静态混合器的优点、结构及工作原理

静态混合器的优点、结构及工作原理

静态混合器的优点、结构及工作原理

2011年6月14日

静态混合器的优点:

静态混合器的结构:通常由三部分组成:外壳管、管内部混合单元和两端法兰(或其他连接方式)。外壳管及两端法兰为常规工业用标准管件,通常公称直径DN15-DN1000范围。可以由不锈钢或碳钢制成,也可以用塑料材质,混合器两端还可以是直管,也可以是螺纹、卡箍、活接等连接方式,也可带冷、热夹套。混合单元通常被焊接在管道中,特殊条件下也可以做成活动式。不同种类的静态混合器就在于内部混合单元的差异,包括混合单元数量、材质及规格的差异。各种类型静态混合器的结构详见后续的参数表。

静态混合器的工作原理:两股或多股流体在通过管内混合单元内件的流动过程中,经受多次分割、剪切、旋转和重新汇合,便实现了流体之间的充分混合。静态混合器的流体混合机理在层流与湍流时有较大的差别。层流时,静态混合器依靠流体的通路,使流体分割、移位,然后重新汇合。由于这“ 分割一移位一重新汇合”三个混合要素的有规律反复作用而实现了混合。而湍流时,除了上述三要素外,由于流体在流动断面方向产生剧烈涡流,由此导致有很强的剪切力作用于流体,这使流体的微细部分进一步被分割,进而实现再一次混合。

静态混合器的设置

静态混合器的设置HG/T 20570.20—95

1 应用范围和类型 1.0.1应用范围 静态混合器应用于液-液、液-气、液-固、气-气的混合、乳化、中和、吸收、萃取反应和强化传热等工艺过程,可以在很宽的流体粘度范围(约106mPa·s)以内,在不同的流型(层流、过渡流、湍流、完全湍流)状态下应用,既可间歇操作,也可连续操作,且容易直接放大。以下分类简述。 1.0.1.1 液-液混合:从层流至湍流或粘度比大到1:106mPa·s的流体都能达到良好混合,分散液滴最小直径可达到1~2μm,且大小分布均匀。 1.0.1.2 液-气混合:液-气两相组份可以造成相界面的连续更新和充分接触,从而可以代替鼓泡塔或部分筛板塔。 1.0.1.3 液-固混合:少量固体颗粒或粉未(固体占液体体积的5%左右)与液体在湍流条件下,强制固体颗粒或粉未充分分散,达到液体的萃取或脱色作用。 1.0.1.4 气-气混合:冷、热气体掺混,不同组份气体的混合。 1.0.1.5 强化传热:静态混合器的给热系数与空管相比,对于给热系数很小的热气体冷却或冷气体加热,气体的给热系数提高8倍;对于粘性流体加热提高5倍;对于大量不凝性气体存在下的冷凝提高到8.5倍;对于高分子熔融体可以减少管截面上熔融体的温度和粘度梯度。 1.0.2静态混合器类型和结构 1.0. 2.1 本规定以SV型、SX型、SL型、SH型和SK型(注①)五种类型的静态混合器系列产品为例编制。 1.0. 2.2 由于混合单元内件结构各有不同,应用场合和效果亦各有差异,选用时应根据不同应用场合和技术要求进行选择。 1.0. 2.3 五种类型静态混合器产品用途和性能比较见表1.0.2-1和表1.0.2-2,结构示意图见图1.0.2。静态混合器由外壳、混合单元内件和连接法兰三部分组成。

文丘里洗涤器工作原理

简介 文丘里洗涤器又称文丘里管除尘器。由文丘里管凝聚器和除雾器组成。除尘过程可分为雾化、凝聚和除雾等三个阶段,前二阶段在文丘里管内进行,后一阶段在除雾器内完成。文氏管是一种投资省、效率高的湿法净化设备。根据文氏管喉管供液方式的不同,可分为外喷文氏管和内喷文氏管。第一级文氏管的收缩管材质通常采用铸铁,喉管为铸铁或钢内衬石墨,扩张管为硬铅,也可以用硬PVC或钢内衬橡胶。第二级文氏管材质通常全部采用硬PVC。 工作原理 文丘里管包括收缩段、喉管和扩散段。含尘气体进入收缩段后,流速增大,进入喉管是达到最大值。洗涤液从收缩段或喉管加入,气液两相间相对流速很大,液滴在高速气流下雾化 文丘里洗涤器 ,气体湿度达到饱和,尘粒被水湿润。尘粒与液滴或尘粒之间发生激烈碰撞和凝聚。在扩散段,气液速度减小,压力回升,以尘粒为凝结核的凝聚作用加快,凝聚成直径较大的含尘液滴,进而在除雾器内被捕集。文丘里管构造有多种型式。按断面形状分为圆形和方形两种;按喉管直径的可调节性分为可调的和固定的两类;按液体雾化方式可分为预雾化型和非雾化型;按供水方式可分为径向内喷、径向外喷、轴向喷水和溢流供水等四类。适用于去除粒径0.1-100μm的尘粒,除尘效率为80-99%,压力损失范围为1.0-9.0kPa,液气比取值范围为0.3-1.5L/m3。对高温气体的降温效果良好,广泛用于高温烟气的除尘、降温,也能用作气体吸收器。 工艺参数 文氏管的主要工艺参数是炉气在喉管中的流速、液气比和压力降。其中最关键的参数是喉管气速,只要压力降允许,喉管气速以大于等于60m/s为宜。对于以捕集粒径较粗的尘为主 文丘里洗涤器 要目的的文氏管,宜采用较低的气速和压力降;对于捕集粒径较小的酸雾和As2O3为主要目的,则宜采用较高的气速和较高的压力降。

JY型管式静态混合器

JY型管式静态混合器 一、适用范围 管式静态混合器,是净水厂、污水厂及工业用水、废水处理设备中投加混凝剂、助凝剂、消毒剂后与水流实现瞬时混合的新颖设备,适用于生活饮用水、城市自来水厂。 二、结构特点 管式静态混合器整件均为钢制结构,具有坚固耐用、结构简单、不需专门占用场地、安装容易、投资少、使用寿命长、混合效率高等特点,在运行过程中五任何有害物质溶析出。 三、工作原理 管式静态混合器主体在混合管内设一系列特殊设计的螺旋状混合单体,每两个相邻的形状相同的单体,方向相反地交叉固定在管道内,运行中单体本身不发生旋转运动,混合器内也无任何转动部件,而是以流水的动能作为混合的能量,流体在混合单体内流动时,每一单体将水流一分为二,混合器的总分流数将按单体的数量成几何级数逐增,这种混合作用称为成对分流混合,而由于相邻的混合单体方向相反,使水流不断产生方向相反的漩涡和反漩涡,这种漩涡和反漩涡更增强了混合效率,在混合器内同时发生三种混合作用,从而使得本体具有传质速度快,能完成不同液体介质在瞬时内有效混合的特点。、 四、技术性能 1、混合器公直径D150--D1200mm 2、混合单体与管中心线夹角26°30′ 3、混合单体个数一般为三个 亦可根据混合效率的不同要求而增减 4、混合单体板在管中心线方向上的投影长度: D/LX=1:1 5、设计流速V,由设计人(用户)选用,一般为: <500mm V<1.0m/s D N ≥500mm V>1.0m/s D N 6、混合效率:一般为90%以上 五、外形及尺寸安装 1、外形尺寸附表、附图 2、安装 (1)静态混合器一般宜水平安装,在条件不许可时也可采用垂直或倾斜安装,水平安装时一般宜按设于矩形井室内。 (2)管式静态混合器的安装位置应尽可能接近反映池或者微絮凝接触过滤池的进口处,可将药加在前端管中用计量泵或其他方法加入加药后的水流通过混合器后直接进入反应池或接触过滤池。 (3)为便于检修在混合器的两端宜安装闸阀,并在后端设有一个活接头,以便

文丘里洗涤器原理和作用

新型文丘里洗涤器 文丘里洗涤器的应用十分广泛———除尘、除沫、气体净化。传统的文丘里洗涤器由收缩管、喉管、扩散管组成。高压液体通过喷嘴形成大液滴喷入气流中,在喉管处较高的气速和剪切力的作用下雾化成细小的液滴,与气体中的尘粒接触使其分离。但是,最近国外设计的新型文丘里洗涤器却采用了与传统文丘里洗涤器大相径庭的结构形式。 新型文丘里洗涤器采用管缝隙作为气—液接 触区,其最大特点是,液体的雾化不是由高速气流产生的,而是由液体喷嘴形成的,喉部只是提供气—液间的密切接触。因此高除尘(雾)效率不是以高气体压降为代价的。最初的管—隙式文丘里洗 〓$/〓硫酸工业%00;年第$期 涤器见图!。 图!最初的管—隙式文丘里洗涤器 在一根垂直管内,上部装有两个高压液体喷 嘴,中部由两根水平细管构成一道狭窄的缝隙,水平细管下面装有一个柱形调节器,与之形成两道缝隙。洗涤液通过高压喷嘴雾化,在狭缝处与气体相接触,操作时,由一个传动装置上下移动调节器以改变缝隙宽度即喉部截面积大小,以在气体流量波动的情况下达到稳定的分离效果。设备的下游采 用离心式除沫器(旋风分离器)除去气流中夹带的雾沫。在管—隙式文丘里洗涤器的基础上又开发了复式喷嘴"#$%&'"%()*%&文丘里洗涤器,其结 构见图+。

图+"#$%&'"%()*%&文丘里洗涤器 "#$%&'"%()*%&文丘里洗涤器采用若干个 平行缝隙作为喉部,运行时无需调节缝隙宽度,从而进一步简化了结构。更重要的是,这种洗涤器采用了近年来国外开发的脉冲复式喷嘴,运行时以单式(只用洗涤液)和复式(同时采用压缩空气和洗涤液)的方式交互雾化。它在喷嘴的喷头中装有两个共振盒,自动产生共振。这种雾化技术的最大优点是,加速和减速交替出现,以诱发更剧烈地湍动,从而极大地提高分离效率。此外,脉冲可阻止尘粒在喉部沉降。缝隙和喷嘴的数量取决于流量的大小。由于在管缝隙处几乎没有气—液间的能量交换,所以这种洗涤器可以达到极高的分离效率,而气体压降却趋于零。 德国拜耳公司技术部曾于!,,,-./0中试装 置上测定了"#$%&'"%()*%&文丘里洗涤器的分 离效果。结果表明,对于,1!2!,!-直径的尘粒, 分离效率达到3+42!,,4,并且能耗低于其它文 丘里洗涤器。 与此同时,还进行了用氢氧化钠溶液吸收二氧 化硫的试验。试验气体流量为!,,,-./0、!(56 +) 分别为!,,和7,,-8/-.,采用9*值为!!17的氢 氧化钠溶液进行吸收。结果表明,复式喷嘴文丘里洗涤器的二氧化硫吸收率明显高于压力喷嘴文丘 里洗涤器,而两者压降相当,见图.。此外,零压降时复式喷嘴文丘里洗涤器所需的传质单元数为压 力喷嘴文丘里洗涤器的一半。 图.56 +吸收试验结果 !、.压力喷嘴,进气!(56 +)分别为7,,、!,,-8/-. +、:复式喷嘴,进气!(56 +)分别为7,,、!,,-8/-. 综上所述,复式喷嘴"#$&%'"%()*%&文丘 里洗涤器具有结构简单,分离效率高、能耗低、 可同时除尘和分离气体、操作弹性大、可靠性高、结构紧凑等优点,非常适合于现有装置的改造。(瑾)

漩涡混合器KHVORTEX-5

漩涡混合器KHVORTEX-5 产品简介: 振动与旋涡混合方式:可调速控制,能从低速振动到高速漩涡混合。可根据需要选择适合的混合方式。 多元功能:碗型振动台与平板型振动的双重提供,可适应不同试管及容器的手动或自动的两种混合方式。 自动与点振混合方式:三点开关可选择自动或点振混合方式。 稳定操作:足够重量和整体金属外壳为各种混合提供了稳定操作平台。 技术参数 电源:220V、功率:50W 转速:2800转/分 工作方式:连续、点触、调速 工作台:碗型、平板型可调换 外形尺寸:170×120×170mm 选配件 (H106多样品垫片套装) 60孔微量管插件:0.5ml离心管30管,1.5ml离心管30管 微孔板插件:96孔酶标板 振动与旋涡混合方式:可调速控制,能从低速振动到高速漩涡混合。可根据需要选择适合的混合方式。 多元功能:碗型振动台与平板型振动的双重提供,可适应不同试管及容器的手动或自动的两种混合方式。 自动与点振混合方式:三点开关可选择自动或点振混合方式。 稳定操作:足够重量和整体金属外壳为各种混合提供了稳定操作平台。

技术参数 电源:220V、功率:50W 转速:2800转/分 工作方式:连续、点触、调速 工作台:碗型、平板型可调换 外形尺寸:170×120×170mm 选配件 (H106多样品垫片套装) 60孔微量管插件:0.5ml离心管30管,1.5ml离心管30管 微孔板插件:96孔酶标板振动与旋涡混合方式:可调速控制,能从低速振动到高速漩涡混合。可根据需要选择适合的混合方式。 多元功能:碗型振动台与平板型振动的双重提供,可适应不同试管及容器的手动或自动的两种混合方式。 自动与点振混合方式:三点开关可选择自动或点振混合方式。 稳定操作:足够重量和整体金属外壳为各种混合提供了稳定操作平台。 技术参数 电源:220V、功率:50W 转速:2800转/分 工作方式:连续、点触、调速 工作台:碗型、平板型可调换 外形尺寸:170×120×170mm 选配件 (H106多样品垫片套装) 60孔微量管插件:0.5ml离心管30管,1.5ml离心管30管 微孔板插件:96孔酶标板

静态混合器

全世界经济发展的同时,我们周围的环境在不断恶化。在我国尤其如此,近二十年经济的迅猛发展给环境带来严重影响。我国境内的河流受污染情况十分严重,大多数河流的水质都出现了不同程度的下降。地球上的淡水资源是有限的,在我国的北方大部分地区水资源是缺乏的,因此我国实施了南水北调工程。日益严重的水污染与水资源短缺,使得有效的水处理技术变得越来越重要,人们从不同的方向改进着水技术。其中,混凝技术是一种常见的水处理技术,得到广泛的认可和推广。水的混凝机理十分复杂,一直得到广大学者的关注。一般认为:混凝过程中包含凝聚和絮凝两个步骤,其中凝聚是在瞬间内完成的,它是指化学药剂与水接触形成小颗粒的过程,在水处理过程中表现为使用各种混合设备将药剂与水均匀地混合,其均匀的程度关系着混凝效果优劣;絮凝是指凝聚过程中形成较小颗粒后,它们之间相互碰撞形成较大颗粒并沉降的过程。 影响混合效果的因素主要有三方面:一、废水水质,包括废水中浊度、PH值、水温及共存杂质等;二、混凝剂,包括混凝剂种类、投加量和投加顺序等;三、水利条件,主要指混合的方式。混合方式有:管式混合、水力混合、机械搅拌混合以及水泵混合等。其中管式混合主要形式有管式静态混合器、孔板式、文氏管道混合器、扩散混合器等;机械搅拌混合是在池内安装搅拌装置,以电动机驱动搅拌器将水与药剂混合;水泵混合是将药剂投放在水泵吸水管或吸水喇叭口处,利用水泵叶片的高速旋转来达到快速混合。 在水处理过程中,管式静态混合器具有高效混合、节约用药、设备小等特点,它是由一组组混合元件组成,而混合元件组数的确定应根据水质、混合效果而定。 在不需外动力情况下,水流通过混合元件时可以产生较大范围对流、返流和漩涡等运动,这些均能促使药剂均匀的分布(图1-1所示)。在选择管式静态混合器时,其管内流速应控制在经济流速范围内,当水流量较大所选管径大于500毫米时速度范围可以适当地放宽。混凝剂的入口方式以较大的速度,射流进入混合器管道内为佳。实际应用中管式静态混合器的水头损失一般在0.4-0.6米范围内,条件允许时可将管径放大50-100毫米,可以减少水头损失。本文的主要研究对象即为管式静态混合器。 2静态混合器 静态混合器(static mixer)是一种没有运动部件的高效混合设备,它在管道内加入静止元件,其主要包括三类:一类对流体起切割作用、二是使流体发生旋转、三是使流道形状与截面积变化(图1-2至1-6),然后依靠流体自身的动力(压力降),在流经元件的时候实现对流体的混合,被誊为是一种“虽然非常简单,却能发挥巧妙的作用”的工业元件。它可以在很大的流体粘度范围内,不同的流动状态下应用,既可间歇的又可连续的操作。其能使不同的流体达到均匀混合,根本原因在于混合元件使流体产生分流、拉伸、旋转、合流等运动,过程中增强了湍动,这些均极大地促进了对流扩散和紊动扩散,从而造成完善的径向混合效果。静态混合器有许多优点,与动态混合器相比,其结构简单、能耗低、安装维修简便、混合性

文丘里流量计等的工作原理

文丘里流量计等的基本原理 文丘里流量计等的基本原理 充满文丘里流量计管道的流体,当它流经文丘里流量计管道内的节流件时,流速将在文丘里流量计节流件处形成局部收缩,因而流速增加,静压力降低,于是在文丘里流量计节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当文丘里流量计节流装置形式或文丘里流量计管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。 文丘里流量计等的流量方程 式中 qm--质量流量,kg/s; qv--体积流量,m3/s; C--流出系数; ε--可膨胀性系数; β--直径比,β=d/D; d--工作条件下文丘里流量计节流件的孔径,m; D--工作条件下上游文丘里流量计管道内径,m; △P--差压,Pa; ρ --上游流体密度,kg/m3。 l 由上式可见,流量为C、ε、d、ρ、△P、β(D)6个参数的函数,此6个参数可分为实测量[d,ρ,△P,β(D)]和统计量(C、ε)两类。 (1)实测量 1)d、D 式(4.1)中d与流量为平方关系,其精确度对流量总精度影响较大,误差值一般应控制在±0.05%左右,还应计及工作温度对材料热膨胀的影响。标准规定管道内径D必须实测,需在上游管段的几个截面上进行多次测量求其平均值,误差不应大于±0.3%。除对数值测量精度要求较高外,还应考虑内径偏差会对节流件上游通道造成不正常节流现象所带来的严重影响。因此,当不是成套供应节流装置时,在现场配管应充分注意这个问题。 2)ρρ在流量方程中与△P是处于同等位置,亦就是说,当追求差压变送器高精度等级时,绝不要忘记ρ的测量精度亦应与之相匹配。否则△P的提高将会被ρ的降低所抵消。 3)△P 差压△P的精确测量不应只限于选用一台高精度差压变送器。实际上差压变送器能否接受到真实的差压值还决定于一系列因素,其中正确的取压孔及引压管线的制造、安装及使用是保证获得真实差压值的关键,这些影响因素很多是难以定量或定性确定的,只有加强制造及安装的规范化工作才能达到目的。 (2)统计量 1)C 统计量C是无法实测的量(指按标准设计制造安装,不经校准使用),在现场使用时最复杂的情况出现在实际的C值与标准确定的C值不相符合。它们的偏离是由设计、制造、安装及使用一系列因素造成的。应该明确,上述各环节全部严格遵循标准的规定,其实际值才会与标准确定的值相符合,现场是难以完全满足这种要求的。 应该指出,与标准条件的偏离,有的可定量估算(可进行修正),有的只能定性估计(不确定度的幅值与方向)。但是在现实中,有时不仅是一个条件偏离,这就带来非常复杂的情况,因为一般资料中只介绍某一条件偏离引起的误差。如果

sk型静态混合器

7.静态混合器

静态混合器上尽量不安装流量、温度、压力等指示仪表和检测点,特殊要求时在订货时出图说明。 对于需要在混合器外壳设置换热夹套管时,要在订货时说明。 对于SH系列产品,由于其加工精度高,维修困难,要求使用的介质清洁或能用溶剂倒置清洗,要不就是介质在高温对于SV系列产品,若因流体不清洁而堵塞,可拆卸设备、用水(蒸汽)或溶剂倒置清洗,也可拆掉单元,取对于SK系列的活络单元产品,可将整个单元抽出清洗,但拉出时切忌敲击,以免单元变形。 A、SV型静态混合器 1.产品特性 单元是由一定规格的波纹板组装而成的圆柱体,它的技术性能:最高的分散程度为1-2μm,液-液相的不均匀度为Δ 2.产品型号 规格DN dh Q规格DN dh SV-2.3/2020 2.30.5-1.2SV-5-20/2002005-20 SV-2.3/2525 2.30.9-1.8SV-5-20/2502505-20 SV-3.5/3232 3.5 1.4-2.9SV-5-30/3003007-30 SV-3.5/4040 3.5 2.2-4.5SV-7-30/3503507-30 SV-3.5/5050 3.5 3.5-7SV-7-30/4004007-30 SV-3.5/6565 3.55-12SV-7-30/4504507-30 SV-5/808059-18SV-7-30/5005007-30 SV-5/100100514-28SV-7-30/6006007-30 SV-5-7/1251255-724-34SV-7-30/100010007-30 SV-5-7/1501505-730-60SV-15-30/1200120015-30 SV型外形图

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

FL-SOP-GA-3007 XW-80A型旋涡混合器标准操作规程

1.Intended Use目的 正确操作使用仪器设备,确保检测质量,保障仪器设备的使用寿命,充分发挥仪器效益和效率。 2.Sphere of Application适用范围 适用于旋涡混合器的操作规程。 3.Instrument仪器 3.1.名称:旋涡混合器 3.2.型号:XW-80A 3.3.生产厂家:上海医大仪器厂 4.Start-up & shutdown Procedure开关机程序 4.1.开机程序:直接打开仪器电源开关。 4.2.关机程序:直接关闭仪器电源开关。 5.Routine Operation常规操作程序 5.1.接通漩涡混合器的电源。 5.2.打开混合器上方的绿色开关,混合器即开始工作。 5.3.把装有欲混匀物品的容器放于混合器的海绵上。 5.4.稍微用力按压混匀物,用力越大,混匀强度越大。 5.5.混匀完毕,关闭开关,切断电源。 6.Maintenance维护保养

6.1.每次使用完毕,切断电源,清洁表面。 6.2.工作台面上的海绵在混合中起着力的传递作用,使用一定时间后会老化,需要更换。6.3.使用中如果海绵被溶液污染,应立即停止使用,取出海绵,予以清洗,待海绵脱水干燥 后方可重新装入使用。 7.System Specification仪器的基本技术性能 7.1.操作方便、体积小、耗电省、混合速度快。 7.2.偏心距:1.5mm 7.3.连续工作时间:不大于4小时 7.4.噪声:不大于60dB(A) 8.Environmental Requirements运行环境 8.1.相对湿度:20℅~85℅;运行温度:5~40℃。 8.2.不能再易燃麻醉气和空气的混合气或和氧或氧化亚氮的混合气体情况下使用设备。 9.Problems and Solutions故障及处理 出现不能解决的故障,应及时联系维修人员并通知实验室负责人。 10.Points for Attention 注意事项 按仪器规定的规格更换熔断器,更换熔断器时应关闭电源,拔去电源插头。

静态混合器的种类和用途

静态混合器的种类和用途 静态混合器 静态混合器是一种没有运动部件的高效混合设备,其基本工作机理是利用固定在管内的混合单元体改变流体在管内的流动状态,以达到不同流体之间良好分散和充分混合的目的。 目录 简介 原理 分类 编辑本段简介 静态混合器是20世纪70年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,20世纪80后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得到了很好的应用。

自20世纪70年代以来,静态混合器就已开始在化学工业、食品工业、纺织轻工等行业得到应用,并取得良好的成果。但静态混合器作为一种专 利产品,国内、国外都对此结构不但保密,而且制成一次性不可拆卸结构。同时,固化剂和环氧树脂粘度相差很大(环氧树脂粘度是固化剂粘度的20~80倍),两流体在管路中流速又非常低,造成它们难以混合均匀。 静态混合器是一种先进的单元设备,和搅拌器不同的是,它的内部没有运动部件,主要运用流体流动和内部单元实现各种流全的混合以及结构特殊的设计合理性。静态混合器与孔板柱、文氏管、搅拌器、均质器等其它设备相比较具有效率高、能耗低、体积小、投资省、易于连续化生产。静态混合器中,流体的运动遵循着“分割-移位-重叠”的规律,混合过程的中起主要作用的是移位。移位的方式可分为两大类:“同一截面流速分布引起的相对移位和“多通道相对移位”,不同型号混合器的移位方式也有所不同。海泰美信HICHINE静态混合器不仅应用于混合过程,而且可以应用于与混合-传递有关的过程,包括气/气混合、液/液萃取、气/液反应、强化传热及液/液反应等过程。静态混合器广泛应用于塑料、化工、医药、矿冶、食品、日化、农药、电缆、石油、造纸、化纤、生物、环保等多个行业。由于该产品耗能低、投资省、效果好、见效快,为用户带来了可观的经济效益。 编辑本段原理

静态混合器 (NXPowerLite)

1、概念 静态混合器是一种新型先进的化工单元设备,自70年代开始应用后,迅速在国内外各个领域得到推广应用。众所周知,对于二股流体的混合,一般用搅拌的方法。这是一种动态的混合设备,设备中有运动部件。而静态混合器内主要构件静态混合单元在混合过程中自身并不运动,而是凭借流体本身的能量并借助静态混合单元的作用使流体得到分散混合,设备内无一运动部件。 2、流体的混合机理 对于层流和湍流等不同的场合,静态混合器内流体混合的机理差别很大。层流时是“分割---位置移动---重新汇合”的三要素对流体进行有规则的反复作用,从而达到混合;湍流时,除以上三要素外,由于流体在流动的断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体的细微部分进一步被分割而混合。 3、静态混合器的混合形态 静态混合器在基本工艺流程中的组合方法见下图所示的两种类型。在实际应用中往往将多种基本流程组合在一起使用。两种液体汇合部位的结构,应根据液体的粘度、密度、混合比、互溶性等来确定。尤其当两种液体一接触就反应或凝胶而相变时,更要注意汇合部位的结构、流速以及混合器的选择。 3.1层流的混合 经静态混合器混合后的流体的混合形态,与经具有传动部件的混合机或搅拌机混合的混合形态有明显的差别。图二表示采用静态混合器混合两种流体是产生的典型层流混合状态。混合状态由条带状变为连续的或不连续的线状及粒子状,而状态的变化取决于流体混合时的雷诺数和韦伯数。例如:当流速、粘度、混合器直径一定时,如果流体间表面张力大,流体的混合形态则从条带状转向线状,进而变化到粒子状。 混合器单元数、管径和流速的选定 混合器的单元数和直径随流体的性质(粘度、互溶性、密度)、混合比、希望达到的混合状态、接触面上液体的结构变化等而不同,可通过试验和经验来确定。通常基于雷诺数并经试验确定混合器的放大倍数。但当雷诺数R e<100(严格地说在1以下)时,混合程度、混合状态与雷诺数无关,只取决于混合器的单元数。

射流器工作原理

射流器工作原理 Last updated on the afternoon of January 3, 2021

射流器(文丘里混合器\水射器\气水、液混合器)文丘里混合器,又称为喷射式混合器,是一种本身没有运动部件,它是由喷嘴、吸入室、扩压管三部分组成。具有一定压力的工作流体通过喷嘴高速喷出,使压力能转化速度能,在喷嘴出口区域形成真空,从而将被抽介质吸引出来,二股介质在扩压管内进行混合及能量交换,并使速度能还原成压力能,最后以高于大气压力而排出。文丘里混合器是一种集吸气和混合反应于一体的设备。独特的混合气室设计,强劲的水流与空气或液体混合喷射,使搅拌均匀、完全,产生的气泡多而细腻,促使气体溶解效率提高。常见于液~气相混合,液~液相混合,还可以用于气~气相混合以及气~液相混合。射流器结构简单、工作可靠、噪音低、无污染、使用寿命长、极少维修、管理使用方便、便于综合利用。尤其适用于作为传质和化学混合反应设备或抽吸气体。文丘里混合器俗称射流器、水射器等。制造材料有金属,塑料等。一般通量较大需定制。 采用模具压铸的文丘里混合器有以下三种材料: 1、氟塑料(PVDF)材料 黑色,耐强氧化、耐强酸碱腐蚀、耐臭氧;寿命长,广泛用于臭氧水混合、污水处理、加药领域。规格较为齐全,规格参数详见下表。 2、聚丙烯(PP)材料

乳白色,PP材料常用在一般耐酸碱条件下。进出口径有以下规格有:1寸(DN25),可配软管接口。 3、透明有机玻璃材料 无色透明,透明的有机玻璃则通常应用于可直观了解射流效果的场合,如实验室。进出口径有以下规格有:6分(DN20),1寸(DN25)无软管接口。

静态混合器要如何选型

静态混合器要如何选型? 【字体:大中小】点击数: 一、静态混合器选型: 静态混合器选型一般取决于所用混合介质的物性(如粘度、颗粒大小、含固量、反应速度和工作温度压力等)。S V型比较常用,因混合性能好,广泛应用于汽-液、液-液、液-固等状态的混合,如调和油、轻质油混合、香料乳化、化学反应等。但SV型系统有压降,所需动力相对较大。而SK型静态混合器,因系统阻力降小、混合性能较好等特点,较多地应用于重质油与水、颗粒大小及含固量多等物系的混合。- 由于各工艺过程的不同,要求也会有所不同。因此在选型上,则根据不同的要求,灵活选用。例如:对于介质粘度较高的物系,一般采用SK型;而对混合性能有一定的要求,则可在选择SV型时并适当放大一些尺寸(管径)。- 当然,您也可通过计算软件来进行计算选型。 二、快速选型如下: SH型静态混合器---混合效果好,常用于粘度较高且清洁的介质。 SL型静态混合器---混合效果较好,常用于粘度较高或伴有高聚物介质的混合物系。 SX型静态混合器---混合效果较好,常用于中等粘度或生产高聚物流体的混合和反应过程。 SK型静态混合器---混合效果较好,常用于粘度较高通常粘度≥500厘泊且伴有杂质颗粒的小流量混合物系。 SV型静态混合器---混合效果好,常用于混合,乳化等要求较高的并且粘度≤100厘泊的各种物系。但因水力直径较小,相应阻力降ΔP 也就较大,要提高处理量,除增大公称直径外,所需动力也大。动力粘度换算:1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=0.001帕·秒(Pa·s)三、分配器:分配器的作用是将两股或两股以上的流体汇合成一股,然后进入静态混合器进行混合。分配器的型式通常分为两种,即三通管式和射流器式。其中三通管式的分配器适用的流体流量和压力相差不多;而射流器式的分配器适用流量比或压力比很大的混合介质。 分配器可以自己制作(如三通管式的要求不高),也可以委托定制。

静态混合器计算

静态混合器计算 1.1 选类型 选型依据:HG/T 20570.20-95 静态混合器设计 已知:在工作温度为35℃,系统压力为1.8MPa 下,静态混合器各股物流的物料 质量流率 kg/h 密度 kg/m3 体积流率 m3/h 粘度 mPa·s 直馏柴油 27777.8 810.4 34.28 2.03 液氨 116.0 587.4 0.20 10.5 乙二醇 3472.2 1102.0 3.15 0.0136 Σ 31366.0 37.63 根据表1.1,三股物料粘度均小于100mP·s ,选择SV 型静态混合器较合适。 1.2 流速 总体积流量: h /m 63.374 .5870 .116110210472.34.8101078.27333321=+?+?= ++=V V V V 根据表1.2,选择静态混合器管径为:mm 150=D 流体流速: m/s 589.0360015.04 468 .373600422=??=?=ππD V u 对于低、中粘度流体的混合、萃取、中和、传热、中速反应,适宜于过渡流或湍流条件下工作,流体流速控制在m/s 8.0~3.0,m/s 589.0=u 符合情况。 1.3 具体型号 选长径比为10=D L ,则 mm 150015010=?=L ,且设计压力为P=2.0MPa ,查表1.2,水力直径h d 取6mm ,所以该静态混合器型号规格为: SV-6/150-4.0-1500。 1.4 反应时间 [] ? -=Af X 0 A A A0)(X R dX c t

由于环烷酸与液氨的反应为1.5级反应,所以: ( )5 .1A f 5 .1A 01X kc r -= []() ?? -=-=Af Af 05.1Af 5.1A0A A00 A A A01)(X X X kc dX c X R dX c t 积分得: ()5 .0A0 5.0 Af 5.011kc X t ?--= - 式中:k —为反应速率常数,-0.5-11.5kmol s m 89.49??=k ; Af X —环烷酸转化率,由设计要求可得%3.99Af =X ; A0c —环烷酸浓度。 30A0m /kmol 012.063 .37260 /06.118/==== V M m V n c A 所以: ()s 4012 .089.495.01 993.015.0=??--= -t 单个静态混合器的反应体积: 3 22m 0265.05.115.044=??=?=π πL D V r 则空时: s 53.23600 63.370265 .0=÷== Q V r τ 选用两个静态混合器串联,则空时:τ=2×2.53=5.06s 由于是该反应是在液相中进行,可视为等容均相反应过程,故反应物料在静态混合器中的平均停留时间T=5.06s 由此可见,选择两个SV-6/150-4.0-1500静态混合器串联即可满足工艺要求。 1.5 压力降计算 查表1.2,空隙率0.1=ε,则: 8.14100 .11003.2589 .04.810006.03c h =????= = -με ρεu d R e 查表1.3,当150≥εe R 时,摩擦系数:0.1≈f 静态混合器压力降:

给水水厂设计说明书

一.设计资料 1.1.1 供水要求 1)给水厂水量为30000m3/d。 2)水厂自用水量系数为5~8%,时变化系数1.5~1.4。 3)水厂出水水压为45~50m。 4)出厂水质达到国家饮用水水质标准。 5)水厂自用水取5%。 6)时变化系数取1.5。 1.1.2 原水水质 某河流原水水质分析结果(见表1) 表1 某河流的原水水质分析结果

1.3 饮用水水质标准 生活饮用水水质标准(见表2) 表2 生活饮用水水质非常规检验项目及限值(62项)

1.2 设计任务 1)根据水质、水量、地区条件、施工条件和一些水厂运转情况选定处理方案和确定处理工艺流程。 2)拟定各种构筑物的设计流量及工艺参数。 3)选择各构筑物的形式和数目,初步进行水厂的平面布置和高程布置。在此基础上确定构筑物的形式、有关尺寸安装位置等。 4)进行各构筑物的设计和计算,定出各构筑物和主要构件的尺寸,设计时要考虑到构筑物及其构造、施工上的可能性。 5)根据各构筑物的确切尺寸,确定各构筑物在平面布置上的确切位置,并最后完成平面布置。确定各构筑物间连接管道、检查井的位置。 6)水厂厂区主体构筑物(生产工艺)和附属构筑物的布置,厂区道路、绿化等总体布置。 二.设计说明 2.1 选择方案 2.1.1 絮凝工艺: 方案:采用机械絮凝池和往复式隔板絮凝池组合使用 机械絮凝池 优点:絮凝效果好,节省药剂;水头损失小;可适应水质水量的变化。 缺点:需机械设备和经常维修。 往复式隔板絮凝池 优点:絮凝效果好;构造简单;施工方便。

缺点:容积较大;水头损失较大;转弯处絮粒容易破碎;出水流量不易分配均 匀;出口处易积泥,适用于流量每日大于3万立方米且水量变化较小的水厂。 两种形式絮凝池组合使用有如下优点:当水质水量发生变化时,可以调节机械 搅拌速度以弥补隔板往复式絮凝池的不足;当机械搅拌装置需要维修时,隔板 往复式絮凝池仍可继续运行。此外,若设计流量较小,采用往复式隔板絮凝池 往往前端廊道宽度不足0.5m,不利于施工,则前端采用机械絮凝池可弥补此不 足。 2.1.2 沉淀工艺: 方案:采用平流沉淀池 优点:造价较低;操作管理方便;施工简单;对源水浊度适应性较强;处理效果稳定;采用机械排泥设施时,排泥效果好。 缺点:需要维护机械排泥设备;占地面积较大;水力排泥时排泥困难;一般使用于中小型水厂。 2.1.3 过滤工艺: 方案:V型滤池 优点:可以采用均质滤料,截污能力大,反冲洗干净,过滤周期长,处理水质稳定,节省反冲洗水量。 缺点:对施工的精度和操作管理水平要求甚严,否则会产生如下问题:反冲洗不均匀,有较严重的短流现象发生;跑砂;滤板接缝不平、滤头套管处 密封不严,滤头堵塞甚至发生开裂;阀门启闭不畅等现象时有发生。2.2 水厂设计说明 2.2.1 设计规模 Q=30000 3m d,水厂自用水系数按5%计,设计任务书已给出最高日用水量为: d

真空发生装置即文丘里管的原理

真空发生装置即文丘里管的原理 文氏管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。如图所示 A-压缩空气入口B-喷嘴C-消音器 D-吸附腔入口 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。 真空发生器的主要性能参数 ①空气消耗量:指从喷管流出的流量qv1。 ②吸入流量:指从吸口吸入的空气流量qv2。当吸入口向大气敞开时,其吸入流量最大,称为最大吸入流量qv2max. ③吸入口处压力:记为Pv.当吸入口被完全封闭(如吸盘吸着工件),即吸入流量为零时,吸入口内的压力最低,记作Pvmin.

各种混合器产品简介

SP 系列混合喷射搅拌系统 SP系列混合喷射搅拌系统是一种用于混合和翻转液体的高效混合喷射泵,其最大优点在于:可靠、简洁、无须保养、环保、节能。 SP系列混合喷射搅拌系统适用范围广阔,可以说,只要用离心泵可以传送翻转液体,就可以使用这种混合喷射搅拌系统,其主要用于容器、贮存罐和中和池,如油品调合,酸碱中和反应等工艺过程,成为理想的混合设备。 工作原理 从混合喷射器喷嘴中喷出的液流以其高速度在其锥形入口内形成低压,从而从罐中吸附并带动一股液流,使其加速,在喷射器内高度涡漩,产生了一个内部混合的混合液。 在混合喷射出口处,这种混合速度部分被转换为压力,使从喷射器中喷出的混合液成圆锥状扩散,并将其周围的液体带起来,达到罐内液体混合、中和的目的。技术指标:液-液混合不均匀度系数a×x-2≤7.5%,最高分散度5~20μm。 如果一个或几个SP系列混合喷射器排列正确的话,在罐中就产生了一个三维射流,它把整个罐内的物质进行均匀混合,而不产生剧列的运动。 混合喷射器与ISHG化工离心泵、正推进器组成SP混合喷射搅拌系统(工艺流程图如下)。 说明:系统液位顶部没有自动液位控制装置,与上部喷头联锁,当液位低于警戒线时自动液位控制装置发出信号使上部喷头停止工作。 型号标注

产品安装 SP系列混合器喷射器应尽可能安装在最深的位置,这样在液体量少的情况下也能保证取得有效的混合效果。 对于一些容易形成泡沫的液体来说,可以使液面高于混合喷射器1至2m,就可避免产生泡沫。 上图显示SP系列混合喷射器在罐中安装一般位置,敬请用户参考。 产品选型 SP系列混合喷射搅拌系统型号和尺寸号的安排十分巧妙,对于一般的工艺要求来说,总能找到理想的设备,根据下列功率曲线,您总能得到满意的答案。

给水厂混凝沉淀过滤消毒设计计算书详解

第二章:总体设计 2.1水厂规模的确定 水厂的设计生产量Q 包括以下两项:供应用户的出厂量Q 1和水厂的自用水量Q 2,一般Q 2只占Q 1的5-10%,所以水厂设计生产量可按下式计算: Q=KQ 1 (式中K=1.05-1.10 ) 水厂设计计算水量Q 1=50000m 3/d 即 Q=KQ 1=50000 1.0552500?= m 3/d=2187.5 m 3/h=0.61 m 3/s 根据水厂设计水量2万m 3/d 以下为小型水厂,2万~10万m 3/d 为中型水厂,10万m 3/d 以上为大型水厂的标准可知水厂为中型水厂。 2.2净水工艺流程的确定 玉川集聚区是以工业项目为主,从目前情况看用户对水质的要求不高,完全可以靠供给原水满足企业需求。但从长远来看,一方面不同的企业对水质的要求不同,尤其是夏季的洪水季节,当源水水质发生较大的变化时,可能会因为水质的变化影响企业的生产。 所以水厂以地表水作为水源,且水量充沛水质较好,则主要以取出水中的悬浮物 和杀灭致病细菌为目标,经过比较后采用地面水的常规处理工艺系统。工艺流程如图1所示。 原水 混 合 絮凝沉淀池 滤 池 混凝剂消毒剂清水池 二级泵房 用户 图1 水处理工艺流程 2.3处理构筑物及设备型式选择 (1) 药剂溶解池 设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条件。

溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。 由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。 投药设备采用计量泵投加的方式。采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。 (2)混合设备 根据快速混合的原理,实际生产中设计开发了各种各样的混合设施,主要可以分为以下四类:水力混合、水泵混合、管式混合和机械混合。 在本次设计采用管式混合器对药剂与水进行混合。管式混合是利用原水泵后到絮凝反映设施之间的这一段压水管使药剂和原水混合的一种混合设施。主要原理是在管道中增加一些各种结构的能改变水流水力条件的附件,从而产生不同的效果。 在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。管式混合器采用管式静态混合器。 (3)反应池 反应作用在于使凝聚微粒通过絮凝形成具有良好沉淀性能的大的絮凝体。 目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有栅条(网格)絮凝、折板絮凝和波纹板絮凝。这三种形式的絮凝池在大、中型水厂中均有使用,都具有絮凝效果好、水头损失小、絮凝时间短、投资小、便于管理等优点,并且都能达到良好的絮凝条件,从工程造价来说,栅条造价为折板的1/2,为波纹板的1/3,因此采用栅条(网格)絮凝。 (4)沉淀池 原水经投药、混合与絮凝后,水中悬浮杂质已形成粗大的絮凝体,要在沉淀

相关文档
最新文档