工业陶瓷的制造

工业陶瓷的制造
工业陶瓷的制造

现代工程材料

——工业陶瓷

陶瓷是陶器和瓷器的总称,是由金属和非金属形成的无机化合物材料,性能硬而脆,与金属材料和工程塑料相比具有更高的耐高温、耐腐蚀和耐磨性。而现代特种陶瓷更具有高强度、高硬度、耐蚀、导电、绝缘、磁性、透光、半导体以及压电、铁电、光电、声光、超导等性能,陶瓷材料已成为现代工程材料的三大支柱之一。

陶瓷的分类:

1.普通陶瓷又称传统陶瓷,一般指日用陶瓷、建筑陶瓷、卫生陶瓷、电工陶瓷、化工陶

瓷等。普通陶瓷是用天然硅酸盐矿物,如黏土、长石、石英、高岭土等为原料烧结而成。

2.特种陶瓷又称现代陶瓷,是采用纯度较高的人工合成原料,如氧化物、氮化物、硅化

物、硼化物、氟化物等制成。具有特殊的力学、物理、化学性能。

按性能和用途的不同,特种陶瓷可分为工程陶瓷和功能陶瓷两大类。前者主要在高温下使用,又称高温结构陶瓷。后者是利用陶瓷特有的物理性能制造出种类繁多、用途各异的陶瓷材料,如导电陶瓷、半导体陶瓷、压电陶瓷、绝缘陶瓷、磁性陶瓷、光学陶瓷(光导纤维、激光材料等)以及利用某些精密陶瓷对声、光、电、热、磁、力、湿度、射线及各种气氛等信息显示的敏感特性而至得的各种陶瓷传感器材料。

陶瓷粉体的制备方法

陶瓷体在成型前以粉体形式存在,是大量固体粒子的集合。分体力度、粒度分布与表面特性对随后所制成陶瓷烧结体的性能具有极大的影响。获得陶瓷粉体的方法如下。

1.粉碎法是将团块颗粒陶瓷用机械或气流粉碎而获得细粉。机械法是将物料至于球磨机

中不停回转,靠球磨机中的磨球与物料相互撞击被粉碎成细颗粒状。气流法是将物料导入粉碎机内部并通过喷嘴通入压缩空气使物料形成粉碎状,物料相互碰撞、摩擦而细化。

2.合成法由离子、原子和分子通过反应、成核和成长、收集、后处理而获得细微颗粒。

该法制取的粉料纯度高、力度小而均匀。合成法有固相法。液相法和气相法三种。

陶瓷生产过程

陶瓷的生产过程是将配置好的符合要求的坯料用不同成型方法制造出具有一定形状的坯体,

坯体经干燥、施釉、烧结等工序,最后得到陶瓷制品。

陶瓷制品的成型工业大致可分为原料制备、配混粉料、坯料成型、高温烧结等工艺过程。对产品质量影响最大的是配料成分和烧结工艺。

1.配料

1)混合将各种组分的料粉混合均匀,可在球磨机中进行。

2)塑化是利用塑化剂使原来无塑性的坯料具有可塑性的过程。普通陶瓷由于含有可塑性黏土成分,加入水就具有良好的成型性,特种陶瓷一般不含黏土原料,因此成型前应加入可塑性的化工原料。

常用的塑化剂有无极和有机两类,无极塑化剂(黏土)用于普通陶瓷,有机塑化剂用于特种陶瓷。有机塑化剂通常由三种物质组成,即黏结剂(聚乙烯醇等)、增塑剂(甘油)、溶剂(水、酒精等)。

3)造粒实在很细的粉料中加入一定的塑化剂,制成粒度较粗、流动性较好的颗粒(20-80目)。造粒后有利于改善充模性,使充模密度提高。

4)物料的悬浮用注浆法成型制坯时,为使浆料悬浮常加入悬浮剂,如烷基苯磺酸钠。2.成型是将制备好的坯料,使用各种不同方法制成具有一定形状和尺寸的生坯(坯体)

的过程。

3.陶瓷的烧结烧结是指高温条件下,坯体表面积减小、孔隙率降低、力学性能提高的致

密化过程,是材料获得预期的显微结构和应有的性能。陶瓷的介绍方法有以下几种。1)普通烧结传统陶瓷在隧道窑中进行烧结,特种陶瓷在电窑中烧结。引入添加剂或用压力烧结,可以降低烧结温度和能耗。

2)热压烧结在烧结过程中,同时对坯料施加压力,加速致密化过程。因此热压烧结温度更低,时间更短。而且烧结体重气孔率低,制品致密度高。

3)气氛烧结某些陶瓷(如Si3N、SiC等)为防止制品氧化,可在保护气氛下烧结。

4)热静压烧结将粉体压坯或装入包套的分体放入高压容器中,是高温和均衡的气体压力作用下,烧结成致密的陶瓷体。

5)真空烧结将粉体压坯装入真空炉进行烧结。真空烧结有利于黏结剂的脱除和坯体内气体的排出,有利于实现高致密化。

陶瓷的生产工艺流程.

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时, 2 在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明釉和有色釉。 (2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。

陶瓷制作工艺流程

陶瓷制作工艺流程 在陶瓷民俗博览区古窑景区错落有致的分布着古制瓷作坊、古镇窑、陶人画坊。在作坊里可见到“手随泥走,泥随手变”,巧夺天工的拉坯成型;在镇窑里,可看到神奇的松柴烧瓷技艺,从中领略到景德镇古代手工制瓷的魅力。在古窑,我们看到了练泥、拉坯、印坯、利坯、晒坯、刻花、施釉、烧窑、彩绘、釉色变化等 练泥:从矿区采取瓷石,先以人工用铁锤敲碎至鸡蛋大小的块状,再利用水碓舂打成粉状,淘洗,除去杂质,沉淀后制成砖状的泥块。然后再用水调和泥块,去掉渣质,用双手搓揉,或用脚踩踏,把泥团中的空气挤压出来,并使泥中的水分均匀。这一环节在古窑里我没有见到,深感遗憾,于是我在前往三宝村途中仔细寻觅,有幸亲眼目睹。这种瓷石加工方法历史悠久,应与景德镇制瓷历史同步。

拉坯:将泥团摔掷在辘轳车的转盘中心,随手法的屈伸收放拉制出坯体的大致模样。拉坯是成型的第一道工序。拉坯成型首先要熟悉泥料的收缩率。景德镇瓷土总收缩率大致为18—20%,根据大小品种和不同器型及泥料的软硬程度予以放尺。由于景德镇瓷泥的柔软性,拉制的坯体均比之其他黏土成型的要厚。拉坯不仅要注意到收缩率,而且还要注意到造型。如遇较大尺寸的制品,则要分段拉制,从各个分段部位,可看出拉坯师傅的技艺好坏和水平高低。景德镇陶瓷的特殊美感和瓷文化的形成是与其独特的材质、工艺等有着密不可分的联系,甚至在某种程度上说:景德镇瓷器名扬天下,除当地“天赐”的优质黏土之外,基本上是那些“鬼斧神工”的技艺将这些普通的“东西”变成了人类的“宠物”。由此,真正被“神灵”护佑着的正是这制瓷技艺的不断分工、进化和传承。这千年相传的技艺造就和组成了人类陶瓷史甚至是文明史上最耀眼的光环,这光环让人炫目,也让人敬畏。

陶瓷生产的主要工艺过程与特点(下)

一、陶瓷生产过程的特点 陶瓷产品的生产过程是指从投入原料开始,一直到把陶瓷产品生产出来为止的全过程。它是劳动者利用一定的劳动工具,按照一定的方法和步骤,直接或间接地作用于劳动对象,使之成为具有使用价值的陶瓷产品的过程。在陶瓷生产过程的一些工序中,如陶瓷坯料的陈腐、坯件的自然干燥过程等。还需要借助自然力的作用。使劳动对象发生物理的或化学的变化,这时,生产过程就是劳动过程和自然过程的结合。 一般来说,陶瓷生产过程包括坯料制造、坯体成型、瓷器烧结等三个基本阶段。同时陶瓷生产过程的组成可按生产各阶段的不同作用分为生产技术准备过程、基本生产过程、辅助生产过程和生产服务过程。 作为社会化大生产的陶瓷生产过程,和其他一些行业的生产过程相比较,具有以下几个特点: 1.陶瓷生产过程是一种流程式的生产过程,连续性较低。陶瓷原料由工厂的一端投入生产,顺序经过连续加工,最后成为成品,整个工艺过程较复杂,工序之间连续化程度较低。隧道窑虽然是连续生产,但其速度尚不能与成型工艺的流水作业线相配合,需要做存坯、装坯和装窑等一系列烧成准备工作。工艺陈设瓷的生产更是带有浓厚的手工作坊式色彩,缺少工业化生产的规模与条件。因此进行工艺革新,实现连续化生产,对于提高陶瓷工业劳动生产率,创造更大的经济效益具有重要作用。 2.陶瓷生产过程的机械化、自动化程度较低。陶瓷工业是我国的传统工业,又是劳动密集型产业。长期的习惯观念认为,技术不是这个行业的主要因素,因而忽略了对其的技术改造,再加上国家资金有限,陶瓷工业技术装备长期处于落后状况,机械化和自动化程度相当低,大部分机械设备只相当于先进制瓷国家五六十年代的水平,有的甚至处于二三十年代水平;彩绘、检验、包装等工序还依靠手工操作。 3.陶瓷生产周期较长。陶瓷产品的生产周期,是指从原材料投入生产开始,经过各道工序加工直到成品出产为止,所经过的全部日历时间。包括基本作业时间、多余时间和无效时间。陶瓷生产的周期较长,从矿山采掘、原料处理、产品成型、锻烧到销售,工序多,过程长,但在陶瓷生产周期中,真正利用的基本作业时间所占的比重是不大的,一般在30%一40%左右,时间的利用率较低。因此,减少或消除作业中的多余和无效时间,增加基本作业时问的比重,这是陶瓷企业亟需解决的问题,有待于在企业保证产品质量的前提下,开发新技术,提高企业管理水平,去缩短陶瓷产品的生产周期。 4.陶瓷生产过程中辅助材料如石膏模型、匣钵等消耗量大。石膏模型是采用可塑法或泥浆法成型坯件的重要辅助材料,其强度较低,耐热性差,使用寿命较短,所以在陶瓷企业中消耗量很大。由于废石膏的利用尚未得到满意解决,给厂区环境带来了影响。匣钵是陶瓷制品在烧成工艺中作为承烧物的耐火材料制品,匣钵的使用次数一般在10—15次,匣钵质量的低劣往往造成制品变形、落渣、火刺等一系列缺陷.因此,如何提高石膏模和匣钵的质量,延长它们的使用寿命,以及解决废石膏模和匣钵的利用问题,是值得陶瓷企业认真研究的重要课题之。

陶瓷的研究现状与发展展望分析

陶瓷的研究现状与发展展望 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料.它具有高熔点、高硬度、高耐磨性、耐氧化等优点.可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料. 分类: 普通陶瓷材料 采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟.这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等. 特种陶瓷材料 采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要.根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能.本节主要介绍特种陶瓷. 编辑本段性能特点力学性能 陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上.陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差. 热性能 陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料.同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性. 电性能 大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件.铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等.少数陶瓷还具有半导体的特性,可作整流器. 化学性能 陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力. 光学性能 陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等.磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途. 编辑本段常用特种陶瓷材料 根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷. 1.结构陶瓷 氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%.氧化铝陶瓷具有各种优良的性能.耐高温,一般可要1600℃长期使用,耐腐蚀,高强度,其强度为普通陶瓷的2~3倍,高者可达5~6倍.其缺点是脆性大,不能接受突然的环境温度变化.用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电偶套管、密封环等,也可作刀具和模具. 氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润

陶瓷生产工艺设计

一陶瓷生产工艺流程 二原料 菱镁矿,煤矸石,工业氧化铝,氧化钙,二氧化硅,氧化镁。三坯料的制备 1原料粉碎 块状的固体物料在机械力的作下而粉碎,这种使原料的处理操作,即为原料粉碎。(1)粗碎 粗碎装置常采用颚式破碎机来进行,可以将大块原料破碎至40-50毫米的碎块,

这种破碎机是无机材料工厂广泛应用的醋碎和中碎机械。是依靠活动颚板做周期性的往复运动,把进入两颚板间的物料压碎,颚式破碎机具有结构简单,管理和维修方便,工作安全可靠,使用范围广等优点。它的缺点是工作间歇式,非生产性的功率消耗大,工作时产生较大的惯性力,使零件承受较大的负荷,不适合破碎片状及软状粘性物质。破碎比较大的破碎机的生产能力计算方法如下: G=0.06upkbsd/tanq 式中G破碎机生产能力,Kg/h u物料的松动系数,0.6-0.7 P物料的密度 K每分钟牙板摆动次数,次/MIN b进料口长度,单位米 S牙板之开程单位米 Q钳角D破碎后最大物料的直单位毫米 (2)中碎 碾轮机是常用的中碎装置。物料是碾盘与碾轮之间相对滑动与碾轮的重力作用下被碾磨与压碎的,碾轮越重尺寸越大,则粉碎力越强。陶瓷厂用于制备坯釉料的轮碾机常用石质碾轮和碾盘。一般轮子直径为物料块直径的14-40倍,硬质物料取上限,软质物料物料下限。 轮碾机碾碎的物料颗粒组成比较合理,从微米颗粒到毫米级粒径,粒径分布范围广,具有较合理的颗粒范围,常用于碾碎物料。 (3)细碎 球磨机是陶瓷厂的细碎设备。在细磨坯料和釉料中,其起着研磨和混合的作用。陶瓷厂多数用间歇式湿法研磨坯料和釉料,这是由于湿式球磨时水对原料的颗粒表面的裂缝有劈尖作用,其研磨效率比干式球磨高,制备的可塑泥和泥浆的质量比矸干磨得好。泥浆除铁比粉除铁磁阻小效率高,而且无粉尘飞扬。 (4)筛分 筛分是利用具有一定尺寸的孔径或缝隙的筛面进行固体颗粒的分级。当粉粒经过筛面后,被分级成筛上料和筛下料两部分。筛分有干筛和湿筛。干筛的筛分效率主要取决于物料温度。物料相对筛网的运动形式以及物料层厚度。当物料湿度和粘性较高时,容易黏附在筛面上,使筛孔堵塞,影响筛分效率。当料层较薄而筛面与物料之间相对运动越剧烈时,筛分效率就越高,湿筛和干筛的筛分效果主要却决于料将的稠度和黏度。 陶瓷厂常用的筛分机有摇动筛,回转筛以及振筛。 (5)除铁 (6)A磁选条件 坯料和釉料中混有铁质将使制品外观受到影响,如降低白度,产生斑点。因此,原料处理与坯料制备中,除铁是一个很重要的工序。 从物理学中,作用在单位质量颗粒上磁力为 F=RHdH/dh

世界建筑陶瓷产品生产贸易和市场分析

意大利——世界第一大建陶出口国 意大利的建筑陶瓷行业在世界上居于无与伦比的领先地位,2002年年底共有241家公司,从业人员30799人,773座窑。2002年年产量6.055亿平方米,生产量占世界产量的10%,欧盟产量的43%。出口4.377亿平方米,金额为38.69亿欧元,占总销售额(53.19亿欧元)的72%,营业收入的5%用于再投入到该产业中,确保其持续的技术创新和产品开发。生产基地主要在Modena和ReggioEmilia省(占总产量的80.15%),其次是EmiliaRomagna省(占9.67%),其他地区占10.17%。 2003年生产和销售分别比2002年下降1.8%和3.4%,数量分别为5.946亿平方米和5.875亿平方米。2004-2005年的生产、销售和出口预测如表5-1所示。 意大利瓷砖产品样式、质量响誉全球,牢牢占据世界高档产品市场。其中以“Ce-ramicTilesofItaly”标识出口的量占全球国际贸易的37%。欧洲是意大利瓷砖的主要出口地区,以德国(7070万平方米)和法国(5690万平方米)最大。在美洲(6540万平方米),尤其在美国,意大利瓷砖是市场的主宰。在中欧、东欧和拉丁美洲市场也是强势甚至在扩张。亚洲、非洲和澳大利亚的一些重要工程采用意大利瓷砖。2002年与2001年的主要市场变化有:增长最快的地区是澳大利亚、美国、俄罗斯、瑞典、英国,减少最多的地区是波兰、葡萄牙和德国。 意大利陶瓷行业的成功可归结到很多因素,本地消费者的要求高,迫使厂家不断创新,同时,厂家对消费者的需求洞悉入微,总能向高端市场提供热销的产品。在意大利新产品新工业推广迅速,工厂不断地提升技术优势。另外,意大利厂家成功解决了其最大劣势-劳动力成本高,一次烧成使劳动力减少60%。另外,相关行业成龙配套,为其技术创新和降低成本提供了保障。 2002年意大利建筑陶瓷的平均生产成本为8.84欧元/平方米,其中,制造成本占57.58%,管理成本占22.51%商业成本占19.91%。各种产品的制造成本如下表5-2所示。 上世纪70年代初,意大利瓷砖刚刚大规模走向国际市场,如何在国际市场上树立品牌,成为出口企业面临的难题。如果独立打自己的品牌,在巨额的营销预算下每个企业都显得力不从心,经过权衡,意大利建筑陶瓷和耐火材料行业协会(Assopias-trelle,Assn.OfItalianCeramicTileandRefractoryManufactures)会员企业产品开始统一采用“CeramicTilesofItaly”(意大利建筑陶瓷)商标在国际市场上销售。30多年来,“CeramicTilesofItaly”成为意大利出口建筑陶瓷的统一标识,引领意大利建筑陶瓷到世界各地,意大利瓷砖成为世界知名品牌。 该商标通过声势强大的系列广告活动在国际上推广,经常出现在重要的陶瓷展览会上,在专业的建筑、贸易和装饰设计等国际杂志上频频亮相。出口企业不论大小都珍视他们共有的品牌。意大利建筑陶瓷出口市场明细与2003-2005年

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

陶瓷的生产工艺流程-陶瓷工艺流程

陶瓷得生产工艺流程 一、陶瓷原料得分类 (1)粘土类 粘土类原料就就是陶瓷得主要原料之一。粘土之所以作为陶瓷得主要原料,就就是由于其具有可塑性与烧结性。陶瓷工业中主要得粘土类矿物有高岭石类、蒙脱石类与伊利石(水云母)类等,但我厂得主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英得主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时,在 2 烧成前可调节坯料得可塑性,在烧成时石英得加热膨胀可部分抵消部分坯体得收缩。当添加到釉料中时,提高釉料得机械强度,硬度,耐磨性,耐化学侵蚀性。我厂得石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石就就是陶瓷原料中最常用得熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠得玻璃体,就就是坯料中碱金属氧化物得主要来源,能降低陶瓷坯体组分得熔化温度,利于成瓷与降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂得主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料就就是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料得配料主要分白晶泥、高晶泥、高铝泥三种,而釉料得配料可分为透明釉与有色釉。 (2)球磨 球磨就就是指在装好原料得球磨机料筒中,加入水进行球磨。球磨得原理就就是靠筒中得球石撞击与磨擦,将泥料颗料进行磨细,以达到我们所需得细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般就就是先放部分配料进行球磨一段时间后,再加剩余得配料一起球磨,总得球磨时间按料得不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料得细度要达到制造工艺得要求,球磨得总时间会有所波动。 (3)过筛、除铁 球磨后得料浆经过检测达到细度要求后,用筛除去粗颗粒与尾沙,通常情况下,我厂所用得

建筑陶瓷发展趋势

我国是一个历史悠久的陶瓷古国,陶瓷文化博大精深。但是作为舶来品的现代建筑陶瓷从起步到发展到壮大,不过几十年时间。真正意义上的现代建筑陶瓷,从佛山石湾引进第一条意大利生产线开始,差不多二十年的时间。国内建筑陶瓷行业雨后春笋般发展起来,经历了从无到有、从小到大的飞速发展,在各个领域都取得了很大进步。本文仅从建筑陶瓷产品及其设计开发趋势谈谈个人的看法。 一、国内建筑陶瓷产品的总体情况 (一)建陶行业基本情况 国内的现代墙地砖生产始于1939年建成的浙江温州西山面砖厂,它带动了唐山、景德镇、佛山、沈阳等地墙地砖企业的发展。直到1978年我国的墙地砖生产仍然很落后,企业规模小,产量低,品质差。产品以152x152mm白瓷片为主,还有108x108mm的面砖,在当时马赛克是一种重要的产品,建陶产品还远未形成气候。 自1978年改革开放以来的20多年里,国内建陶行业得到迅速发展,在企业规模、从业人员、产品产量等方面都堪称世界之最。不仅国内建陶企业蓬勃发展,而且外资企业在中国也获得了很好的发展机会。这时期的建陶业可谓四处开花,遍地结果。长期存在的“三山鼎立”局面被打破,在国内形成“三山一海夹两江”的产业布局结构,“三山”指广东佛山、山东博山、河北唐山;“一海”指上海,包括江浙地区;“两江”一指四川夹江,包括川渝地区,二指福建晋江,泛指福建省。这是最重要的建陶产区。例如:在我国最大的墙地砖产区佛山,有300多家企业,1000多条现代化的墙地砖生产线,其年产量比整个意大利的年产量都大。山东在淄博和临沂地区有100多家陶瓷企业,年产量在2.5亿平方米左右,新兴的建陶基地四川省有建陶企业250多家,年生产能力在4亿平方米左右,仅夹江县陶瓷企业就有120多家,310多条生产线,生产能力达3亿平方米。由于西部大开发的实施,这些西部 地区成为建陶行业结构调整和新一轮发展的亮点和热点。 (二)建陶产品基本状况 1、产品产量最大化。产量大,花色品种多,据不完全统计,1997年我国釉面 砖年产量7.26亿平方米,墙地砖年产量11.15亿平方米,早在1993年建陶产量就达 到世界第一位,并占世界整个产量的五分之二。 与此同时,产品品种增加,质量不断提高。十几年前我国建陶产品只有内墙釉 面砖、陶瓷锦砖、红地砖等少数品种,花色单调,规格单一。随着业内科技进步和 管理水平的提高,使我国建陶产品质量和档次有了质的飞跃。各企业积极开发新产 品,花色品种繁多,已拥有并能够生产不同品种、不同规格、不同功能、不同装饰 效果的建陶产品。如按材质分有:精陶釉面砖、炻质彩釉砖、瓷质砖和锦砖。按使 用功能分有:内墙砖、外墙砖、地砖、广场砖、梯级砖。开发了仿花岗石砖、渗花 抛光砖、大规格异型抛光砖、抗菌陶瓷等新品种。产品规格尺寸齐全,最大的可达 1000x1000毫米,800x1600毫米,还能生产色彩斑斓的腰线砖和各种异型瓷砖,一 批知名企业和著名品牌正在崛起。 2、产品规格趋大化。现在多数企业愿意生产大规格墙地砖,小规格瓷砖受冷 落,许多企业能开发500x500、600x600的地砖,少数企业能生产800x800、600x90 0的地砖,极少数企业能开发1000x1000及以上的超大规格瓷砖,不仅地板砖越做越 大,就连内墙瓷片也有做大的倾向。在传统的200x300产品基础上,不少企业开发 出330x480、250x380、333x666等大规格瓷片。 3、瓷砖装饰品位化。为满足瓷砖装饰个性与丰富性的要求,装饰技术和手法 有了很大提高,朝高品位、高档次发展。如在瓷砖印花技术方面应用了喷墨彩技术

浅析先进陶瓷材料的研究现状及发展趋势

龙源期刊网 https://www.360docs.net/doc/f28613575.html, 浅析先进陶瓷材料的研究现状及发展趋势 作者:孙彬 来源:《科技资讯》2017年第27期 摘要:随着现阶段各种高新技术日新月异的发展,先进陶瓷材料已经成为了新材料领域 中的翘楚,也是很多技术创新领域需要用到的关键材料,受到了很多发达国家和工业化企业的极大关注,先进材料的发展以及应用也在很大程度上对于工业的发展和进步产生一定的影响。本文旨在探讨先进陶瓷材料的研究现状及发展趋势。 关键词:工业陶瓷材料先进研究环保发达国家 中图分类号:TQ174.7 文献标识码:A 文章编号:1672-3791(2017)09(c)-0217-02 随着先进陶瓷的各种优势越来越明显,很多自动化控制、人工智能、电子智能技术领域都需要先进陶瓷的入驻,可以说,先进陶瓷的市场产量和覆盖范围已经发展到了一个不可忽视的阶段。 1 先进陶瓷的具体应用以及性能优势对比 先进陶瓷,根据各自的优点以及应用范围,大体可以分为两大类,也就是功能陶瓷和结构陶瓷,具体的应用范围以及性能优势,如表1所示。 2 国内外对于先进陶瓷材料的研究现状 2.1 国外对于先进陶瓷材料的研究现状 现阶段,全球各个国家对于先进陶瓷材料进行研究应用的趋势越来越明显。 举例来说,以美国和日本为代表,在对于先进陶瓷材料的研究和应用方面远远领先于其他国家。美国的宇航局和航空局大规模的应用了先进陶瓷。比如说在航空发动机上用陶瓷来替代其他材料;提出了关于先进陶瓷的多个计划,在每年对于先进材料的研究和应用上,投入多达35亿美元。这些都是为了提高他们在国际上的综合竞争能力。而日本也提出了对于先进陶瓷 研究和开发的一项计划,名曰“月光计划”,另外,欧盟各国尤其是以工业闻名的德国,都对先进陶瓷进行了研究和开发,法国也紧随其后,主要集中在对新能源材料进行重点的研究和突破。 综合来说,这些发达国家,比如美国、日本、欧盟,它们在先进陶瓷领域每年的平均增长率高达12%,其中欧盟较为领先,多达15%~18%,美国则是9.29%,日本是7.2%。现阶 段,全球先进陶瓷的最大市场集中在美国和日本,其次就是欧盟国家,甚至可以说,先进陶瓷在发达国家更加受到重视和人们的欢迎。

陶瓷生产工艺技术概况

陶瓷生产工艺技术概况 第一节陶瓷生产及原料概况 陶瓷是指用粘土、石英等天然硅酸盐原料经过粉碎、成型、煅烧等过程而得到的具有 一定形状和强度的制品。主要指日常生活中常见的日用陶瓷和建筑陶瓷、电瓷等。 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天 的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产 过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的 陶瓷生产方法制成的无机多晶产品。 陶瓷制品的品种繁多,它们之间的化学成分、矿物组成、物理性质、以及制造方法, 常常互相接近交错,无明显的界限,而在应用上却有很大的区别。因此很难硬性地归纳为 几个系统,详细的分类法各家说法不一,到现在国际上还没有一个统一的分类方法。整理 汇编如下: 一、根据陶瓷原料杂质的含量、和结构紧密程度把陶瓷制品分为陶质、瓷质和炻质三类 1、陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为 有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要 经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 2、炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。

3、瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。瓷器是陶瓷器发展的更高阶段。它的特征是坯体已完全烧结,完全玻化,因此很致密,对液体和气体都无渗透性,胎薄处星半透明,断面呈贝壳状,以舌头去舔,感到光滑而不被粘住。 二、陶瓷可简单分为硬质瓷,软质瓷、特种瓷三大类 1、硬质瓷 (hard porcetain) 具有陶瓷器中最好的性能。用以制造高级日用器皿,电瓷、化学瓷等。我国所产的瓷器以硬质瓷为主。硬质瓷器,坯体组成熔剂量少,烧成温度高,在1360℃以上色白质坚,呈半透明状,有好的强度,高的化学稳定性和热稳定性,又是电气的不良传导体,如电瓷、高级餐具瓷,化学用瓷,普通日用瓷等均属此类,也可叫长石釉瓷。 2、软质瓷(soft porcelain)与硬质瓷不同点是坯体内含的熔剂较多,烧成温度稍低,在1300℃以下,因此它的化学稳定性、机械强度、介电强度均低,一般工业瓷中不用软质瓷,其特点是半透明度高,多制美术瓷、卫生用瓷、瓷砖及各种装饰瓷等。这两类瓷器由于生产中的难度较大(坯体的可塑性和干燥强度都很差,烧成时变形严重),成本较高,生产并不普遍。至于熔块瓷 (Fritted porcelain) 与骨灰磁 (bone china),它们的烧成温度与软质瓷相近,其优缺点也与软质瓷相似,应同属软质瓷的范围。英国是骨灰瓷的着名产地,我国唐山也有骨灰瓷生产。 3、特种陶瓷是随着现代电器,无线电、航空、原子能、冶金、机械、化学等工业以及电子计算机、空间技术、新能源开发等尖端科学技术的飞跃发展而发展起来的。这些陶瓷所用的主要原料不再是粘土,长石,石英,有的坯体也使用一些粘土或长石,然而更多的是采用纯粹的氧化物和具有特殊性能的原料,多以各种氧化物为主体,如高铝质瓷,它是以氧化铝为主,镁质瓷,以氧化镁为主;滑石质瓷,以滑石为主;铍质瓷,以氧化铍或绿

陶瓷在建筑中的应用

陶瓷在建筑中的应用 课程名称:艺术陶瓷制作与鉴赏 指导老师:李素平 院系:建筑学院 学生姓名:李旭晖 学号:20120910209

瓷砖的定义及分类 瓷砖的定义: 所谓磁砖,是以耐火的金属氧化物及半金属氧化物,经由研磨、混合、压制、施釉、烧结之过程,而形成之一种耐酸硷的瓷质或石质等之建筑或装饰之材料,总称之为磁砖。原材料多由粘土,石英沙,等等混合而成,经过球磨机研磨成粉末再经千吨级压机压制成型,输送到施釉线上施釉,多是喷釉,再输送到滚道窑烧结,炉火温度的高低及稳定性决定了瓷砖的内在品质及尺寸平整性。如为抛光砖还须经由抛光生产线抛光处理,磨边倒角。 瓷砖的分类: 依用途分:外墙砖、内墙砖、地砖、广场砖、工业砖 依成型分:干压成型砖、挤压成型砖、可塑成型砖 依烧成分:氧化性磁砖、还原性磁砖 依施釉分:有釉砖、无釉砖 依吸水率分:瓷质砖、炻瓷砖、细炻砖、炻质砖、陶质砖依品种分:釉面砖、通体砖(同质砖)、抛光砖、玻化 我们主要关注下陶瓷按照用途分类,在建筑中的用途一陶瓷按照用途分类: 1.日用陶瓷 2.建筑陶瓷

3.工业陶瓷 4.艺术陶瓷 二按致密程度 1.陶器(吸水率>10%): 粗陶、精陶 2.炻器(半瓷、吸水率1%~10%):粗炻、细炻 3.瓷器(吸水率<1%): 粗瓷细瓷 三.常用建筑陶瓷 1.外墙面砖 2.内墙面砖 3.墙地砖 4.陶瓷锦砖 5.琉璃制品 (一)干压陶瓷砖 1.分类 按材质分类: 瓷质砖(吸水率≤0.5%)、炻瓷砖(0.5%<吸水率≤3%)、细炻砖(3%<吸水率≤6%)、炻质砖(6%<吸水率≤0%)、陶质砖(吸水率>10%)。 按应用特性分类:

日用陶瓷材料的应用及其发展

日用陶瓷材料的应用与发展 法学092 刘婷09437105 陶瓷材料是人类应用时间最早,并且应用领域最广的材料之一。它是一种天然或人工合成的粉状合成物,经过成型或高温烧结,由金属元素和非金属的无机化合物构成的固体材料。 陶瓷具有耐高温、耐腐蚀、耐磨损、原料丰富、成本低廉等诸多优点。现在,最受关注的三大固体材料是金属材料、高分子材料,以及陶瓷材料。按照其用途的不同,通常可将陶瓷材料分为工业、艺术和日用陶瓷三大类。其中工业陶瓷是指应用于各种工业的陶瓷制品,包括建筑陶瓷、化工陶瓷、电子陶瓷和特种陶瓷几大类;艺术陶瓷主要指花瓶、雕塑等以陈列欣赏和美化环境为主要作用的陶瓷;而日用陶瓷主要是指如餐具、茶具、洁具等日常生活中应用的陶瓷制品。本文主要研究日用陶瓷的应用形式及其发展趋势。 陶瓷材料与其他材料 相对而言,金属材料具有良好的延展性和可塑性,具有良好的热传导性,可是其耐温性和耐腐蚀性较差。高分子材料具有耐腐蚀性和可加工性,色彩丰富,但是其机械强度,耐高温性和耐磨性较差。陶瓷具有高硬度、耐磨、耐酸、耐碱、耐热、耐冷等优越的性能,肌理富于变化,色彩丰富而且不褪色,造型可塑性强,在丰富人们的物质和精神生活,美化环境,以及提升生活品质等方面可达到作用,是其他材料不可替代的。陶瓷致命的缺点在于高脆性和韧性差,这是材料结构所决定的。在室温下,陶瓷材料分子结构几乎不会产生滑移和位错运动,材料处于受力状态时无法通过塑性变形来松弛应力[2]。但是随着生产技术的发展和陶瓷新品种的开发,必然可在其原有基础上逐步改善其容易碎裂的不足,满足相应的产品设计要求。 现在,金属材料和高分子材料越来越多的应用于餐具,容器等日用产品,走

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

陶瓷的概念及生产工艺

陶瓷简介 陶瓷(Ceranics)的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的X围。对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、长石、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”(Silicate Industry)的X畴。 随着近代科学技术的发展,近百年来又出现了许多新的陶瓷品种,它们不再使用或很少使用粘土、长石、石英等传统陶瓷原料,而是使用其他特殊原料,甚至扩大到非硅酸盐,非氧化物的X围,并且出现了许多新的工艺.美国和欧洲一些国家的文献已将“Ceramic”一词理解为各种无机非金属固体材料的通称。因此陶瓷的含义实际上已远远超越过去狭窄的传统观念了? 迄今为止,陶瓷器的界说似可概括地作如下描述:陶瓷是用铝硅酸盐矿物或某些氧化物等为主要原料,依照人的意图通过特定的化学工艺在高温下以一定的温度和气氛制成的具有一定型式的工艺岩石。表面可施釉或不施釉,若干瓷质还具有不同程度的半透明度,通体是由一种或多种晶体或与无定形胶结物及气孔或与熟料包裹体等微观结构组成。 陶瓷工业是硅酸盐工业的主要分支之一,属于无机化学工业X围.但现代科学高度综合,互相渗透,从整个陶瓷工业制造工艺的内容来分析,它的错综复杂与牵涉之广,显然不是仅用无机化学的理论所能概括的。 陶瓷制品的品种繁多,它们之间的化学成分.矿物组成,物理性质,以及制造方法,常常互相接近交错,无明显的界限,而在应用上却有很大的区别。因此很难硬性地归纳为几个系统,详细的分类法各家说法不一,到现在国际上还没有一个统一的分类方法。常用的有如下两种从不同角度出发的分类法: (一)按用途的不同分类 1.日用陶瓷:如餐具、茶具、缸,坛、盆。罐等。 2.艺术陶瓷:如花瓶、雕塑品.陈设品等。 3.工业陶瓷:指应用于各种工业的陶瓷制品,又分: (1)建筑一卫生陶瓷:如砖瓦,排水管、面砖,外墙砖,卫生洁其等, (2)化工陶瓷:用于各种化学工业的耐酸容器、管道,塔、泵、阀以及搪砌反

纳米陶瓷材料的应用与发展

纳米陶瓷材料的应用与发展 新材料技术是介于基础科技与应用科技之间的应用性基础技术。而军用新材料技术则是用于军事领域的新材料技术,这部分技术是发展高技术武器的物质基础。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速 度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。常见的军用新材料技术:高级复合材料,先进陶瓷材料,高分子材料,非晶态材料,功能材料。 先进陶瓷材料是当前世界上发展最快的高技术材料,它已经由单相陶瓷发展到多相复合陶瓷,由微米级陶瓷复合材料发展到纳米级陶瓷复合材料。先进陶瓷材料主要有功能陶瓷材料和结构陶瓷材料两大类。其中,在结构材料中,人们已经研制出氮化硅高温结构陶瓷,这种材料不仅克服了陶瓷的致命的脆弱性,而且具有很强的韧性、可塑性、耐磨性和抗冲击能力,与普通热燃气轮机相比,陶瓷热机的重量可减轻 30%,而功率则提高 30%,节约燃料 50%。 陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用, 纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中, 晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中, 这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹, 而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能, 使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都成为材料开拓应用的新领域, 是当今材料科学研究的热点。 表1 纳米陶瓷材料力学性能的改善

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

相关文档
最新文档