标准路基宽度27.5m;B、E匝道为单向单车道,标准路基宽度9m;A、C、D、F匝道为单向双车道,标准路基宽度10.5m。 其中A、F匝道位于独流减河河道中,河道水位标高为2.8m,本工程中钢板桩围堰是为了阻隔河水,以进行项目施工。 本工程钢板桩围堰位于独流减河中河水深度1m~5.2m,围堰采用12m双排钢板桩从河岸打设到河中央滩涂位置,上游、下游各打设一道,上、下游距离272m,每道长度360m,每道采用间距为4m的双排钢板桩形式,两排钢板桩中间抽2.5m水,保持内、外侧钢板桩水位差,确保钢板桩稳定。双排钢板桩围堰示意图见图1-1。 河面 内侧外侧 图1-1 双排钢板桩围堰示意图 二、水文地质条件

钢套箱设计计算方案

钢套箱设计计算方案 一、 工程概况 XX 大桥XX 线X 号、X 墩为水中基础,桩基为X 根Φ2.2m 钻孔灌注桩,横桥向2排,每排3根。承台顶面设计标高为XXXXm ,底面设计标高为XXXm ,承台平面尺寸为14.40×10.9×4m 。 按项目部施工组织设计X#、X#墩承台围堰采用单壁钢套箱施工,钢套箱尺寸为承台尺寸放大100mm ,作为承台的模板。钢护筒外径2.4m 。 根据项目实测的地质情况后研究决定,X 号墩钢套箱施工设计水位为XXXm ,封底砼标高为XXXm ,钢套箱顶面标高为:XXXm ,钢套箱共分两节加工,(2m+5.5m ),最下层按不拆除考虑,钢套箱设计示意图如下: 二、荷载取值 荷载的取值依据为《公路桥涵设计通用规范》荷载组合V 考虑钢吊箱围堰设计组合。 水平荷载:静水压力+流水压力+风力+其它 三、Q235钢材许用应力 轴向应力: []Mpa z 140=σ 容许应力提高系数1.3 []Mpa z 1823.1140=?=σ 弯曲应力: []Mpa 145=σ 容许应力提高系数1.3 []Mpa 5.1883.1145=?=σ 剪应力: []Mpa 85=τ 容许应力提高系数1.3 []Mpa 5.1103.185=?=τ 四、具体结构设计 (一)、封底砼设计 封底砼按1.5m 厚设计,用C30砼。 1、抗浮校核 浮力:131.1371917.91t ??= 封底砼自重:131.13 2.3 1.5452.4t ??= 钢护筒握裹力:1.5 3.14 2.4610678.24t ????=

钢套箱自重:52t 抗浮安全系数: 452.4678.2452 1.29 1.1917.91 K ++= => 满足要求 2、封底砼强度校核 取封底混凝土板计算。封底混凝土板由钢护筒与混凝土的握裹力和封底混凝土板自重抵抗作用于封底砼板的静水压力。为便于计算偏于安全地将封底混凝土板简化为空间梁格,钢套筒中心连线作为支点。简化模型梁宽按钢套筒间净距 4.1m 和1.6m 计算,梁高与混凝土板厚相同,取1.5m 计算。计算模型如下图所示。 水压力:271023 1.53 5.5/p KN m =?-?= 2136 4.1147.6/g KN m =?= 2236 2.693.6/g KN m =?= 内力计算结果: 最大计算弯矩:max 344.71M KN m =? 最大计算剪力:max 396.45Q KN = 最大支座反力:792.9KN 砼梁强度校核: 30#封底混凝土容许拉应力为:[]0.75Mpa σ= [] 1.65Mpa τ= 6max max 2 6344.71100.220.7541001500M Mpa Mpa W σ??===

拉森钢板桩围堰检算书15m

钢板桩围堰检算 1、构件特性 取钢材的弹性模量为 211/N 101.2m ?,3.0=μ,)1(2/μ+=E G 1.1拉森Ⅳ钢板桩 截面参数: 截面积 20242.0m A = 惯性矩 441086.3m I -?= 截面抵抗矩 331027.2m W -?= 截面回转半径 ix=0.282m 1.2单根Ⅰ45a 工字钢 截面参数: 截面积 23102.10A m -?= 惯性矩 4410224.3m I x -?= 截面抵抗矩 331043.1m W x -?= 1.3单根Ⅰ56a 工字钢 截面参数: 截面积 23105.13A m -?= 惯性矩 441056.6m I x -?= 截面抵抗矩 331034.2m W x -?= 2、工况分析 ①工况1:增江十年一遇洪水位9.31m ,围堰外最高水位按9.31m 计算,围堰第一层支撑、封底混凝土已完成,抽水至+3.07m ,第二层支撑还未安装时; ②工况2:当围堰支撑实施结束,增江十年一遇洪水位9.31m ,围堰外最高水位按9.31m 计算,围堰受到静水压力,流水冲击力和砂土的主动土压力共同作用时。 3、围堰检算 3.1工况1: 3.1.1围堰拉森Ⅳ型钢板桩 最不利工况受力分析,主要荷载有: a 、静水压力,随着水深增加从上往下呈线性分布。 b 、流水冲击力,设流速为s m /2,影响围为整个水深围。 c 、下层饱和砂土的主动土压力

荷载分析:水深7.31m ,流水冲击力合力作用点位于距上端水深1/3高度处,主动土压力为7.31—9.36m 处,另加封底混凝土以下0.5m ,也即9.36—9.86m ①集中荷载:流水冲击力 g rv kA F 22 = K 取1.5,v 取2m/s,截面面积取一延米长,则 ()KN F 93.2110 221031.70.15.12 =?????= 作用点距顶端m 44.23/31.7=处 ②分布荷载: a.静水压力 rh p = 最大线荷载值 KN F 4.6224.6100.1=??= 从钢板桩顶端下0.19m 往下6.43m 处呈三角形分布 b.主动土压力 取饱和砂土容重3/18m KN sat =γ,砂土摩擦角030=?则 )2/45(tan )(02?γγ--=h P w sat KPa P 8.6)2/3045(tan 55.2)1018(002=-??-= 为简化计算过程,具体如下: 荷载分布图: 弯矩图:

双壁钢围堰封底施工技术总结

新建贵阳至广州铁路GGTJ-13标 北江特大桥244#墩双壁钢围堰封底 施工技术总结 编 制 人: 吴卫敏 编制日期:2009年6月4日 (内部参考)

1、工程概况 244#主墩,里程桩号DK788+435.420,承台尺寸为35×17×6m,钢围堰加工内部平面尺寸为35.3×17.3m,夹壁厚 1.5m,围堰高18.269m,分三节整体加工,水运至现场整体拼装焊接、下沉。承台封底采用C30水下混凝土,浇筑厚度3.5m,预计浇筑方量1600~2000 m3,浇筑时间约24小时。 244#墩双壁钢围堰封底按照中交四航局贵广铁路指挥部下达4月25日工期目标完成。浇筑从4月23日16:00开始,4月25日12:00结束,连续浇筑44小时,完成灌注方量1593m3。施工方案虽经过多次讨论但实施也存在一定不足之处。为提高施工技术水平,便于今后类似施工借鉴,以下按浇筑前的主要工艺、浇筑过程控制、人员组织应急措施等方面施工技术总结。 2、浇筑前主要工艺 双壁钢围堰定位着床后,将进行一系列浇筑前的准备工作,为本次浇筑打夯良好的施工基础。 2.1、钢围堰的调平 由于钢围堰基床抓泥不平整,实际着床情况不太理想,与原计划围堰韧角嵌入泥岩60cm存在差异。着床后西岸江心侧存在60~100cm的悬空。为了确保钢围堰顶面的平整度及受力均衡性,采取以下措施纠正,对钢围堰西岸江心侧方向抽水悬浮后,由潜水员依据水下实测悬空高度特制钢管桩凳子,钢管桩短管上下两端用90×90×1cm封住,沿围堰每隔5m塞垫一处。由潜水员下水塞垫,再通过灌水下沉重新着床,将钢围堰夹壁压紧钢管

凳。为稳妥起见在完成塞凳后在分仓处施打5根稳定钢管桩,进行反压受力。 图1:稳定钢管桩布置图 图2:稳定钢管桩、钢管桩凳子布置图 施工表明:反压稳定钢管桩结合钢管凳子措施可行,但钢管凳子水下操作及检查较困难,特别是管凳数量较多情况下,可能存在部分

双壁钢围堰施工方案

灵江特大桥39#~44#深水桥墩基础双壁钢围堰施工方案 一、工程概况 1、桥型和结构 灵江特大桥起讫里程为DK138+34.4~DK140+217.59,全长2183.19m,中心里程为DK139+125.995,孔跨为40-32m简支箱梁 +(70+3×120+70)m连续箱梁+11-32m简支箱梁,为双线特大桥。32m 简支箱梁为单箱单室后张法预应力砼箱梁,主桥为一联(70+3× 120+70)m单箱单室、变高度变截面预应力混凝土连续箱梁。甬台和1#~36#墩位于江北岸,37#~45#墩位于江中,属于水中墩,46#墩~55#墩及温台位于江南岸,其中1904.09m位于直线段上,其余位于缓和曲线上,缓和曲线长280m,竖曲线半径20000m。37#~45#基础结构形式见表一。 2、水文资料 本桥位于三江口上游,为感潮河段,受迳流影响,也受潮汐影响。Q100=17602m3/s,Q300=22179m3/s,H100=6.82m,H300=8.67m,V100=2. 85m/s, V300=3.1m/s,平均潮位1.20m,最大潮差6.19m,潮水为不规则半日潮,每日两次涨落。主河槽一般冲刷深度为25.16m,局部冲刷深度为33.2m。根据我部所了解的水文站资料,海门站(在本桥址下游23.6公里处)多年平均高潮位为4.22,多年平均低潮位0.20,历年最高高潮位为7.50;上游临海西门站多年平均高潮位4.69,平均低潮位1.21。根据《灵江防洪规划》,本段防洪堤规划高度为5.90米。

表1 37#~45#基础结构形式表 3、气象资料 桥区属于亚热带季风气候,受海洋性气候影响,气候特征为温和湿润,雨量丰沛,光照充足、四季分明。多年年平均气温17.7~18.6℃,多年平均降水1537.0mm。本桥区常风向为西北~北东,每年10月至次年2月盛行北及西北风, 6~8 月盛行偏南风,3~5月和9月为冬丰夏季风转换期,风向不定,每年影响本桥区的台风为2次左右。 4、通航资料 桥位处灵江主河段为Ⅳ级航道,通航孔为2个,通航水位6.20m,通航净宽为112.0m,通航净高21.5m,通航等级为1000吨级海轮。 5、工程地质 灵江特大桥37#-45#桥墩位于江中,均为钻孔桩基础,钻孔桩穿

钢板围堰计算书

目录 1设计资料 (1) 2钢板桩入土深度计算 (1) 2.1力计算 (1) 2.2入土深度计算 (2) 3钢板桩稳定性检算 (3) 3.1管涌检算 (3) 3.2基坑底部隆起验算 (4)

跨宁启特大桥跨高水河连续梁主墩承台 钢板桩围堰施工计算书 1设计资料 (1)钢板桩顶高程H1:8.5m ,汛期施工水位:8.0m 。 (2)河床标高H 0:1.63m ;基坑底标高H3:-7.958m ;开挖深度H :15.46m 。 (3)封底混凝土采用C30混凝土,封底厚度为1m 。 (3)坑、外土的天然容重加权平均值1r 、2r 均为:18.8KN/m 3;摩擦角加 权平均值 20=?;粘聚力C : 33KPa 0 5.02h ===。 (4)钢板桩采用国产拉森钢板桩,选用鞍IV 型(新)(见《施工计算手册》中国建筑工业P290页)钢板桩参数 A=98.70cm 2,W=2043cm 3,[]δ=200Mpa ,桩长21m 。 水压:210 6.3763.7/w w p h kN m γ=?=?= 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+= (5)围囹采用2I56工字钢,支撑采用Ф630螺旋钢管。 2计算资料 水压:210 6.3763.7/w w p h kN m γ=?=?= 0 5.02h === 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+=

围堰封底混凝土施工技术方案

围堰封底混凝土施工技术方案 1 施工准备 1.1河床平整及封底平台搭设 1、河床平整 围堰下放入土后,先派遣潜水员潜入水底观测河床地形,河床标高高于1060.688m处需进行吸砂处理;然后派遣潜水员配合抛填沙袋或铺设彩条布进行隔离处理,以减少封底混凝土浇筑时砂土上返混入混凝土中,有效保证封底混凝土的质量。沙袋或彩条布满铺围堰内河床,高度以1060.888m控制,潜水员入水调整沙袋保证沙袋回填高度不高于设计高度。 河床平整后清理封底区域钢护筒外壁并焊接角钢,保证封底混凝土握裹力及抗剪性能。 2、封底平台搭设 封底平台材料采用钻孔平台拆除的材料,封底平台在顶层内支撑的基础上搭设形成(封平台平面布置如下图所示)。在内支撑上铺设 2 根36工钢支撑料斗,具体根据现场实际为宜。在封底平台顶层铺设脚手板人行通道,并用铁丝绑扎牢固,两侧设钢管护栏,人行通道应连续相通。在栈桥平台与封底平台之间适当位置设置 4 个上下斜梯供人员上下,栈桥平台、围堰顶、斜梯、封底平台之间通道应畅通,脚手板满铺,防护到位。

图4-1 封底操作平台平面布置图 图4-2 封底操作平台立面布置图

图4-3 封底平台类似工程照片 1.2 测量准备 在封底混凝土浇筑之前,现场应配备足够的测绳,提前校核其长度。每个浇筑点及测点处平台标高应提前测出,作为测量混凝土面的依据,并用油漆标示在该处。封底混凝土施工前,按每个布料点布设6个测点,负责该布料点浇筑范围内砼面的测量点。浇注混凝土时作好测深记录,同时每根导管封底结束后应及时测量其埋深与流动范围,并作好详细记录。 1.3 首批混凝土方量 首批混凝土方量计算简图见下图:

双壁钢围堰吸泥下沉及水下封底中有关问题的处理办法

双壁钢围堰吸泥下沉及水下封底中有关问题的处理办法 【摘要】通过施工实例,论述某大桥采用双壁钢围堰吸泥下沉及水下封底中应注意的事项及有关问题的解决办法。 【关键词】:围堰;吸砂;封底;处理办法 钢围堰在深水基础施工中的应用愈来愈广泛,本文通过施工实例,介绍了双壁钢围堰施工中容易发生的若干问题及处理办法。 围堰水中下沉 钢围堰在着床之前,呈悬浮状态,此阶段的围堰下沉较容易,检查合格后,只要向井壁内灌水,克服水的浮力,并调整好拉缆受力,围堰即可平衡下沉。此阶段只要在向井壁内灌水时,遵循对称加载的原则即可。 2、围堰吸泥下沉 钢围堰着床后,在覆盖层中边拼焊接高、边吸泥下沉,是一项受较多因素影响和制约的细致工作。由于围堰结构自重轻,沉降系数较小,同时,为确保围堰内抽水时的结构强度,因此,需要在围堰双壁内底节刃脚部分浇注一定高度的C20水下混凝土,浇注高度一般在2~4 m之间。顶面高程应保证围堰水下切割后的残留高度仍能确保最低水位时的通航安全。如果仍然不能满足沉降要求,需要在双壁内注水增加自重。 本桥墩所处覆盖层地质为砾砂和砾石层,围堰采用吸泥下沉。在砂层一般采用两台135mm砂石泵机,置于围堰中心附近同时对称吸泥。如围堰倾斜较大,可将一台置于在围堰顶面较高的一侧吸泥,另一台在中心吸泥,以便一边下沉一边调平围堰。另外准备一台250 mm吸泥机放在围堰中心,待围堰下沉到砾石层时,用它加大吸出大粒径卵石。在围堰中心吸泥形成的锅底坑深度低于刃脚2.5m时,如围堰仍不下沉,应适当向刃脚方向对称移动吸泥机吸泥,扩大吸泥范围,使围堰下沉均匀。在靠近刃脚2 m范围内吸泥,要保持吸泥机下口不低于刃尖,以免吸泥过深而使坑深超过刃尖过多引起翻砂。 在吸泥下沉过程中,应始终保持围堰内外水位一致,防止因内外水头差过大而造成翻砂,必要时应用多台水泵向围堰内补水。 围堰着床后下沉初期,入土小于3m时围堰嵌固较浅,重心偏高,最易产生水平滑移和倾斜。围堰的倾斜如不及时调整就会偏位,随着入土加深,调整更加困难,偏位更加严重,所以在下沉初期应以纠正围堰底口中心偏位为主,调整倾斜为辅。控制围堰底口中心偏位不大于10cm;此时围堰的倾斜率可适当放宽,控制在2%以内。

相关文档
最新文档