【易错题】高中必修三数学上期中试卷(带答案)(1)

【易错题】高中必修三数学上期中试卷(带答案)(1)
【易错题】高中必修三数学上期中试卷(带答案)(1)

【易错题】高中必修三数学上期中试卷(带答案)(1)

一、选择题

1.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是

A .

14

B .8

π C .

12

D .

4

π 2.一组数据如下表所示:

x

1 2 3 4

y e

3e 4e 6e

已知变量y 关于x 的回归方程为+0.5

?bx y

e =,若5x =,则预测y 的值可能为( ) A .5e

B .

11

2e

C .

132

e

D .7e

3.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ?)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ?

17

13

8

2

月销售量y (件)

24

33

40

55

由表中数据算出线性回归方程y bx a =+$$$中的2b =-$,气象部门预测下个月的平均气温为

6C ?,据此估计该商场下个月毛衣销售量约为( )

A .58件

B .40件

C .38件

D .46件

4.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )

A .

25

B .

1225

C .

1625

D .

45

5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:

[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图

如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )

A .①②

B .①③

C .②③

D .②④

6.下面的算法语句运行后,输出的值是( )

A .42

B .43

C .44

D .45

7.如图,是民航部门统计的某年春运期间12个城市出售的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )

A .深圳的变化幅度最小,北京的平均价格最高.

B .深圳和厦门的平均价格同去年相比有所下降.

C .平均价格从高到低居于前三位的城市为北京、深圳、广州.

D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门. 8.若框图所给的程序运行结果为

,那么判断框中应填入的关于k 的条件是

A .?

B .?

C .?

D .?

9.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,则该45名学生的数学成绩的中位数为( )

A .127

B .128

C .128.5

D .129

10.从区间[]

0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对

()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机

模拟的方法得到的圆周率π的近似值为 A .

4n m B .

2n m

C .

4m

n D .

2m

n

11.若同时掷两枚骰子,则向上的点数和是6的概率为( ) A .

16

B .

112

C .536

D .

518

12.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3

D .丁地:总体均值为2,总体方差为3

二、填空题

13.已知直线l 的极坐标方程为2sin()24

π

ρθ-

=,点A 的极坐标为7(22,

)4

π

,则点A 到直线l 的距离为____.

14.某高中校高一、高二、高三三个年级人数分别为300,300,400通过分层抽样从中抽取40人进行问卷调查,高三抽取的人数是______.

15.连续抛掷一颗骰子2次,则掷出的点数之和不超过9的概率为______. 16.执行如图所示的框图,输出值

______.

17.如图所示,正六边形ABCDEF 中,线段AD 与线段BE 交于点G ,圆O 1,O 2分别是△ABG 与△DEG 的内切圆,圆O 3,O 4分别是四边形BCDG 与四边形AGEF 的内切圆,则往六边形ABCDEF 中任意投掷一点,该点落在图中阴影区域内的概率为_________.

18.甲乙两人一起去游“西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个

景点参观1小时,则最后一小时他们同在一个景点的概率是________.

19.某商家观察发现某种商品的销售量x 与气温y 呈线性相关关系,其中组样本数据如下表:

已知该回归直线方程为??1.02y

x a =+,则实数?a =__________. 20.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为14,乙组数据的平均数为16,则x y +的值为__________.

三、解答题

21.现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:

x

98

88 96 91 90

92 96

y 9.9

8.6 9.5

9.0 9.1 9.2

9.8

(1)求y 关于x 的线性回归方程(计算结果精确到0.01);

(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).

参考公式及数据:回归直线方程???y

bx a =+中斜率和截距的最小二乘法估计公式分别为 1

2

1

(x x)(y y)

???,(x x)

n

i

i

i n

i

i b

a y bx ==--==--∑∑,其中7

21

93,9.3,()()9.9i i

i x y x x y y ===--=∑. 22.国家公安机关为给居民带来全方位的安全感,大力开展智慧警务社区建设.智慧警务建设让警务更智慧,让民生更便利,让社区更安全.下表是某公安分局在建设智慧警务社区活动中所记录的七个月内的该管辖社区的违法事件统计数据: 月份 1 2 3 4 5 6 7 违法案件数

196

101

66

34

21

11

6

根据以上数据,绘制了如图所示的散点图.

(1)根据散点图判断,用y a bx =+与(0,01)x

y c d b d =?<<<哪一个更适宜作为违法

案件数y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)中的判断结果及表中所给数据,求y 关于x 的回归方程(保留两位有效数字),并预测第8个月该社区出现的违法案件数(取整数). 参考数据:

y

v

7

1

i i

i x y =∑

7

1

i i i x v =∑

7

21

i

i x

=∑ 2.5410

62.14

1.54

945 36.186 140

346.74

其中i i v lgy =,7

1

17i i

v v ==∑.

参考公式:对一组数据()11,u v ,

()22,u v ,…,(),n n u v ,其回归直线的斜率和截距的最小

二乘估计公式分别为:μ1

2

21

n

i i i n

i i u v nuv

u nu

β

==-=-∑∑,μμv u α

β=-. 23.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题: (1)79.589.5:这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均数?

24.为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

(1)求图中a 的值,并求综合评分的中位数;

(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.

25.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,

12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(1)求1A 被选中的概率;

(2)求1B和1C不全被选中的概率.

26.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).

(1)A类工人中和B类工人中各抽查多少工人?

(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.

表一

生产能力分

[100,110)[110,120)[120,130)[130,140)[140,150)

人数48x53

表二

生产能力分组[110,120)[120,130)[130,140)[140,150)

人数6y3618

①先确定,x y再补全下列频率分布直方图(用阴影部分表示).

②就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)

③分别估计A类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.B

解析:B

【解析】

设正方形边长为a ,则圆的半径为2a ,正方形的面积为2

a ,圆的面积为2

π4

a .由图形的对

称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式

得,此点取自黑色部分的概率是221ππ248

a a ?

=,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A .

2.C

解析:C 【解析】 【分析】

令ln z y $=,求得,x z 之间的数据对照表,结合样本中心点的坐标满足回归直线方程,即可求得b ;再令5x =,即可求得预测值y . 【详解】

将式子两边取对数,得到$ln 0.5y bx =+,令ln z y $=,得到0.5z bx =+, 根据已知表格数据,得到,x z 的取值对照表如下:

1234

2.54x +++=

=,1346 3.54

z +++==, 利用回归直线过样本中心点,即可得3.5 2.50.5b =+, 求得 1.2b =,则 1.20.5z x =+, 进而得到$ 1.2+0.5x y e =,将5x =代入, 解得13

6.5

2

y e e ==.

故选:C .

【点睛】

本题考查利用样本中心点坐标满足回归直线方程求参数值,以及由回归方程进行预测值得求解,属中档题.

3.D

解析:D 【解析】

试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+$$$上且

2b =-$,()38102a ∴=?-+,解得58a =∴2?58y x =-+,当6x =时,26?5846y

=-?+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.

4.C

解析:C 【解析】 【分析】

甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率. 【详解】

设甲同学收到李老师的信息为事件A ,收到张老师的信息为事件B ,A 、B 相互独立,

42

()()105

P A P B ==

=, 则甲同学收到李老师或张老师所发活动通知的信息的概率为

3316

1()1(1())(1())15525

P AB P A P B -=---=-?=.

故选C . 【点睛】

本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.

5.B

解析:B 【解析】 【分析】

根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】

由题意,根据频率分布直方图的性质得

10(0.0200.0160.0160.0110.006)1m +++++=,

解得0.031m =.故①正确;

因为不低于140分的频率为0.011100.11?=,所以110

10000.11

n ==,故②错误; 由100分以下的频率为0.00610=0.06?,所以100分以下的人数为10000.06=60?,

故③正确;

分数在区间[120,140)的人数占0.031100.016100.47?+?=,占小半.故④错误. 所以说法正确的是①③.

故选B. 【点睛】

本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.

6.C

解析:C 【解析】 【分析】

根据算法语句可知,程序实现功能为求满足不等式22000i <的解中最大自然数,即可求解. 【详解】 由算法语句知,

运行该程序实现求不等式22000i <的解中最大自然数的功能, 因为24520252000=>,

24419362000=<,

所以44i =, 故选:C 【点睛】

本题主要考查算法语句,考查了对循环结构的理解,属于中档题.

7.D

解析:D 【解析】 【分析】

根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】

由图可知,选项A 、B 、C 都正确,对于D ,因为要判断涨幅从高到低,而不是判断变化幅度,所以错误. 故选D . 【点睛】

本题考查了条形统计图的应用,从图表中准确获取信息是关键,属于中档题.

8.A

解析:A 【解析】 【分析】

根据所给的程序运行结果为,执行循环语句,当计算结果S 为20时,不满足判断框

的条件,退出循环,从而到结论.

【详解】

由题意可知输出结果为,

第1次循环,,,

第2次循环,,,

此时S 满足输出结果,退出循环,所以判断框中的条件为.

故选:A.

【点睛】

本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.

9.D

解析:D

【解析】

分析:由茎叶图得出45名学生的数学成绩,从而求出中位数.

详解:根据茎叶图得出45名学生的数学成绩,可知中位数为129.

故选D.

点睛:本题考查了茎叶图的应用问题,解题时应根据茎叶图中的数据,进行解答,属基础题..

10.C

解析:C

【解析】

此题为几何概型.数对(,)

i i

x y落在边长为1的正方形内,其中两数的平方和小于1的数落

在四分之一圆内,概型为4

1

m P

n π

==,所以

4m

n

π=.故选C.

11.C 解析:C 【解析】

由图表可知,点数和共有36种可能性,其中是6的共有5种,所以点数和是6的概率为5

36

,故

选C.

点睛:本题考查古典概型的概率,属于中档题目.具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性

都相等,那么每一个基本事件的概率都是;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=.

12.D

解析:D 【解析】

试题分析:由于甲地总体均值为,中位数为,即中间两个数(第

天)人数的平均数

为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感

染人数总数为

,又由于方差大于,故这

天中不可能每天都是,可以有一天大于

,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.

考点:众数、中位数、平均数、方差

二、填空题

13.【解析】直线的直角坐标方程为点的直角坐标为所以点到直线的距离为 解析:

52

2

【解析】

直线l 的直角坐标方程为1y x -= ,点A 的直角坐标为(2,2)- ,所以点A 到直线l 的距221

52

2

2

++=

. 14.16【解析】高一高二高三抽取的人数比例为所以高三抽取的人数是

解析:16 【解析】

高一、高二、高三抽取的人数比例为300300400=334::::, 所以高三抽取的人数是

4

40=16.3+3+4

? 15.【解析】【分析】根据古典概型概率公式求解【详解】连续抛掷一颗骰子2次共有36种基本事件其中掷出的点数之和不超过9的事件有种故所求概率为【点睛】本题考查古典概型概率考查基本分析与运算能力属基础题

解析:5

6

【解析】 【分析】

根据古典概型概率公式求解. 【详解】

连续抛掷一颗骰子2次,共有36种基本事件,其中掷出的点数之和不超过9的事件有

66654330+++++=种,故所求概率为

305366

=. 【点睛】

本题考查古典概型概率,考查基本分析与运算能力,属基础题.

16.-1【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得a=2i=1不满足条件i≥2 解析:

【解析】 【分析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】

模拟程序的运行,可得

不满足条件,执行循环体,, 不满足条件,执行循环体,, 不满足条件,执行循环体,,

观察规律可知a 的取值周期为3,由于

,可得:

不满足条件,执行循环体,

此时,满足条件,退出循环,输出a 的值为

故答案为:.

【点睛】

本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

17.【解析】【分析】不妨设小圆与正三角形相切小圆的半径为大圆与菱形相切大圆直径是菱形的高也等于正三角形的高圆半径为由几何概型概率公式可得结果【详解】依题意不妨设小圆与正三角形相切小圆的半径为大圆与菱形相 133π

【解析】 【分析】

不妨设2AB =33

AB =

,大圆与菱形相切,大圆直径是菱形的高,也等于正三角形的高,圆半径为133

222

AB ?=

,由几何概型概率公式可得结果.

【详解】

依题意,不妨设2AB =,

小圆与正三角形相切,小圆的半径为

63

AB =

, 大圆与菱形相切,大圆直径是菱形的高,也等于正三角形的高,

可得大圆半径为

12AB =

由几何概型概率公式可得

该点落在图中阴影区域内的概率为:

2

2

22

108P ππ??+??==

. 【点睛】

本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.

18.【解析】【分析】所有的游览情况共有种则最后一小时他们同在一个景点的游览方法共有种由此求得最后一小时他们同在一个景点的概率【详解】所有的游览情况共有 种则最后一小时他们同在一个景点的游览方法共有 种

解析:

16 【解析】 【分析】

所有的游览情况共有4466

A A ? 种,则最后一小时他们同在一个景点的游览方法共有 33

556A A ?? 种,由此求得最后一小时他们同在一个景点的概率.

【详解】

所有的游览情况共有4466

A A ? 种,则最后一小时他们同在一个景点的游览方法共有 33556A A ?? 种,

故则最后一小时他们同在一个景点的概率为 33

5544

6661

6

A A A A ??=?, 故答案为 1

6

. 【点睛】

本题考查古典概型及其概率计算公式的应用,属于基础题.

19.【解析】分析:根据表格中数据及平均数公式可求出与的值从而可得样本中心点的坐标结合样本中心点的性质可得进而可得关于的回归方程详解:由表格数据可得样本中心点坐标为代入可得故答案为点睛:本题主要考查线性回 解析: 2.4-

【解析】

分析:根据表格中数据及平均数公式可求出x 与y 的值,从而可得样本中心点的坐标,结合样本中心点的性质可得 2.4a ∧

=,进而可得y 关于x 的回归方程.

详解:由表格数据可得,1015202530

205

x ++++=

=,

813172428

185

y ++++=

=,

∴样本中心点坐标为()20,18,

代入 1.0?2?y

a =+,可得? 2.4a =-,故答案为 2.4-. 点睛:本题主要考查线性回归方程,属于简单题. 回归直线过样本点中心()

,x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.

20.9【解析】阅读茎叶图由甲组数据的中位数为可得乙组的平均数:解得:则:点睛:茎叶图的绘制需注意:(1)叶的位置只有一个数字而茎的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录不能遗漏特别

解析:9 【解析】

阅读茎叶图,由甲组数据的中位数为14 可得4x = ,

乙组的平均数:

824151810165

y

+++++= ,解得:5y = ,

则:459x y +=+= .

点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.

三、解答题

21.(1) ?0.12 1.93y

x =-. (2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心。因此关爱忠者的考核分数也会稳定提高;他的关爱患者考核分数约为9.5分. 【解析】

分析:(1)由题意结合线性回归方程计算公式可得?0.12b

≈,? 1.93a ≈- ,则线性回归方程为0.1213?.9y

x =-. (2)由(1)知0.20?1b

=>.则随着医护专业知识的提高,关爱忠者的考核分数也会稳定提

高.结合回归方程计算可得当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数约为9.5分,

详解:(1)由题意知93,9.3,x y ==

()()()()()()()()

7

22222222

1

=989388939693919390939293969382

i

i x x =--+-+-+-+-+-+-=∑

()()1

9.9n

i

i

i x x y y =--=∑

所以()()()

1

2

1

9.90.128?2n

i

i

i n

i

i x x y y b

x x ==--==≈-∑∑,

9.9

9.393 1.938?2

a

=-?≈- , 所以线性回归方程为0.1213?.9y x =-. (2)由(1)知0.20?1b

=>.所以随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心.因此关爱忠者的考核分数也会稳定提高.

当95x =时,0.1295 1.93?9.5y

=?-≈ 所以当某医护人员的医护专业知识考核分数为95分时, 他的关爱患者考核分数约为9.5分,

点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.

22.(1),x

y c d =?更适宜(2)$

0.25346.74

10

x

y =;预计为4 【解析】 【分析】

(1)根据散点图判断,x

y c d =?更适宜作为违法案件数y 关于月份x 的回归方程类型. (2)由x

y c d =?得(

)lg lg lg lg x

y c d

c x

d =?=+?,设lg v y =,则lg lg v c x d =+?,

然后算出$lg 2.540.25y x =- 【详解】

解:(1)根据散点图判断,x

y c d =?更适宜作为违法案件数y 关于月份x 的回归方程类

型.

(2)x

y c d =?Q ,(

)lg lg lg lg x

y c d

c x

d ∴=?=+?,

设lg v y =,lg lg v c x d ∴=+?,4x =Q , 1.54v =,

$7

1

72

2

21

736.18674 1.54lg 0.2514074

7i i

i i i x v

xv

d

x x

==--??==

=--?-∑∑,$lg 4lg 2.54c v d =-?=$, $lg lg 2.540.25v c x d x ∴=+?=-$$,即$lg 2.540.25y x =-.

y ∴关于x 的回归方程为:$ 2.54

2.540.250.250.2510346.74101010

x x x y -===. 当8x =时,$

0.2582

346.74346.74

3.4671010y ?===,

则第8个月该社区出现的违法案件数预计为4. 【点睛】 本题考查的是用最小二乘法计算线性回归直线方程,解答本类题的关键是计算能力. 23.(1)见解析;(2)0.75;70.5. 【解析】 【分析】 【详解】

(1)利用频率分布直方图中,纵坐标与组距的乘积是相应的频率,而频数=频率?组距,可得结论,频率为:0.025?10=0.25,频数为:0.25?60=15. (2)纵坐标与组距的乘积是相应的频率,再求和,即可得到结论,

(1)及格率为:0.015?10+0.03?10+0.025?10+0.005?10=0.15+0.3+0.25+0.05=0.75 (2)平均数为:

44.5?0.01?10+54.5?0.015?10+64.5?0.015?10+74.5?0.03?10+84.5?0.025?10+94.5?0.005?10=4.45+8.175+9.675+22.35+21.125+4.75=70.5 24.(1) 0.040a =;中位数为82.5. (2) 3

5

【解析】 【分析】

(1)根据频率之和为1,结合频率分布直方图对应矩形区域面积求解即可;先结合数值预判中位数所在组距应在80到90之间,设综合评分的中位数为x ,结合频率计算公式求解即可;

(2)先结合分层抽样计算出一等品所占比例,再采用列举法表示出所有基本事件,结合古典概率公式求解即可 【详解】

(1)由频率和为1,得(0.0050.0100.0250.020)101a ++++?=,0.040a =; 设综合评分的中位数为x ,则(0.0050.0100.025)100.040(80)0.5x ++?+?-=,解得

82.5x =,

所以综合评分的中位数为82.5.

(2)由频率分布直方图知,一等品的频率为(0.0400.020)100.6+?=,即概率为0.6;

所以100个产品中一等品有60个,非一等品有40个,则一等品与非一等品的抽样比为3:2;

所以现抽取5个产品,一等品有3个,记为a 、b 、c ,非一等品2个,记为D 、E ; 从这5个产品中随机抽取2个,基本事件为:ab 、ac 、aD 、aE 、bc 、bD 、bE 、

cD 、cE 、DE 共10种;

抽取的这2个产品中恰有一个一等品的事件为:aD 、aE 、bD 、bE 、cD 、cE 共6种,

所以所求的概率为63105

P ==. 【点睛】

本题考查频率分布直方图中具体数值的求解,中位数的计算,求解具体事件对应的概率,属于中档题 25.(1)13

;(2)56.

【解析】 【分析】 【详解】

(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间

Ω={111112121()()()A B C A B C A B C ,,,

,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}

由18个基本事件组成.由于每一个基本事件被抽取的机会均等,

因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则

M ={111112121()()()A B C A B C A B C ,,,

,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}

事件M 由6个基本事件组成,因而61

()183

P M =

=. (2)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,

由于N ={111211311()()()A B C A B C A B C ,,,

,,,,,},事件N 有3个基本事件组成, 所以31()186P N =

=,由对立事件的概率公式得15

()1()166

P N P N =-=-=. 26.(1)25,75名;(2)①直方图见解析;②B 类工人中个体间的差异程度更小;③123,121.

【解析】 【分析】

(1)由分层抽样性质能求出A 类工人中和B 类工人中各抽查多少工人. (2)①由频率分布表列出方程能求出补x ,y ,并补全下列频率分布直方图. ②从频率分布直方图可以判断:B 类工人中个体间的差异程度更小. ③由频率分布直方图求出A 类工人生产能力的平均数和中位数. 【详解】

解:(1)由分层抽样性质得:

A 类工人中抽查:100

250251000

?

=名工人, B 类工人中抽查:100

750751000

?

=名工人. (2)①由题意得:485325x ++++=,解得5x =.

6361875y +++=,解得15y =.

补全频率分布直方图,如下图:

②从频率分布直方图可以判断:B 类工人中个体间的差异程度更小. ③A 类工人生产能力的平均数为: 4853

10511513514512325252525

A x =

?+?+?+?=. A 类工人生产能力的中位数的估计值为:0.50.160.32

120101210.2

--+

?=.

【点睛】

本题考查分层抽样、频率分布表、频率分布直方图的应用,考查平均数、中位数的求法,解题时要认真审题,注意频率分布直方图、分层抽样的性质的合理运用,属于中档题.

必修三 数学测试题

必修三 数学测试题 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.在频率分布直方图中,各个长方形的面积表示( ) A .落在相应各组的数据的频数 B .相应各组的频率 C .该样本所分成的组数 D .该样本的样本容量 [答案] B [解析]在频率分布直方图中,横轴是组距,纵轴是频率组距 ,故各个长方形的面积=组距 ×频率组距 =频率. 2.下边程序执行后输出的结果是( ) n =5S =0 WHILE S <15S =S +n n =n -1WEND PRINT n END A .-1 B .0 C .1 D .2 [答案] B [解析]S =5+4+3+2+1;此时n =0. 3.用秦九韶算法计算多项式f(x)=x 6-12x 5+60x 4-160x 3+240x 2-192x +64,当x =2时的值为( ) A .0 B .2 C .-2 D .4 [答案] A [解析]先将多项式f(x)进行改写: f(x)=x 6-15x 5+60x 4-160x 3+240x 2-192x +64=(((((x -12)x +60)x -160)x +240)x -192)·x +64.

然后由内向外计算得 v 0=1,v 1=v 0x +a 5=1×2-12=-10, v 2=v 1x +a 4=-10×2+60=40, v 3=v 2x +a 3=40×2-160=-80, v 4=v 3x +a 2=-80×2+240=80, v 5=v 4x +a 1=80×2-192=-32, v 6=v 5x +a 0=-32×2+64=0. 所以多项式f(x)当x =2时的值为f(2)=0. 4.一班有学员54人,二班有学员42人,现在要用分层抽样的方法从两个班中抽出一部分人参加4×4方队进行军训表演,则一班和二班分别被抽取的人数是( ) A .9人、7人 B .15人、1人 C .8人、8人 D .12人、4人 [答案] A [解析]一班抽取人数54×1696=9(人),二班抽取人数42×16 96 =7(人). 5.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2 700,3 000)范围内的频率为( ) A .0.001 B .0.1 C .0.2 D .0.3 [答案] D [解析]频率=0.001×300=0.3. 6.期中考试以后,班长算出全班40个人数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么M N 为( ) A .40 41 B .1 C .4140 D .2

80个高中数学易错题

2017年高考备考:高中数学易错点梳理 一、集合与简易逻辑 易错点1 对集合表示方法理解存在偏差 【问题】1: 已知{|0},{1}A x x B y y =>=>,求A B I 。 错解:A B =ΦI 剖析:概念模糊,未能真正理解集合的本质。 正确结果:A B B =I 【问题】2: 已知22 {|2},{(,)|4}A y y x B x y x y ==+=+=,求A B I 。 错解: {(0,2),(2,0)}A B =-I 正确答案:A B =ΦI 剖析:审题不慎,忽视代表元素,误认为A 为点集。 反思:对集合表示法部分学生只从形式上“掌握”,对其本质的理解存在误区,常见的错误是不理解集合的表示法,忽视集合的代表元素。 易错点2 在解含参数集合问题时忽视空集 【问题】: 已知2 {|2},{|21}A x a x a B x x =<<=-<<,且B A ?,求a 的取值范围。 错解:[-1,0) 剖析:忽视A =?的情况。 正确答案:[-1,2] 反思:由于空集是一个特殊的集合,它是任何集合的子集,因此对于集合B A ?就有可能忽视了A =?,导致解题结果错误。尤其是在解含参数的集合问题时,更应注意到当参数在某个范围内取值时,所给的集合可能是空集的情况。考生由于思维定式的原因,往往会在解题中遗忘了这个集合,导致答案错误或答案不全面。 易错点3 在解含参数问题时忽视元素的互异性 【问题】: 已知1∈{2a +,2 (1)a +, 2 33a a ++ },求实数a 的值。 错解:2,1,0a =-- 剖析:忽视元素的互异性,其实当2a =-时,2 (1)a +=233a a ++=1;当1a =-时, 2a +=2 33a a ++=1;均不符合题意。 正确答案:0a = 反思:集合中的元素具有确定性、互异性、无序性,集合元素的三性中的互异性对解题的影响最大,特别是含参数的集合,实际上就隐含着对字母参数的一些要求。解题时可先求出字母参数的值,再代入验证。 易错点4 命题的否定与否命题关系不明 【问题】: 写出“若a M a P ??或,则a M P ?I ”的否命题。 错解一:否命题为“若a M a P ??或,则a M P ∈I ” 剖析:概念模糊,弄错两类命题的关系。 错解二:否命题为“若a M a P ∈∈或,则a M P ∈I ” 剖析:知识不完整,a M a P ??或的否定形式应为a M a P ∈∈且。 正确答案:若a M a P ∈∈且,则a M P ∈I

高一化学易错题及典型题型完整版

高一化学易错题及典型 题型 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

高一化学易错题集锦及分析一元素化合物与化学概念部分【易错题】 一、元素化合物知识 1、下列物质既能与盐酸反应又能与NaOH溶液反应的是() A、Na 2CO 3 B、KHCO 3 C、Al 2O 3 D、NaHSO 4 解析:本题重点考查两点: (1)弱酸的酸式盐既能与强酸反应,又能与强碱反应,例如B选项:HCO 3 - +H+=H 2O+CO 2 ↑;HCO 3 -+OH-=H 2 O +CO 3 2- (2)Al 2 O 3 是两性氧化物,既能和 强酸又能和强碱反应。这是在初高中知识衔接讲解物质分类提到的。反应方程式到 高二学,现在了解:Al 2O 3+ 6H+=3H 2O+2Al3+;Al 2 O 3 +2OH-=2AlO 2 -+H 2 O。 以后既能和强酸又能和强碱反应的物质将拓展为一个小专题,现在就要注意积累。答案:BC 2、下列关于Na 2O 2 的叙述正确的是 () A、Na 2 O 2 是淡黄色固体,久置于空气中 变成Na 2 O B、Na 2 O 2 与水的反应中,Na 2 O 2 只作氧化剂 C、用Na 2 O 2 漂白过的织物、麦杆等日久又渐渐变成黄色 D、Na 2 O 2 放入饱和NaOH溶液中,放出 大量的O 2 ,并有白色固体析出 解析:A选项应中Na 2 O 2 久置于空气中 会变成Na 2 CO 3 ;B选项Na 2 O 2 与水的反应 中,Na 2 O 2 既作氧化剂又作还原剂,是氧化 还原中的歧化反应;C选项Na 2 O 2 由于强氧化性而漂白物质,漂白之后不会再变色;D 选项饱和NaOH溶液中放入Na 2 O 2 ,由于 Na 2 O 2 与水反应,放出大量的O 2 ,水少了,溶质NaOH增多了,会有白色固体NaOH析出。其中C选项可漂白的物质也应总结成小专题,现阶段学过的有:活性炭,吸附 褪色,物理变化;Na 2 O 2 、HClO由于强氧化性褪色,化学变化。以后注意继续补充。答案:D 3、经过下列试验,溶液仍为澄清透明的是() A、饱和Na 2 CO 3 溶液中通入足量CO 2 B、NaHCO 3 溶液中加入过量NaOH溶液

高中数学必修三复习试卷与答案

~ 高三数学必修三复试卷及答案 1.执行右边的程序框图,若输入的x 的值为–2,则输出y 的值是( ) A .5 B .3- C .3 D .5- 2.如图框图,当x 1=6,x 2=9,p=8.5时,x 3等于( ) A.7 B.8 C.10 D.11 3.两个二进制数101(2)与110(2)的和用十进制数表示为( ) A .12 B .11 C .10 D .9 4.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27 B .11 C .109 D .36 5.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生( ) A .1030人 B .97人 C .950人 D .970人 6.对某小区100户居民的月均用水量进行统计,得到样本的频率分布直方图如图,则估计此样本的众数、中位数分别为( ) 2.25, 2.5 B .2.25,2.02 C .2,2.5 D .2.5, 2.25 7.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A. 15 B.25 C.35 D.45 8.同时投掷两个骰子,则向上的点数之差的绝对值为4的概率是( ) A. 181 B.121 C.9 1 D.61 9.若在区间[]0,2中随机地取两个数,则这两个数中较小的数大于3 2 的概率是( ) A.31 B.32 C.94 D.9 1 10.在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形

高中数学人教版 必修三必修四测试卷(含答案)

华鑫中学2011~2012学年第三次月考 高一数学试卷(总分150) 一、选择题:(以下每小题有且仅有一个正确答案,共40分) 1、在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( ) A .等于15 B .等于310 C .等于2 3 D .不确定 2、已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A.2 B. 1 sin 2 sin C.2sin1 D.sin2 4、函数y =2sin(3x -π 4 )图象的两条相邻对称轴之间的距离是 A. π3 B. 2π 3 C.π D. 4π3 5、函数y =sin (π4 -2x)的单调增区间是 ( ) A.[kπ-3π8 ,kπ+π8 ](k ∈Z) B.[kπ+π8 ,kπ+5π 8 ](k ∈Z) C.[kπ-π8 ,kπ+3π8 ](k ∈Z) D.[kπ+3π8 ,kπ+7π 8 ](k ∈Z) 6、若 ,2 4 π απ < <则( ) A .αααtan cos sin >> B .αααsin tan cos >> C .αααcos tan sin >> D .αααcos sin tan >> 7、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值 为 ( ) A .5 B .-5 C .6 D .-6 8、已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a → 、b → 、

高中数学易错题集锦

高中数学易错题集锦 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。本文通过几个例子,剖析致错原因,希望能对读者的学习有所帮助,加强思维的严密性训练。 忽视等价性变形,导致错误。 ??? x >0 y >0 ? ??? x + y >0 xy >0 ,但 ??? x >1 y >2 与 ??? x + y >3 xy >2 不等价。 【例1】已知f(x) = a x + x b ,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。 错误解法 由条件得?? ? ??≤+≤≤+≤-62230 3b a b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32 338-≤≤- b ④ ③+④得 .3 43 )3(310,34333310≤≤≤+≤f b a 即 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数b x ax x f + =)(,其值是同时受b a 和制约的。当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的。 正确解法 由题意有?? ? ??+=+=22)2()1(b a f b a f , 解得: )],2()1(2[3 2 )],1()2(2[31f f b f f a -=-= ).1(95)2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得 .3 37 )3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固 地掌握基础知识,才能反思性地看问题。 ●忽视隐含条件,导致结果错误。 【例2】解下列各题 (1) 设βα、是方程0622 =++-k kx x 的两个实根,则2 2)1()1(-+-βα的最小值是 不存在)D (18)C (8)B (4 49)A (- 思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。 利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα

高一化学必修一易错题错题总结

第三、四章易错题总结 1、金属钠常常保存在() A水中 B煤油 C石蜡油中 D棕色瓶内 2、将一块铝箔,用砂纸打磨表面后,在酒精灯上加热融化,下列说法正确的是() A 融化的是铝 B 融化的是Al2O3 C 融化物滴落 D 融化物不滴落 3、下列说法错误的是() A 钠在空气中燃烧时先融化,再燃烧,最后所得产物只有Na2O B 镁因在空气中形成了一薄层致密的氧化膜保护了里面的镁,故镁不需要像钠似的特殊保护 C 铝制品在生活中非常普遍,这是因为铝不活泼 D 铁因在潮湿的空气中生成的氧化物疏松,不能保护内层金属,故铁制品往往需涂保护层 4、4.6g纯净的金属钠在干燥空气中被氧化后,得到7.0g固体,由此可判断其氧化产物是() A 只有Na2O B 只有Na2O2 C Na2O和Na2O2 D无法确定 5、将一块金属钠分别投放到下列物质的溶液中,有气体放出且溶液质量减轻的是() A CuSO4 B HCl C BaCl2 D NaOH 6、下列离子方程式中,正确的是() A Na与H2O反应:Na + 2H2O = Na+ + 2OH- + H2↑ B Na与盐酸反应:2Na + 2H+= 2Na+ + H2↑ C钠投入到CuSO4溶液中:Cu2+ + 2Na = Cu + 2Na+ D Na与O2反应:4Na + O2= 4Na+ + 2O2- 7、在Na和H2O的反应中() A Na 是氧化剂 B H2是氧化产物 C反应实质是钠置换水电离出的少量的H+ D反应实质是钠置换水中的氢气 8、将2.3g金属钠放入100g水中,完全反应后溶液的质量分数为() A 4 100% 100 2.3 ? + B 4 100% 10040.1 ? +- C 4 100% 1004 ? + D 4 100% 100 2.30.1 ? +- 9、将一小块钠投入盛饱和澄清石灰水的试管里,不可能观察到的现象是() A.熔成小球并在液面上游动 B.有气体生成 C.溶液底部有银白色物质生成 D.溶液变浑浊 10、Al粉投入某无色澄清的溶液中产生H2,则下列离子组合正确的是() A.H+、Ca2+、Na+、NO3-B.Na+、Mg2+、Al3+、Cl- C.Cu2+、Mg2+、Cl-、OH-D.Ba2+、Cl-、OH-、NO3- 11、甲、乙两烧杯中各盛有100mL3mol/L的盐酸和氢氧化钠溶液,向两烧杯中分别加入等质量的铝粉,反应结束后测得生成的气体体积比为甲:乙=1:2,则加入铝粉的质量为()

数学必修三综合测试卷

数学必修三综合测试卷 一,选择题(共12小题,每题5分,共60分) 1.下面对算法描述正确的一项是:( ) A .算法只能用自然语言来描述 B .算法只能用图形方式来表示 C .同一问题可以有不同的算法 D .同一问题的算法不同,结果必然不同 2.在下列各图中,每个图的两个变量具有相关关系的图是( ) (2)(3)(4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3.右图给出的是计算0 101614121+???+++ 的值的一个程序框图, 其中判断框内应填入的条件是 ( ) A . i<=100 B .i>100 C .i>50 D .i<=50 4.从分别写有A ,B ,C ,D ,F ,的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为( ) A .52 B .51 C .103 D .10 7 5.右边程序执行后输出的结果是( ) A.1- B .0 C .1 D .2 6.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( ) A. 不全相等 B. 均不相等 C. 都相等 D. 无法确定 7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是( ) A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样 C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法 8. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( ) A. 6y x =+ B. 42y x =+ C. 260y x =-+ D. 378y x =-+

高中数学必修三、必修五 测试卷 好题

高一数学期末复习试题 一、选择题 1、△ABC 的内角C B A ,,的对边分别为c b a ,,,已知4 ,6 ,2π π = ==C B b ,则△ABC 的面积是 ( ) A. 232+ B. 13+ C. 232- D. 13- 2、已知△ABC 的三边长分别为c b a ,,,若ac B b c a 3tan )(2 22=-+,则角B 的值等于 ( ) A. 6π B. 3π C. 656ππ或 D. 3 23ππ或 3、在等差数列}{n a 中,已知1684=+a a ,该数列前11项和=11S ( ) A.58 B.88 C.143 D.176 4、设公比为2的等比数列}{n a 的各项都是正数,且16113=a a ,则=102log a A.4 B.5 C.6 D.7 5、设变量y x ,满足约束条件?? ? ??≤--≥-≥02200 y x y x x ,则y x z 23-=的最大值为 ( ) A.0 B.2 C.4 D.6 6、设+ ∈R b a ,,且4=+b a ,则有 ( ) A .211≥ab B.111≥+b a C .2≥ab D .41122≥+b a 7、阅读右边的程序框图,运行相应的程序,则输出i 的值为 ( ) A .3 B .4 C .5 D .6 8、某校1000名学生中,O 型血有400人,A 型血有250人,B 型血 有250人,AB 型血有100人,为了研究血型与色弱的关系,要从 中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则 O 型血、A 型血、B 型血、AB 型血的人要分别抽的人数为( ) A.16、10、10、4 B.14、10、10、6 C.13、12、12、3 D.15、8、8、9 9、执行右面的程序框图,如果输入的n 是4,则输出的P 是 A .8 B .5 C .3 D .2 10、从4,3,2,1中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )

【易错题】高中必修二数学下期中模拟试卷(及答案)

【易错题】高中必修二数学下期中模拟试卷(及答案) 一、选择题 1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为 30o ,则该长方体的体积为( ) A .8 B .62 C .82 D .83 2.陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( ) A .1073 π B . 32 453 π+ C . 16323π+ D .32333 π+ 3.已知,,,A B C D 是同一球面上的四个点,其中ABC ?是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( ) A .48π B .24π C .16π D .323π 4.如图为某几何体的三视图,则该几何体的表面积为( ) A .202π+ B .203π+ C .242π+ D .243π+ 5.已知两点()A 3,4-,()B 3,2,过点()P 1,0的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是( ) A .()1,1- B .()(),11,∞∞--?+

C .[]1,1- D .][() ,11,∞∞--?+ 6.下列命题正确的是( ) A .经过三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .两两相交且不共点的三条直线确定一个平面 D .四边形确定一个平面 7.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( ) A .22(1)(1)5x y ++-= B .22(1)(1)5x y -++= C .22(1)(1)5x y -++= D .22(1)(1)5x y ++-= 8.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -的体积为 43 3 ,则球O 的半径为( ) A .3 B .1 C .2 D .4 9.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( ) A . 12 B .12 - C . 3 D .3- 10.如图1,ABC ?是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是 BC 的中点,ABE ?与BCF ?分别是以AB 、BC 为底边的等边三角形,现将ABE ?与 BCF ?分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( ) 图1 图2 (1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE .

高中必修三数学上期末试卷及答案

高中必修三数学上期末试卷及答案 一、选择题 1.如图阴影部分为曲边梯形,其曲线对应函数为1x y e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( ) A . 2 3 e - B . 1 3 e - C . 43 e - D .53e - 2.如图,ABC ?和DEF ?都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ?内”,B 表示事件“豆子落在DEF ?内”,则(|)P B A =( ) A . 33 B . 3 C . 13 D . 23 3.执行如图所示的程序框图,若输入8x =,则输出的y 值为( )

A.3B.5 2 C. 1 2 D. 3 4 - 4.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n的值分别为() (参考数据: 20 sin200.3420,sin()0.1161 3 ≈≈) A. 1180 sin,24 2 S n n =??B. 1180 sin,18 2 S n n =?? C. 1360 sin,54 2 S n n =??D. 1360 sin,18 2 S n n =?? 5.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于 A.1 4 B. 1 3 C.1 2 D. 2 3 6.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:

新人教版数学必修三第一章测试题(有答案)学习资料

本章测评(时间:90分钟满分:100分) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1下列说法中不正确 ...的是( ). A.系统抽样是先将差异明显的总体分成几个小组,再进行抽取 B.分层抽样是将差异明显的几部分组成的总体分成几层,然后进行抽取 C.简单随机抽样是从个体无差异且个数较少的总体中逐个抽取个体 D.系统抽样是从个体无差异且个数较多的总体中,将总体均分,再按事先确定的规则在 各部分抽取 解析:当总体中个体差异明显时,用分层抽样;当总体中个体无差异且个数较多时,用系 统抽样;当总体中个体无差异且个数较少时,用简单随机抽样.所以A项中的叙述不正确. 答案:A

2某班的60名同学已编号1,2,3, (60) 为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是( ). A.简单随机抽样 B.系统抽样 C.分层抽样 D.抽签法 解析:抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”. 答案:B 3统计某校1 000名学生的数学测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是( ).

A.20% B.25% C.6% D.80% 解析:从左至右,后四个小矩形的面积和等于及格率,则及格率是 1-10(0.005+0.015)=0.8=80%. 答案:D 4两个相关变量满足如下关系: 两变量的回归直线方程为( ). A.=0.58x+997.1 B.=0.63x-231.2

C.=50.2x+501.4 D.=60.4x+400.7 解析:利用公式==0.58, =- =997.1. 则回归直线方程为=0.58x+997.1. 答案:A 5某市A,B,C三个区共有高中学生20 000人,其中A区高中学生7 000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600的样本进行“学习兴趣”调查,则在A区应抽取( ). A.200人 B.205人 C.210人 D.215人 解析:抽样比是=,则在A区应抽×7 000=210(人). 答案:C

【易错题】高中必修二数学下期末试题附答案

【易错题】高中必修二数学下期末试题附答案 一、选择题 1.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( ) A .若//m α,//n α,则//m n B .若//m α,//m β,则//αβ C .若//m n ,n α⊥,则m α⊥ D .若//m α,αβ⊥,则m β⊥ 2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为3 3.已知集合{} {}2 |320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件 A C B ??的集合 C 的个数为( ) A .1 B .2 C .3 D .4 4.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( ) A . B .

C . D . 5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的1 7 是较小的两份之和,则最小的一份为( ) A . 53 B . 103 C . 56 D . 116 6.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( ) A .2 B .422+ C .442+ D .642+ 7.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱 111ABC A B C -,其中AC BC ⊥,若11AA AB ==,当“阳马”即四棱锥11B A ACC -体 积最大时,“堑堵”即三棱柱111ABC A B C -的表面积为 A 21 B 31 C . 23 2 D 33 +8.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞ B .[)0,+∞ C .[)0,4 D .(0,4)

高中化学十道易错题

化学易错题 1.某溶液既能溶解Al(OH) 3,又能溶解H 2 SiO 3 ,在该溶液中可以大量共存的是离 子组是 A.K+、Na+、HCO 3-、NO 3 - B.Na+、SO 4 2-、Cl-、ClO- C.H+、Mg2+、SO 42-、NO 3 - D.Ag+、K+、NO 3 -、Na+ 2.下列离子方程式书写正确的是 A.过量的SO 2通入NaOH溶液中:SO 2 +2OH-=SO 3 2-+H 2 O B.Fe(NO 3) 3 溶液中加入过量的HI溶液:2Fe3++2I-=2Fe2++I 2 C.NaNO 2溶液中加入酸性KMnO 4 溶液: 2MnO 4-+5NO 2 -+6H+=2Mn2++5NO 3 -+3H 2 O D.NaHCO 3溶液中加入过量的Ba(OH) 2 溶液: 2HCO 3-+Ba2++2OH-=BaCO 3 ↓+2H 2 O+CO 3 2- 3.阿伏加德罗常数约为6.02×1023mol-1,下列叙述正确的是A.2.24LCO 2 中含有的原子数为0.3 ×6.02×1023 B.0.1L3 mol·L-1的NH 4NO 3 溶液中含有的NH 4 +数目为0.3 ×6.02×1023 C.5.6g铁粉与硝酸反应失去的电子数一定为0.3 ×6.02×1023 D.4.5gSiO 2 晶体中含有的硅氧键数目为0.3 ×6.02×1023 4.短周期元素X、Y、Z的原子序数依次递增,其原子的最外层电子数之和为13。 X与Y、Z位于相邻周期,Z原子最外层电子数是X原子层电子数的3倍或者Y原子最外层电子数的3倍。下列说确的是 A.X的氢化物溶于水显酸性 B.Z的氢化物的水溶液在空气中存放不易变质 C.Y的氧化物是离子化合物 D.X和Z的最高价氧化物对应的水化物都是弱酸 5.某温度下,体积一定的密闭容器中进行如下可逆反应:

2020年高中必修三数学上期中试题(及答案)

2020年高中必修三数学上期中试题(及答案) 一、选择题 1.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 2. 某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6? D .k >7? 3.“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假 设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有 n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P , 若21P P ≥,则 n 的最小值是( ) A .3 B .4 C .5 D .6 4.从区间[]0,2随机抽取4n 个数1232,,,...,n x x x x ,1232,,,...,n y y y y 构成2n 个数对 ()11,x y ,()22,x y ,…,()22,n n x y ,其中两数的平方和小于4的数对有m 个,则用随机 模拟的方法得到的圆周率疋的近似值为( ) A . 2m n B . 2m n C . 4m n D . 16m n 5.抛掷一枚质地均匀的骰子,记事件A 为“向上的点数是偶数”,事件B 为“向上的点数不超过3”,则概率()P A B =U ( )

数学必修三全册试卷及答案

第I 卷(选择题) 一、单选题(60分) 1.某班级有名学生,其中有名男生和名女生,随机询问了该班五名男生和五名503020女生在某次数学测验中的成绩,五名男生的成绩分别为, , , , 116124118122,五名女生的成绩分别为, , , , ,下列说法一定正确的120118123123118123是(B ) A . 这种抽样方法是一种分层抽样 B . 这五名男生成绩的方差大于这五名女生成绩的方差 C .这种抽样方法是一种系统抽样 D . 该班级男生成绩的平均数小于该班女生成绩的平均数 2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C ) A .103 B .185 C .31 D .4 1 3.如图,矩形中点位边的中点,若在矩形内部随机取一个点,ABCD E CD ABCD Q 则点取自内部的概率等于( D ) Q ABE A . B . C . D . 4131322 14.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),

则该样本的中位数、众数分别是( D ) A . 47,45 B . 45,47 C . 46,46 D . 46,45 5. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B )A. B. C. D.11231015110 6.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A . 12 B .13 C .23 D .14 7.将2005x =输入如下图所示的程序框图得结果( A ) A .2006 B .2005 C .0 D .2005 - 8.98和63的最大公约数为( B )A.6 B.7 C.8 D.9 9.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样

高中数学易错题举例分析.doc

高中数学易错题举例解析 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。加强思维的严密性训练。 ● 忽视等价性变形,导致错误。 ??? x >0 y >0 ? ??? x + y >0 xy >0 ,但 ??? x >1 y >2 与 ??? x + y >3 xy >2 不等价。 已知f(x) = a x + x b ,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。 错误解法 由条件得?? ? ??≤+≤≤+≤-62230 3b a b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32 338-≤≤- b ④ ③+④得 .3 43 )3(310,34333310≤≤≤+≤f b a 即 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数b x ax x f + =)(,其值是同时受b a 和制约的。当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的。 正确解法 由题意有?? ? ??+=+=22)2()1(b a f b a f , 解得:)],2()1(2[32)],1()2(2[31f f b f f a -=-= ).1(95)2(91633)3(f f b a f -=+ =∴ 把)1(f 和)2(f 的范围代入得 .3 37 )3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。 ●忽视隐含条件,导致结果错误。 (1) 设βα、是方程0622 =++-k kx x 的两个实根,则2 2 )1()1(-+-βα的最小值是 不存在)D (18)C (8)B (4 49)A (- 思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。 利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα

高中化学必修一易错题分析

学习好资料 欢迎下载 高中化学(必修一) 第三单元 单元测试易错题的分析 本次测试得分率最低的三道题目分别为第6题(42.50%)、第7题(40.00%)和第15题(37.50%) 第6题考查学生离子方程式正误的判断。 解析:铁与稀硫酸反应生成Fe 2+,A 项不正确;磁性氧化铁溶于盐酸有Fe 2+、Fe 3+生成, 其离子方程式为Fe 3O 4+8H +===2Fe 3++Fe 2++4H 2O ,B 项不正确;C 项中离子方程式电荷不守恒,故C 项不正确。 离子方程式正误的判断是高考中是必考的,要求学生对该知识一定要完全掌握,在平时的教学中,我们要注意这些方面的培养,同时,也要教会学生对付这些题目的技巧。 第7题考查金属与酸反应及金属与水反应生成碱、铝与碱反应生成气体的知识点 解析:A 项中,首先Al 与0.01 mol H +反应生成H 2 0.01 g ,Al 过量0.053 mol ,0.01 mol K 再与水反应生成H 2 0.01 g ,KOH 0.01 mol 。反应2Al +2KOH +2H 2O===2KAlO 2+3H 2↑中,据0.01 mol KOH 计算,又生成H 2 0.03 g ,总共生成H 2 0.05 g 。B 项中,0.02 mol Na 与水反应生成H 2 0.02 g ,Mg 与NaOH 溶液不反应,故H 2总质量最多0.02 g 。C 项中,只有Zn 与酸反应,生成H 2 0.01 g ,Al 与水不反应。D 项中,只有Mg 与酸反应,生成H 2 0.01 g ,Cu 与水不反应。 学生的得分率比较低的原因主要是分析能力还欠缺,同时金属的性质也不熟悉,所以在回答问题时不知该如何下手。 第15题考查有关“工艺流程图”的知识,学生比较陌生,同时对于铝的化合物的性质掌握程度不够熟悉,因此,在回答问题时找不到得分点,有学生虽然回答了,但没有得分。错误较多的还是方程式的书写方面。

高一数学必修三测试题答案

高一数学必修三测试题答 案 Newly compiled on November 23, 2020

高一数学必修三总测题(A组) 一、选择题 1. 从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽 样的方法,则所选5名学生的学号可能是 ( ) A. 1,2,3,4,5 B. 5,16,27,38,49 C. 2,4,6,8,10 D. 4,13,22,31,40 2. 给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x为某一实数时可使20 x ”是不可能事件 ③“明天顺德要下雨”是必然事件 ④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( ) A. 0 B. 1 3. 下列各组事件中,不是互斥事件的是 ( ) A. 一个射手进行一次射击,命中环数大于8与命中环数小于6 B. 统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于分 C. 播种菜籽100粒,发芽90粒与发芽80粒 D. 检查某种产品,合格率高于70%与合格率为70% 4. 某住宅小区有居民2万户,从中随机抽取200户, 查是否安装电话,调查的结果如表所示, 安装电话的户数估计有 A. 6500户 B. 300户 5. 有一个样本容量为50的样本数据分布如下,估计小于30的数据大约占有 ( )

[)12.5,15.5 3;[)15.5,18.5 8;[)18.5,21.5 9;[)21.5,24.5 11;[)24.5,27.5 10; [)27.5,30.5 6;[)30.5,33.5 3. A. 94% B. 6% C. 88% D. 12% 6. 样本1210,, ,a a a 的平均数为a ,样本110, ,b b 的平均数为b ,则样本 11221010,,,, ,,a b a b a b 的平均数为 ( ) A. a b + B. ()12a b + C. 2()a b + D. 1 10 ()a b + 7. 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其 他10个小长方形的面积的和的1 4 ,且样本容量为160,则中间一组有频数为 ( ) A. 32 B. C. 40 D. 8. 袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为 ( ) A. 25 B. 415 C. 3 5 D. 非以上答案 9. 在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6张卡片,今从每个袋中各取一 张卡片,则两数之和等于9的概率为 ( ) A. 13 B. 16 C. 19 D. 112 10.以{}2,4,6,7,8,11,12,13A =中的任意两个元素分别为分子与分母构成分数,则这种分数 是可约分数的概率是 ( ) A. 513 B. 528 C. 314 D. 514 二、填空题 11.口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球, 摸出白球的概率为,则摸出黑球的概率为____________.

高一数学必修一易错题集锦答案

高一数学必修一易错题集锦答案 1. 已知集合M={y |y =x 2 +1,x∈R },N={y|y =x +1,x∈R },则M∩N=( ) 解:M={y |y =x 2 +1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }. ∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, 注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2 +1,x ∈R }、{(x ,y )|y =x 2 +1,x ∈R },这三个集合是不同的. 2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2} 3 。已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个) 解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z , ∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。 4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围. 解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3 ②当B=时,即p +1>2p -1p <2. 由①、②得:p≤3. 点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题. 5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2 }.若A=B ,求c 的值. 分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式. 解:分两种情况进行讨论. (1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2 -2ac=0, a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0. ∴c 2 -2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解. (2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2 -ac -a=0, ∵a≠0,∴2c 2 -c -1=0, 即(c -1)(2c +1)=0,又c≠1,故c=- 21. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则 a -11∈A ,1≠a 且1?A. ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由. ⑶若a∈A,证明:1- a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.

相关文档
最新文档