植物营养学名词解释培训资料

植物营养学名词解释培训资料
植物营养学名词解释培训资料

植物营养学名词解释

翻译并用汉语解释

植物营养( Plant nutrition ):植物生长和代谢所需要的化学物质的供应和吸收。

植物营养学(subject of plant nutrition):研究植物对营养物质的吸收、运输、转化和利用的规律及植物与外界环境之间营养物质和能量交换的科学。

肥料(fertilizer):通常把施入土壤中或喷洒在作物地上部分,能直接或间接供给作物养分,增加作物产量,改善产品品质或能改变土壤性状,提高土壤肥力的物质称为肥料。

植物有益元素(beneficial elements of plants)有益元素(beneficial element of plants):在非必需营养元素中有一些元素,对特定植物的生长发育有益,或为某些种类植物所必需,这些元素被称为有益元素。

根际效应(Rhizosphere)指受植物根系活动的影响,在物理、化学和生物学性质上不同于土体的那部分微域土区。

根际效应:在根际中,植物根系不仅影响介质土壤中的无机养分的溶解度,也影响土壤生物的活性,从而构成一个“根际效应”。

大量元素(macronutrient )

微量元素(micronutrient)

被动吸收(passive absorption): 膜外养分顺浓度梯度 (分子) 或电化学势梯度 (离子)不需消耗代谢能量而自发地 (即没有选择性地) 进入原生质膜的过程。

主动吸收(active absorption): 膜外养分逆浓度梯度 (分子) 或电化学势梯度 (离子)、需要消耗代谢能量、有选择性地进入原生质膜内的过程。

转运子 (transporter): 是指植物的细胞膜上具有控制溶质或信息出入膜的蛋白质体系。

离子间的拮抗作用(ion antagonism): 指在溶液中某一离子的存在能抑制另一离子吸收的现象。离子间的协助作用(ion synergism): 指在溶液中某一离子的存在有利于根系对另一些离子的吸收。这种作用主要表现在阳离子和阴离子之间,以及阳离子与阳离子之间。

植物生长期(the growth stage of plant ):一般是从种子到种子的时期。

植物营养期(the nutrition stage of plant ):植物通过根系由土壤中吸收养分的整个时期。

植物营养临界期( critical period of plant nutrition ): 在植物生育过程中,有一时期对某种养分要求绝对量不多,但很敏感需要迫切。此时如缺乏这种养分,对植物生育的影响极其明显,并由此而造成的损失,即使以后补施该种养分也很难纠正和弥补。

植物营养最大效率期( maximum efficiency stage of plant nutrition ): 在植物生长发育过程中,植物需要养分的绝对数量最多,吸收速率最快,肥料的作用最大,增产效率最高时期。

根外营养( exoroot nutrient ): 植物除可从根部吸收养分外,还能通过叶片(或茎)吸收养分,这种营养方式称为植物的叶面营养或根外营养。

短距离运输(Short-Distance Transport):根外介质中的养分从根表皮细胞进入根内经皮层组织到达中柱的迁移过程叫养分的横向运输。由于其迁移距离短,又称为短距离运输。

长距离运输(Long-Distance Transport) : 养分从根经木质部或韧皮部到达地上部的运输以及养分从地上部经韧皮部向根的运输过程,称为养分的纵向运输。由于养分迁移距离较长,又称为长距离运输。

源(Source): 植物体内进行光合作用或能合成有机物质为其它器官提供营养的部位。

库(Sink)消耗或储存部位.(如根、茎、生长顶端和果实)。

氮肥利用率(Utilization rate of nitrogen fertilizer ):指当季作物从所施肥料中吸收氮素的数量占施氮量的百分数。

缓释氮肥(slow-release nitrogen fertilizer):是指由化学或物理法制成能延缓养分释放速率,可供植物持续吸收利用的氮肥。如脲甲醛、包膜氮肥等。

铵态氮肥(Ammonium-N Fertilizer):氮肥中的氮素以铵离子NH4+或NH3形式存在的。

硝化作用(Nitrification): 氨在硝化细菌的作用下氧化为硝酸的过程,氧化过程分为两步进行:首先氨在亚硝化细菌的作用下,氧化为亚硝酸;随后亚硝酸再被硝酸细菌氧化为硝酸。

反硝化作用(Denitrification): 硝态氮还原的一种途径,即NO3—在嫌气条件下,经反硝化的作用,还原为气态氮的过程,也称为脱氮作用。

遗传学名词解释(学习资料)

绪论 1.变异:亲代与子代之间、子代个体之间,存在着不同程度差异的现象叫变异。 2.遗传:亲代与子代相似的现象称为遗传。 第一章 1.同源染色体:形态和结构相同的一对染色体称为同源染色体。 非同源染色体:形态和结构不同的各对染色体之间,互称为非同源染色体。 2.有丝分裂:经过染色体有规律的和准确的分裂过程,分裂过程中出现纺锤丝,包括质分裂和核分裂两个过程。 3.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。 4.减数分裂:又称成熟分裂,经过两次分裂,使体细胞染色体数目减半。 5.联会复合体:是同源染色体联结在一起的一种特殊的固定结构。 6.交叉端化:交叉向二价体的两端移动,并且逐渐接近于末端的现象。 第二.三章 1.单位性状:被分开的每一个具体形状称为单位性状。 2.相对性状:同一单位性状在不同个体间所表现出来的相对差异。 3.显性性状:在F1表现出来的性状叫做显性性状。 4.隐性性状:在F1未表现出来的性状叫做隐性性状。 5.不完全显性:杂种F1的性状表现是双亲性状的中间型,称为不完全显性。 6.共显性:双亲的性状同时在F1个体上表现出来,这种显性表现称为共显性。 7.自交:植物的自花授粉称为自交。 8 .测交:被测验的个体与隐性纯合个体间的杂交。 9 .基因型:个体的基因组合称为基因型。 10.表现型:是生物体所表现的性状,由基因型和环境共同作用。 11.基因纯合体:具有纯合基因型的个体称为基因纯合体。 12.基因杂合体:具有杂合基因型的个体称基因为杂合体。 13.分离:显性性状和隐性性状同时表现出来的现象叫做分离。 14.等位基因:位于同一同源染色体的相对位点上的两个基因称为等位基因。

植物营养学(上、下)复习题题库

一、名词解释 1 归还学说 21 作物营养临界期 41 氨的挥发 2 矿质营养学说 22 作物营养最大效率期 42 腐殖化系数 3 最小养分律 23 短距离运输 43 土壤速效钾 4 必需营养元素 24 长距离运输 44 土壤缓效钾 5 有益元素 25 共质体 45 易还原态锰 6 微量元素 26 质外体 46 氮肥利用率 7 肥料三要素 27 养分再利用 47 生理酸性肥料 8 根部营养 28 质流 48 生理碱性肥料 9 根外营养 29 扩散 49 长效氮肥 10 自由空间 30 截获 50 包膜肥料 11 水分自由空间 31 根际 51 合成有机长效氮肥 12 杜南自由空间 32 根际养分亏缺区 52 过磷酸钙的退化 13 主动吸收 33 根分泌物 53 磷的固定作用 14 被动吸收 34 专一性根分泌物 54 枸溶性磷肥 15 离子拮抗作用 35 菌根 55 难溶性磷肥 16 离子相助作用 36 强度因素 56 高品位磷矿 17 维茨效应 37 容量因素 57 异成分溶解 18 离子通道 38 有机氮的矿化 58 闭蓄态磷 19 载体学说 39 硝化作用 59 忌氯作物 20 离子泵学说 40 反硝化作用 60 复合肥料 61 高浓度复合肥料 68 厩肥 75 化成复合肥料 62 二元复合肥料 69 绿肥 76 混成复合肥料 63 多功能复合肥料 70 以磷增氮 77 绿肥 64 多元复合肥料 71 胞饮作用 78 缓冲容量 65 中和值 72 鞭尾病 79 灰分 66 热性肥料 73 花而不实 80 灰分元素 67 冷性肥料 74 激发效应 81 养分化学有效性 82 养分空间有效性 83 养分生物有效性 84 逆境土壤 85 单盐毒害 86 耐盐机理 87 泌盐机理 88 避盐机理 89 基因型 90 养分利用效率 91 生物肥料 92 铵态氮肥 93 硝态氮肥 94 酰胺态氮肥 95 碳/氮 96 铵的晶格固定 97 堆肥 98 生理性缺钙 99 再吸收 100 释放 101交换吸附 102 基肥 103 追肥 104 种肥 105 钙镁磷肥 106 掺和肥料 二、填空题 1、在固体氮肥中易挥发的是________,?吸湿性强的是________?,?宜作追肥的是_______,最适于作根外追肥的是_________。 2、钼在植物体中是________和_______酶的组成成分,所以_______?作物缺钼受影响最为明显。 3、矿质养分在_______的运输是单向的,而在________的运输是双向的。两部分之间的养分主要靠__________来勾通。 4、人粪尿腐熟的标志是_____________,它不宜与__________肥料混合施用。 5、植物能直接同化____态氮素,_____态氮素则需经过_______作用,?生成______后才能被同化,而这一过程至少需要微量元素_____和_____。

遗传学名词解释

1 Chromosomal disorders:染色体结构和数目异常而导致的疾病。如Down’s综合征(+21),猫叫综合征(5p-)。 2 Single gene disorders: 由于控制某个性状的等位基因突变导致的疾病称之。 3 Polygenic disorders:一些常见病和多发病的发生由遗传因素和环境因素共同决定,遗传因素中不是一对等位基因,而是多对基因共同作用于同一个性状。 4 Mitochondrial disorders:是指线粒体DNA上的基因突变导致所编码线粒体蛋白质结构和数目异常,导致线粒体病。线粒体是位于细胞质中的细胞器,故随细胞质(母系)遗传。 4 Somatic cell disorders: 体细胞中遗传物质突变导致的疾病。 5 分离律 (Law of segregation)基因在体细胞内成对存在,在生殖细胞形成过程中,同源染色体分离,成对的基因彼此分离,分别进入不同的生殖细胞。细胞学基础:同源染色体的分离。 6 自由组合律(law of independent assortment)在生殖细胞形成过程中,不同的非等位基因,可以相互独立的分离,有均等的机会组合到—个生殖细胞的规律性活动。 7 连锁与互换定律-(law of linkage and crossing over)位于同一染色体上的两个基因,在生殖细胞形成时,如果它们相距越近,一起进入同一生殖细胞的可能性越大;如果相距较远,它们之间可以发生交换。 8 Gene mutation: DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 9 Point mutation:指单个碱基被另一个碱基替代。转换(transition):嘧啶之间或嘌呤之间的替代。颠换(transversion):嘧啶和嘌呤之间的替代。 10 Same sense mutation:碱基替换后,所编码的氨基酸没有改变。多发生于密码子的第三个碱基。 11 Missense mutation:碱基替换后,改变了氨基酸序列。错义突变多发生于密码子的第一、二个碱基 12 Nonsense mutation:碱基替换后,编码氨基酸的密码子变为终止密码子(UAA、UGA、UAG),多肽链合成提前终止。 13 Frame shift mutation:在DNA编码序列中插入或丢失一个或几个碱基,造成插入或缺失点下游的DNA编码框架全部改变,其结果是突变点以后的氨基酸序列发生改变 14 dynamic mutation :人类基因组中的一些重复序列在传递过程中重复次数发生改变导致遗传病的发生,称动态突变。

遗传学名词解释.

第一章绪论 名词解释 1. 遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 2. 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 3. 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。 第二章遗传的细胞学基础 名词解释 1.细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为①DNA合成前期(G1期);②DNA合成期(S期);③DNA合成后期(G2期);④有丝分裂期(M期)。 2.原核细胞:一般较小,约为1~10mm。细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。细胞壁内为细胞膜。内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。其DNA存在的区域称拟核,但其外面并无外膜包裹。各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。 3.真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 4.染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。 .染色体:是指染色质丝通过多级螺旋化后卷缩而成的一定形态结构。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。(染色体指任何一种基因或遗传信息的特定线性序列的连锁结构。)5.染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 6.姐妹染色单体:二价体中的同一各染色体的两个染色单体,互称姐妹染色单体,它们是间期同一染色体复制所得。 7.非姐妹染色单体:单体二价体的不同染色体之间的染色单体互称非姐妹染色单体,它们是同源染色体这些间期各自复制所得。 8.联会:减数分裂中,同源染色体的配对过程。 9.同源染色体:生物体中,形态和结构相同的一对染色体,成为同源染色体。 10. 异源染色体:生物体中,形态和结构不同的各对染色体互称为异源染色体。 12. 染色体组:指包含有一套对于生物体的生命活动所不可缺少的,最小限度的基因群的一组染色体。 13. 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 14. 染色粒:在有丝分裂和减数分裂前期的染色体,由DNA丝局部螺旋化而产生颗粒状结构。 15. 染纽:指某些生物中(玉米、紫苜蓿),位于染色体的末端或中间的特别大的染色

植物营养学复习题

植物营养学》试题一 一、名词解释(本大题共5小题,每小题4分,共20分) 1.矿质营养学说 2.植物营养临界期 3.最小养分律 4.过磷酸钙的退化作用 5.报酬递减律 二、填空题(本大题共30小题,每小题1分,共30分) 1.植物吸收养分的器官主要是,其次是。植物吸收养分的形态主要是,此外植物还可吸收少量形态的养分。 2.影响植物吸收养分的因素中,内在因素是。 3.养分跨膜的机制有和两种,其中选择性吸收养分,同时要消耗能量的机制属,空气中的SO2、CO2等气体通过扩散作用进入叶细胞,其机制属。 4.植物必需营养元素中,微量营养元素有种,它们是。被称为“植物营养三要素”或“肥料三要素”的是。 5.在下列元素中选择填空(单项或多项) A.氮 B.钙 C.钾 D.铁 E.氧 F.磷 G.硫 在植物体内移动性很强,首先在下部叶片出现黄化症的是,首先在下部叶片出现叶色暗绿或墨绿的是。在植物体内移动性差,缺乏症状首先出现在上部幼叶或顶尖的是。在粘重滞水的土壤中,植物根系吸收养分能力弱,原因是缺,而影响到根系的呼吸作用。 6.在下列肥料中选择填空(单项或多项) A.人畜粪尿 B.氯化铵 C.磷酸铵 D.过磷酸钙 E.堆肥 F.硫酸钾 G.硝酸钠 上述肥料中,属于有机肥的是;属于生理酸性肥料的是,属于生理碱性肥料的是;属于二元复合肥的是。 上述肥料中,最适宜做根外追肥的是;不能与石灰混合施用的是;不适宜施在强还原性水稻田的是。 7.人粪尿不能施在盐碱土上,是因为其含有约1%的。 8.秸秆可以通过、、 和四种方式还田,但生产上强调的还田方式是。 9.微生物菌剂并不直接提供养分,而是通过来提高作物的产量和品质。 三、简答题(本大题共3小题,第1题6分,第2、3题7分,共20分) 1.简述养分从土壤到达植物叶片的几个步骤。 2.为什么要提倡无机肥料与有机肥料配合施用? 3.简述铵态氮肥的合理施用方法。 四、计算(本大题共1小题,每小题15分,共15分) 欲配制适用于某一地区某一作物的专用肥,要求其养分比例为N:P2O5:K2O=1:0.58:1.25,养分总浓度为28.3%。配制该专用复混肥1吨,需用硫酸铵(含N20%)、磷酸铵(含N15%,含P2O550%)、氯化钾(含K2O60%)和添加物各多少公斤(结果保留为整数)?该专用复混肥料

遗传学名词解释大全

autoregulation 自我调节:基因通过自身的产物来调节转录。 autosome 常染色体:性染色体以外的任何染色体。 auxotroph 营养缺陷型:微生物的一种突变体,它不能合成生长所需的物质,培养时必须在培养基中加入此物质才能生长。 back mutation 回复突变:见reversion bacteriophage (phage) 一种感染细菌的病毒。 balance model 平衡模型:关于遗传变异比例的一种模型,它认为自然选择维持了群体中大量遗传变异的存在。 balanced polymorphism 平衡多态现象:稳定的遗传多态现象是由自然选择来维持的。 Barr body 巴氏小体:在正常雌性哺乳动物的核中有一个高度凝聚的染色质团,它是一个失活的X染色体。 base analog 碱基类似物:一种化学物质,其分子结构和DNA的碱基相似,在DNA的代谢过程中有时会取代正常碱基,结果使DNA的碱基发生突变。 bead theory 串珠学说:已被否定的学说,认为基因附着在染色体上,就象项链上的串珠。它既是突变单位又是重组单位。 binary fission 二分分裂:一个细胞分裂为大小相近的两个子细胞的过程。binomial distribution 二项分布:具有两种可能结果的 biparental zygote 双亲合子:又称双亲遗传(biparental inheriance),衣藻(chlamydomonas) 的合子含有来自双亲的DNA。这种细胞一般很少见。 biochemical mutation 生化突变,见自发突变(autotrophic mutation)。bivalent 二价体:在第一次减数分裂时彼此联合的一对同源染色体。bottleneck effect 瓶颈效应:一种类型的漂变。当群体很小时产生这种效应,结果使基因座中有的基因丢失了。 branch-point sequence 分支点顺序:在哺乳动物细胞中的保守顺序:YNCURAY(Y: 嘧啶,R:嘌呤, N:任何碱基),位于核mRNA内含子和II 类内含子3'端附近,其中的A可通过5'-2'连接的方式和内含子5'端相连接,在剪接时形成套马索状结构。 broad-sense heritability 广义遗传力:表型方差中所含遗传方差的百分比。cotplot 浓度时间乘积图:一个样本单位单链DNA分子复性动力学曲线。以结合为双链的量为纵坐标,以DNA浓度和时间的乘积为横坐标作出的DNA复性动力学曲线 C value C值:生物单倍体基因所含的DNA总量。 CAAT element CAAT元件:真核启动子上游元件之一,常位于上游-80bp附近,其功能是控制转录起始频率,保守顺序是 5'-GGCCAATCT-3'。 cancer 癌:恶性肿瘤,细胞失控,异常分裂且在生物体内可播散。 5'-capping -5'加帽:在 mRNA加工的过程中在前体 mRNA分子的5'端加上甲基核苷酸的“帽子”。 catabolite repression (glucose effect) 分解代谢物阻遏(糖效应):当糖存在时能诱发细菌操纵子的失活,即使操纵子的诱导物存在也是如此。 cDNA 互补DNA:以mRNA为模板,以反转录酶催化合成的DNA的拷贝。 cDNA clone cDNA分子克隆:将cDNA片段装在载体上转化细菌扩增出多克隆的过程,最终可建立cDNA文库。

植物营养学(课件)

《植物营养学》

第一节植物营养性状的基因型差异 第二节植物养分效率差异的生理学和遗传学基础(Part1Part2) 第三节植物营养遗传特性的改良途径第一节肥料的科学施用第二节肥料的科学管理(Part1Part2) 第十一章植物对逆境土壤的适应性 第一节酸性土壤 (Part1Part2Part3Part4) 第二节盐渍土 (Part1Part2) 第三节石灰性土壤 (Part1Part2) 第四节渍水和淹水土壤 第一章绪论 第一节植物营养学与农业生产 绿色植物的显著特点是其根或叶能从周围环境中吸取营养物质,并利用这些物质建造自身的躯体或转化为维持其生命活动所需的能源。植物体从外界环境中吸取其生长发育所需的养分,并用以维持其生命活动,即称为营养。植物体所需的化学元素称为营养元素。营养元素转变(合成与分解)为细胞物质或能源物质的过程称为新陈代谢。实质上,营养元素是代谢过程的主要参与者。这表明植物营养与新陈代谢过程是紧密相关的。 植物营养学是研究植物对营养物质的吸收、运输、转化和利用的规律及植物与外界环境之间营养物质和能量交换的科学。或者说,植物营养学的主要任务是阐明植物体与外界环境之间营养物质交换和能量交换的具体过程,以及体内营养(养分)物质运输、分配和能量转化的规律,并在此基础上通过施肥手段为植物提供充足的养分,创造良好的营养环境,或通过改良植物遗传特性的手段调节植物体的代谢,提高植物营养效率,从而达到明显提高作物产量和改善产品品质的目的。 我国是一个人口众多的国家,粮食生产在农业生产的发展中占有重要位置。粮食生产不仅是为了解决吃饭问题,而且也要为副食品生产、畜牧业、养殖业以及工业生产(糖、酒等)提供原料。通常,增加粮食产量的途径是扩大耕地面积或提高单位面积产量。根据我国国情,继续扩大耕地面积的潜力已不大,虽然我国尚有许多未开垦的土地,但大多存在投资多、难度大的问题。这就决定了我国粮食

医学遗传学名词解释

第一章绪论 无 第二章遗传的细胞学基础 1.常染色质:间期核纤维折叠盘曲程度小、分散度大、能活跃地进行转录的染 色质。 2.异染色质:间期核纤维折叠盘曲紧密、呈凝聚状态,一般无转录活性的染色 质,又分为结构异染色质和兼性异染色质两大类。 3.兼性异染色质:是在特定细胞的某一发育阶段由原来的常染色质失去转录活 性,转变成凝缩状态的异染色质,二者的转化可能与基因的表达调控有关。 4.Lyon假说:(1)雌性哺乳动物体细胞仅有一条X染色体有活性,其他的X染 色体在间期细胞核中螺旋化而呈异固缩状态的X染色质,在遗传上失去活性。 (2)失活发生在胚胎发育的早期(人胚第16天);在此之前所有体细胞中的X染色体都具有活性。(3)X染色体的失活是随机的,但是是恒定的。 5.剂量补偿:由于正常女性体细胞中的1条X染色体发生了异固缩,失去了转 录活性,这样就保证了男女性个体X染色体上的基因产物在数量上基本一致,这称为X染色体的剂量补偿。 第三章遗传的分子基础 1.外显子和含子:真核生物的基因为断裂基因,即结构基因是不连续排列的, 中间被不编码的插入序列隔开,编码序列称为外显子,编码序列中间的插入序列称为含子。 2.单一序列和高度重复序列:单一序列是在一个基因组中只出现一次或少数几 次,大多数编码蛋白质和酶类的基因即结构基因为单一序列。重复序列是指在基因组中有很多拷贝的DNA序列,有些重复序列与染色体的结构有关。 3.基因突变:是指基因在结构上发生碱基对组成或排列顺序的改变。 4.转换和颠换:转换是指一个嘌呤被另一个嘌呤所取代,或是一个嘧啶被另一 个嘧啶所取代。颠换指嘌呤取代嘧啶,或嘧啶取代嘌呤。 5.同义突变:是指碱基替换使某一密码子发生改变,但改变前后的密码子都编 码同一氨基酸,实质上并不发生突变效应。 6.错义突变:是指碱基替换导致改变后的密码子编码另一种氨基酸,结果使多 肽链氨基酸种类和顺序发生改变,产生异常的蛋白质分子。 7.无义突变:是指碱基替换使原来为某一个氨基酸编码的密码子变成终止密码 子,导致多肽链合成提前终止。 8.终止密码突变:是指碱基替换使原有的一个终止密码子变成编码某个氨基酸 的密码子,导致多肽链继续延长,直到下一个终止密码子出现才停止,结果形成过长的异常多肽链。 9.遗传印记:不同性别的亲本传给子代的同一染色体或基因,当发生改变时可 引起不同的表型,这种现象称为遗传印记。 10.移码突变:是指在DNA编码顺序中插入或缺失一个或几个碱基对(但不是3 个或3的倍数),造成这一位置以后的一系列编码发生移位错误。移码突变的结果使变动部分以下的多肽链氨基酸种类和顺序发生改变,影响蛋白质或酶的生物学功能。

植物营养学复习资料

植物营养学复习资料(11农本) 题型:名词解释;10×2’、填空;7(20×1)、选择题;10×1’、简答题;6×5’、论述题和计算题;2×10’1、植物营养学 P1 植物营养学是研究植物对营养物质的吸收、运输、转化和利用的规律及植物与外界环境之间营养物质和能量交换的科学。 2、土壤养分的化学有效性 P131 化学有效养分是指土壤中存在的矿质态养分。 3、土壤有效养分 P132 土壤有效养分是指那些能被植物根系吸收的无机态养分以及在植物生长期内由有机态释放出的无机态养分。 4、根际 P148 根际是指受植物根系的影响,在物理、化学和生物学性质上不同于土体的那部分微域土区。 5、被动运输 P167 被动运输是离子顺电化学势梯度进行的扩散运动,这一过程不需要能量。 6、主动运输 P167 主动运输是在消耗能量的条件下,离子逆电化学势梯度的运转。 7、植物的营养临界期 P186 植物营养临界期是指植物生长发育的某一个时期,对某种养分要求和绝对数量不多但很迫切,并且当养分供应不足或元素间数量不平衡时将对植物生长发育造成难以弥补的损失的那段时期。(营养元素过少或过多或营养元素间不平衡,对植物生长发育起着明显不良影响的那段时间) 8、植物营养最大效率期 P186 植物营养最大效率期是指在植物的生长阶段中所吸收的某种养分能发挥其最大效能的时期。(营养物质能对植物产生最大效能的那段时间) 9、矿质养分的再利用 P208 矿质养分的再利用是指植物某一器官或部位中的矿质养分可通过韧皮部运往其他器官或部位,而被再度利用的现象。 10、肥料 P1 肥料是指人们用以调节植物营养与培肥改土的一类物质。 11、生理酸性肥料 P17 生理酸性肥料是指化学肥料中阴、阳离子经植物吸收利用后,其残留部分导致介质酸度提高的肥料。(植物选择性吸收后导致环境酸化的肥料) 12、生理碱性肥料 生理碱性肥料是指化学肥料中阴、阳离子经植物吸收利用后,其残留部分导致介质碱度提高的肥料。 13、氮肥利用率 P38 氮肥利用率是指当季作物从所施氮肥中吸收氮素占施氮量的百分数。 14、闭蓄态磷(O-P) P58 闭蓄态磷是指酸性土壤中由于铁、铝含量较高,磷酸盐易被溶解度很小的无定形铁、铝等胶膜所包蔽,形成更难溶解的含磷化合物。 15、复混肥料 P159 复混肥料是指肥料成分中同时含有氮、磷、钾三要素或其中任何两种养分的化学肥料。

遗传学名词解释

遗传学名词解释 日期:2010-07-30 遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 原核细胞、真核细胞、染色体、染色单体、着丝点、细胞周期、同源染色体、异源染色体、无丝分裂、有丝分裂、单倍体、二倍体、联会、胚乳直感、果实直感。 答:原核细胞:一般较小,约为1~10mm。细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。细胞壁内为细胞膜。内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。其DNA存在的区域称拟核,但其外面并无外膜包裹。各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。

染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。 染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为: (1)DNA合成前期(G1期);(2)DNA合成期(S期); (3)DNA合成后期(G2期);(4)有丝分裂期(M期)。 同源染色体:生物体中,形态和结构相同的一对染色体。 异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。 有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。即细胞分裂为二,各含有一个核。分裂过程包括四个时期:前期、中期、后期、末期。在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。单倍体:具有一组基本染色体数的细胞或者个体。 二倍体:具有两组基本染色体数的细胞或者个体。

遗传学名词解释

1、共显性/并显性:杂合子中显性和隐性性状同时表现出来的现象。 2、复等位基因:指的是一个群体中,在一个基因座上存在着2个以上的等位基因。 3、x2检验:亦称卡方检验。统计学中假设检验的方式之一。x是一个希腊字母,x2可读音 为卡方,所以译为卡方检验。卡方检验主要用于定类或定序变量的假设检验,在社会统计中应用非常广泛。 卡方检验的步骤一般为: (1)建立假设,确定显著水平a与自由度df、查x2值表得到否定域的临界值; (3)由样本资料计算x2值; (3)将计算所得的x2值与临界x2值(负值都取绝对值)作比较,若计算值大于临界值,则否定Ⅱ0;反之,则承认Ⅱ0。 计算卡方值的公式一般可表示为:x2=∑[(fo—fc)2/fc] 式中:fo表示实际所得的次数,fc表示由假设而定的理论次数,∑为加总符号。 4、限性遗传:是指常染色体上的基因只在一种性别中表达,而在另一种性别完全不表达。 5、剂量补偿效应:在XY性别决定类型的生物中,性连锁基因在两种性别中有相等或近乎相 等的有效剂量的遗传效应。即在雌性、雄性细胞里,X染色体的编码产物在数量上相等或近乎相等。 6、干涉:每发生一次单交换时,它的临近基因间也发生一次交换的机会就减少体,称之为 遗传干涉。 7、C值悖论:在每一种生物中其单倍体基因组的DNA总量称为C值(C Value),每种生物 具有其特定的C值; 生物的C值并不与生物复杂程度(或进化上所处地位)相关的现象称作C值悖论,即物种的基因数与其复杂性也没有明显的相关性。 8、基因家族:序列高度相似但不一定完全相同的一类基因成员。 9、基因转变:减数分裂过程中同源染色体联会时一个基因使相对位置上的基因发生相应的 变化 10、Alu家族:灵长类基因组特有的含量丰富的短散的重复序列,推测与基因调控有关。 11、普遍性转导:不同染色体片段中各个标记基因转导频率大致相同的转导。 12、高频重组菌株:F质粒(致育质粒)整合到细菌染色体上,形成高频重组株,具有 高频率转移自身染色体至F-菌的能力。 13、互补测验:比较顺式和反式构型个体的表型以判断两突变是否发生在一个基因座内 的测验 14、数量性状基因座:控制数量性状的基因在基因组中的位置称数量性状基因座 15、遗传率:遗传变异占总变异(表型变异)的比率。 16、广义遗传率:指遗传方差占表现型方差的比率。 17、异源多倍体:指不同物种杂交产生的杂种后代经过染色体加倍形成的多倍体。 18、动态突变:DNA序列中由于寡核苷酸拷贝数目的变化,引起生物表型改变的突变 19、基因组印记:就是亲本来源不同而导致等位基因表达差异的一种遗传现象。 20、染色质重塑:基因表达的复制和重组等过程中,染色质的包装状态、核小体中组蛋 白以及对应DNA分子会发生改变的分子机理。 21、母体效应基因:在卵子发生过程中表达,并将其产物(mRNA或蛋白质)储存在卵 母细胞中的基因 22、同源异形基因:决定果蝇体节形成的发育基因,其同源异形盒子编码同源异形结构 域蛋白,在进化上极为保守,从低等到高等动物的基因组中都有存在。 23、RFLP标记:发展最早的DNA标记技术。RFLP指基因型之间限制性片段长度的差异, 这种差异是由限制性酶切位点上碱基的插入、缺失、重排或点突变所引起的。

植物营养学复习

名词解释 1.硝化作用 2.最小养分定律: 3.生理酸性肥料: 4.复合肥料: 5.生理碱性肥料: 6.营养临界期: 7.土壤供肥强度: 8.矿质营养学说: 9.异成分溶解:12.反硝化作用: 11.营养元素的同等重要律:10.离子拮抗作用:13.磷酸退化作用:14.归还学说: 15.化成复肥:16.样品的代表性:18.掺合复合肥:19.作物营养诊断20 晶格固定态铵; 21、作物营养最大效率期;22混成复合肥;23、离子间的拮抗作用;24、土壤缓效钾; 25、作物营养最大效率期;26、绿肥的激发效应;27、掺混肥;28、根际;29、离子间的拮抗作用;30、闭蓄态磷;31、土壤养分容量因素;32、作物营养临界期 33、绿肥的激发效应 34、混成复合肥 35、土壤缓效性钾 36、离子间协助作用 37、土壤养分强度因素 38、磷在土壤中的化学固定39. 生物有效性养分 40 反硝化作用41.交换吸附 42.养分再利用 43. 生理酸性肥料 一、填空 1、目前国内研制的二大类缓效氮肥是()和()。 2、玉米白芽症是缺乏元素()。 3、需硫元素较多的作物主要有()科和()科。 4、尿素最适宜作叶面喷肥,因为尿素具有(),()()等优点。 5、具有调节原生质胶体水合度的主要营养元素是()和()。 6、磷肥按其溶解状况可分为(),()和()。 7、在堆肥过程中,初期要创造较为()的条件,为()并(),后期要创造较为()的条件,利于()和()。 8、新开垦的沼泽土最易缺乏的元素是(铜)。 9.叶面喷Zn2+ 时,溶液的pH应调到()性。 10.玉米白芽症是缺乏元素()。 11.复合肥料的主要优点是(),(),()。 12.影响作物根系从土壤吸收养分的主要环境条件是(),(),()()和()。13.硼主要分布在植物的()和()等器官。 14.春季玉米出现紫苗症状是缺乏元素()。 15.在堆肥过程中,初期要创造较为()的条件,为()并(),后期要创造较为()的条件,利于()和()。 16.磷肥按其溶解状况可分为(),()和()。 17.作物体内的钾是以()形态存在,充足的钾肥供应可提高作物的抗逆性,主要表现在增强作物的(),()和()。 18.微量元素肥料施用的主要方法有(),()和()。 19、石灰肥料的改土作用主要是__________________、和_________________。 20、复合肥料的主要优点是__________________、和__________________。 21、作物缺钼多发在pH_________性的土壤上,作物缺锌多发在pH_________性的土壤上。 22、土壤中养分迁移的主要方式有_________、和__________________。 23、李比希的主要贡献是创立了__________________学说、__________________学说和__________________。 24、影响作物叶片吸收养分的主要因素有_______________、____________、____和__________________。 25. 钼在植物体中是(1)和(2)酶的组成成分,所以(3)作物缺钼受影响最为明显。 26. 矿质养分在(4)的运输是单向的,而在(5)的运输是双向的。两部分之间的养分主要靠(6)来沟通。 27. 许多酶都含有微量元素,例如细胞色素氧化酶含有(7)和(8),抗坏血酸氧化酶含有(9),硝酸还原酶含有(10),而碳酸酐酶却需要(11)使之活化。

遗传学名词解释

一、名词解释:(每小题3分,共18分) 1、外显子:把基因内部的转译部分即在成熟mRNA中出现的序列叫外显子。 2、复等位基因:在种群中,同源染色体的相同座位上,可以存在两个以上的等位基因,构成一个等位基因系列,称为复等位基因。 3、F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子,大约为大肠杆菌全长的2%,F因子在大肠杆菌中又叫F质粒。 4、F'因子:把带有部分细菌染色体基因的F因子叫F∕因子。 5、母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。 6、伴性遗传:在性染色体上的基因所控制的性状与性别相连锁,这种遗传方式叫伴性遗传。 7、杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。 8、隔裂基因:真核类基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为隔裂基因,或者说真核类基因的外显子被不能表达的内含子一一隔开,这样的基因称为隔裂基因。 9、细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。 10、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 11、跳跃基因(转座因子):指细胞中能改变自身位置的一段DNA序列。 12、基因工程:狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。 13、性导:利用F∕因子形成部分二倍体叫做性导(sex-duction)。 14、转导:以噬菌体为媒介,将细菌的小片断染色体或基因从一个细菌转移到另一细菌的过程叫转导。 15、假显性:(pseudo-dominant):一个显性基因的缺失致使原来不应显现出来的一个隐性等位基因的效应显现了出来,这种现象叫假显性。 16、核外遗传:由核外的一些遗传物质决定的遗传方式称核外遗传或非染色体遗传。 17、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态. 18、等显性(并显性,共显性):指在F1杂种中,两个亲本的性状都表现出来的现象。 19、限性遗传与从性遗传:限性遗传:是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。从性遗传:指常染色体上的基因控制的性状在表型上受个体性别影响的现象。 20、连锁群:存在于一个染色体上的各个基因经常表现相互联系,并同时遗传于后代,这种存在于一个染色体上在遗传上表现一定程度连锁关系的一群基因叫连锁群。 21、核型与核型分析:通常把有丝分裂中期染色体的形态、大小和数目称为核型,通过细胞学观察,取得分散良好的细胞分裂照片,就可测定染色体数目、长度、着丝粒位置、臂比、随体有无等特征,对染色体进行分类和编号,这种测定和分析称为核型分析。 22、位置效应:基因由于变换了在染色体上的位置而带来的表型效应改变的现象。 23、平衡致死品系:两个连锁的隐性致死基因,以相斥相的形式存在于一对同源染色体上,由于倒位抑制交换作用,永远以杂合状态保存下来,表型不发生分离的品系叫做平衡致死品系,也叫永久杂种。24、基因突变:是染色体上一个座位内的遗传物质的变化,从一个基因变成它的等位基因。也称点突变。从分子水平上看,基因突变则为DNA分子上具有一定遗传功能的特定区段内碱基或碱基顺序的变化所引起的突变,最小突变单位是一个碱基对的变化,是产生新基因的源泉,生物进化的重要基础,诱变育种的理论依据。 25、部分二倍体:含一个亲本的全部基因组和另一亲本部分基因组的合子叫部分二倍体或部分合子。 26、移码突变:在DNA复制中发生增加或减少一个或几个碱基对所造成的突变。 27、镶嵌显性:指在杂种的身体不同部位分别显示出显性来的现象. 28、表型模写(拟表型):有时环境因子引起的表型改变和某基因突变引起的表现型改变很相似,这叫表型模拟或拟表型。 29、等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。

遗传学名词解释

遗传学名词解释 amitosis无丝分裂:细胞核拉长呈哑铃状分裂,中部缢缩形成2个相似的子细胞。分裂中无染色体和纺锤体形成。如:纤毛虫、原生生物、特化的动物组织。 mitosis有丝分裂:即体细胞分裂,通过分裂产生同样染色体数目的子细胞。在分裂中出现纺锤体。 a sexual reproduction无性生殖:通过有丝分裂,从一共同的细胞或生物繁殖得到的基因型完全相同的细胞 或生物。也即克隆(clone)。 sexual reproduction有性生殖:减数分裂和受精有规则地交替进行,产生子代的生殖方式。 endomitosis内源有丝分裂:即间期细胞的染色体复制后,但不发生核分裂,着丝点也不分裂。结果形成多线染色体。或染色体复制后着丝点分裂,但细胞核未分裂,则核内染色体成倍性增加,成为内源多倍体。 meiosis减数分裂:是一种特殊方式的细胞分裂,是在配子形成过程中发生的,包括两次连续的核分裂,但染色体只复制一次,因而在形成的四个子细胞核中,每个核只含有单倍数的染色体,即染色体数减少一半,所以把它叫做减数分裂。 alternation of generations世代交替:生活周期包括一个有性世代和一个无性世代,这样二者交替发生就称为世代交替。 allele等位基因:载荷在同源染色体对等的位点上的二个基因,这二个成对的基因称为等位基因。additive effect加性效应:是指各个基因位点上纯合基因型对基因型总效应的贡献的大小,这部分效应一般是累加性的。 dominant effect显性效应:是指同一基因位点内相对等位基因间的交互作用对基因型总效应的贡献。autopolyploid同源多倍体:指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍得到。allopolyploid 异源多倍体:指增加的染色体组来自不同物种,一般是由不同种、属间的杂交种染色体加倍形成的。 apomixis无融合生殖:不经过雌雄配子融合而能产生种子的一种生殖方式,根据无融合生殖最后形成胚。aneuploid非整倍体:指体细胞核内的染色体不是染色体组的完整倍数,比该物种正常合子(2n)多或少一个以至若干个的现象。 atavism返祖遗传:在杂种后代重现祖先的某些性状,即为返祖遗传。 complementary effect互补作用:两对独立基因分别处纯合显性或杂合状态时,共同决定一种性状的发育。 当只有一对基因是显性,或两对基因都是隐性时,则表现为另一种性状,这种作用称为互补作用。(9:7) complementary gene互补基因发生互补作用的基因。 additive effect积加作用:两种显性基因同时存在时产生一种性状,单独存在时则能分别表现相似的性状,称之为基因的积加作用。(9:6:1) duplicate effect重叠作用:不同对基因互作时,对表现型产生相同的影响,F2产生15∶1的比例,称为重叠作用。这类表现相同作用的基因,称为重叠基因。(15∶1) inhibiting effect抑制作用在两对独立基因中,其中一对显性基因,本身并不控制性状的表现,但对另一对基因的表现有抑制作用,称之基因抑制。(13:3) epistatic dominanc显性上位:两对独立遗传基因共同对一对性状发生作用,其中一对对另一对基因的表现有遮盖作用,称为上位性(epistasis)。反之,后者被前者所遮盖,称为下位性(hypostasis)。如果是显性起遮盖作用,称为上位显性基因。(12:3:1)

植物营养学试题及答案(8)

植物营养学练习题(8) 一、解释下列名词(每小题4分): 1. 生物有效性养分:能被植物吸收利用的养分 2. 反硝化作用:硝态氮在微生物等作用下被还原成氮气或氮氧化物的过程 3.交换吸附:带电粒子被带相反电荷的土壤胶体可逆吸附的过程 4.养分再利用:早期吸收进入植物体的养分可以被其后生长的器官或组织利用 5.生理酸性肥料:植物选择性吸收后导致环境酸化的肥料 二、简述NO3-N吸收与同化过程,影响因素(10分) 1、以NO3-形式主动吸收 2、经过硝酸还原作用分两步还原为NH4+,然后同化为氨基酸,再进一步同化。 3、影响因素:(1)硝酸盐供应水平当硝酸盐数量少时,主要在根中还原;(2)植物种类木本植物还原能力>一年生草本。一年生草本植物因种类不同而有差异,其还原强度顺序为:油菜>大麦>向日葵>玉米>苍耳(3)、温度温度升高,酶的活性也高,所以也可提高根中还原NO3--N 的比例。(4)、植物的苗龄在根中还原的比例随苗龄的增加而提高; (5)、陪伴离子K+能促进NO3-向地上部转移,所以钾充足时,在根中还原的比例下降;而Ca2+和Na+为陪伴离子时则相反; (6)、光照在绿色叶片中,光合强度与NO3-还原之间存在着密切的相关性。 三、在小麦/玉米、小麦/水稻轮作体系中,磷肥应如何分配?为什么?(10分) 1、小麦/玉米轮作,优先分配在小麦上,因为小麦需磷高于玉米、小麦生长期温度的,对磷的需要量高。 2、小麦/水稻轮作,优先分配在小麦上,因为小麦需磷高于水稻、小麦在旱地,磷的有效性低于水稻季。 四、举6种元素,说明养分再利用程度与缺素症发生部位的关系(10分) 氮磷钾镁,再利用能力强,缺素先发生在老叶。 铁锰锌,再利用能力低,缺素先发生在新叶 硼和钙,再利用能力很低,缺素先发生在生长点 五、什么是酸性土壤, 酸性土壤的主要障碍因子是什么?(10分) 1 酸性土壤是低pH土壤的总称,包括红壤、黄壤、砖红壤、赤红壤和部分灰壤等。 2 主要障碍因子包括:氢离子毒害、铝的毒害、锰的毒害、缺乏有效养分 六、双子叶植物及非禾本科单子叶植物对缺铁的反应机理是什么?(20分) 双子叶植物和非禾本科单子叶植物在缺铁时,根细胞原生质膜上还原酶活性提高,增加对Fe3+的还原能力,质子和酚类化合物的分泌量加大,同时增加根毛生长和根转移细胞的形成,其适应机理称作机理Ⅰ。 1) Fe3+的还原作用机理Ⅰ的一个重要特点是缺铁时植物根系表面三价铁的还原能力显著提高。 2) 质子分泌:机理Ⅰ类植物根细胞原生质膜上受ATP酶控制的质子泵受缺铁诱导得以激活,向膜外泵出的质子数量显著增加,使得根际pH值明显下降酸化的作用有两方面:一是增加根际土壤和自由空间中铁的溶解度,提高其有效性;二是创造并维持根原生质膜上铁还原系统高效运转所需要的酸性环境。 3) 协调系统:对机理Ⅰ植物而言,缺铁不仅诱导根细胞原生质膜上还原酶的形成与激活,而且诱导质子泵的激活,这两个过程之间不论是在发生的时间,还是在发生的部位上,都是密切配合、协同起作用的。这一协同系统保证了植物在缺铁时,特别是在高pH环境中,也能有效地还原Fe3+ 。

相关文档
最新文档