桥梁结构振动与控制分析研究

桥梁结构振动与控制分析研究
桥梁结构振动与控制分析研究

结题报告

桥梁结构振动与控制分析研究

桥梁结构振动与控制分析研究

一、课题的研究意义及研究方法

1.1课题的研究意义

桥梁结构的振动是引起桥梁损坏(破坏)的一个重要因素,引起桥梁振动的因素主要有:地震引起的振动、荷载引起的振动及车 - 桥耦合作用引起的振动。传统的结构强度设计方法通过增强结构物自身抗力来抵御地震作用,即由结构本身储存和消耗地震能量。但由于人类测震技术的不成熟,尚不能准确估计振动的强度和特性。因此,可能会出现结构不满足安全性的要求而产生安全事故。

近年来发展起来的结构控制技术是建筑结构抗震领域内的一个新的研究热点, 它是通过采用结构振动控制的理论与方法改变结构系统的动力学性能或阻尼耗散性能来增加和改善结构的抗震能力,是一种积极主动的对策。因此,近年来桥梁结构的振动控制倍受学术界、工程界的广泛关注, 并获得了长足的进步。结构振动与控制的研究与应用有着广泛的前景,它的研究和发展将给结构工程抗震设计带来一张革命,其巨大的经济效益和社会效益已得到证明。

1.2 本文的研究思路和方法

本文以竖向弯曲振动时桥梁跨中挠度的振动幅度为控制目标,通过分析安装TMD前后桥梁跨中挠度的振动幅度变化量来讨论TMD对桥梁振动的控制效果,并探索TMD的参数优化。

对于TMD控制下的车桥耦合系统的振动,已被采用的数值研究方法有两类:一类在建立系统耦合方程组的基础上,借助编程语言或数值计算软件(如MATLAB 和VB等),利用数值积分方法编程求解耦合方程组;另一类,借助仿真分析软件(如有限元软件和Simulink等)实现对系统的仿真分析。本文将采取第一类方法,编程求解方程组。

针对简支梁桥在列车匀速通过时的竖向弯曲振动,本文先建立车桥耦合振动理论模型,利用数值计算方法结合MATLAB软件,编程求解车桥时变系统振动微分方程组,获得列车过桥时桥梁竖向振动位移响应;再建立车—桥-TMD耦合振动理论模型,求解获得单个以及多个TMD控制下的桥梁竖向位移响应,分析TMD

的控制效果,并讨论TMD参数优化对控制效果的影响。

一、理论模型及求解方法

2.1 车辆-简支梁桥竖向振动模型

2.1.1 模型简化

模型中,车体、转向架、车轮均被认为是刚体,相互间通过弹簧阻尼系统连接;不考虑车轮与钢轨表面粗糙,认为钢轨固结于桥梁上作为桥梁的一部分,不考虑钢轨及轨下结构局部变形造成的影响,于是轮轴的竖向位移等于轮轨接触点(即车轮与桥梁接触点)的竖向位移。

由于仅考虑系统的竖向振动,本文中车辆简化为二系弹簧悬挂系统,仅考虑车体沉浮、点头,前后转向架构架沉浮运动,每节车辆四个自由度。桥梁采用简支欧拉梁模型。系统简化模型及坐标系建立如图1所示。

图1 系统简化计算模型

图中各物理量意义如下:

v -行车速度; y

c

-车体中心竖向沉浮位移;

φi-第i节车体点头位移; J c-车体点头惯量;

m c -车体质量; c

s2

-二系悬挂阻尼;

k s2-二系悬挂刚度; m

t

-转向架构架与轮对质量之和;

y t -构架中心竖向沉浮位移; c s1-一系悬挂阻尼; k s1-一系悬挂刚度; a-同一节车转向架中心距离; EI-桥梁抗弯刚度; d-前后两节车相邻轮对间距; L-桥梁全长; w-桥梁挠度,以水平位置为坐标起点; m k -TMD 质量; k k -TMD 刚度; C k -TMD 阻尼; y z -TMD 竖向位移; l i -第i 个轮对与第一个轮对之间的距离; 2.1.2 车辆系统振动微分方程

第i 节车振动方程 车体沉浮运动:

)2()2()

2

()2(2222122122=--+--++-++-+?

???

-???-?

?i i t ci s i i t ci s i i t si s i i t ci s ci c a y y c a y y k a y y c a y y k y m φφφφ (2-1) 车体点头运动:

2)2(2)2(2

)

2(2)2(2222122122=------+-++-+????-???-?

?a

a y y c a a y y k a

a y y c a a y y k J i i t ci s i i t ci s i i t si s i i t ci s i C φφφφφ (2-2) 构架沉浮运动:

)2

()2()

()(12212221

1211

121121

21

2=+--+--++++?

-???--=?

-?-=--?

?--i i t ci s i i t i c s l vt x i t s l vt x i t s i t t a y y c a y y k w y c w y k y m i i φφ (2-3)

)2

()2()

()(22221

211

21221

2=------++++?

???-=?

?-=?

?-i i t ci s i i t ci s l vt x i t s l vt x i t s i t t a y y c a y y k w y c w y k y m i

i φφ (2-4)

对车厢整体可得

i c ci c i t t c t i a

J y m y m g m m P ?

???-??-++++=φ2)2(1212 (2-5)

i c ci c i t t c t i a

J y m y m g m m P ?

?????-+++=φ2)2(22 (2-6)

其中p2i-1,p2i 分别为第i 节车厢前后两个车轮与桥梁之间的作用力。 2.1.3 简支梁桥振动方程

本为采用简支欧拉梁模型,不考虑桥梁阻尼时,振动方程为:

(2-7)

其中,ρA-桥梁单位长度的质量; F(x,t)-t 时刻x 处作用在梁上的外力,包括桥梁自重和轮轨相互作用力,即

Ag vt l x t P t x F i i i N

i i ρδδ+-+??=∑=)()(),(21 (2-8)

其中,N 表示车辆节数;

)(vt l x i i -+δ表示dirac 函数;

??

???=+≤≤v l L t v l i

i

i t 其他

10

)(δ

将式(2-8)代入式(2-7)得,

Ag vt l x t P t w A x w EI i i i N

i i ρδδρ+-+??=??+??∑=)()(212244 (2-9) 为求解方程(2-9),利用分离变量法设

)()(),(1t T x X t x w j n

j j ∑== (2-10)

其中L

x

j x X j πsin

)(=为简支梁的振型函数,n 为模态截断数,T j (t)形态振幅函数。将式(2-10)代入式(2-9),各项自0到L 积分,利用振型函数的正交性

与dirac 函数的性质,并令A m ρ=,A

EI

L j j ρπω42)(

=,得 []∑

=?

?-+

-=?+N

i i i i j j

j j j g

L l vt j t mL P t T t T 21

2)cos(12)(sin )(2)()(ππ

πδωj=1,2,...,n

(2-11)

将式(2-5)与式(2-6)代入式(2-11),消去变量P i ,得

),(2

2

44

t x F t w

A x w EI

=??+??ρ

)

()()2()(sin )(2

)

2()(sin )(2

21

1212t T t T a J y m y m L l vt j t mL a J y m y m L l vt j t mL j j j N

i i c c c t t i i N

i i c c c t t i i i i i i ?++-+?--++?--?

?=??????=??????∑∑-ωφπδφπδ

[]∑

=-+

-?+=N

i i i c t j j g L l vt j t g m m mL 1)cos(12)(sin )()2(2

ππ

πδ j=1,2,...,n (2-12) 为简化表达,令)()

(sin

)(t h L

l vt j t ij i i =-πδ,整理得, []∑∑∑∑=?

?=?

???=????--=??--+

?+

=?++-?-+?-??+-N

i ij c t j j

j N i i c i t t j i N i i c i t t j i N

i c ci j i j i j j mgL

t h g m m t T t T a J y m t h a J y m t h y m t h t h i 1

2

1

2,2112,121,2,12)cos(1)()2()()()

()()()(2)]()([ππ

ωφφ j=1,2,...,n (2-13)

这样,式(2-1)~式(2-4)与式(2-13)一起组成车桥时变系统耦合振动微分方程组,方程组共有(4N+n)个方程,以y ci ,y t2i-1,y t2i ,Φi ,T j (t)共(4N+n )个未知量为求解变量,结合初值条件,可利用动力学连续数值积分方法联合求解。

2.2 车—桥—TMD 耦合模型(以跨中悬挂单个TMD 为例)

设TMD 质量为m k ,弹簧刚度为k k ,阻尼为c k ,悬挂位置为跨中,以静平衡位置为坐标起点,振动位移为y z ,则TMD 的运动方程为

0)()(2

2

=-+-+?

?

=?

?l z k l x z k z k w y c w y k y m (2-14)

简支梁跨中悬挂TMD 时,车辆系统振动方程不受影响,简支梁所受外力应考虑梁与TMD 之间的相互作用,即通过TMD 弹簧与阻尼器传递的力,于是,式(2-8)变为

)2()()()(),(2

2

21

L

x w

c w k Ag vt l x t P t x F l x k l x k i i i N

i i -??+?++-+??==

?

==∑δρδδ (2-15)

其中,)2

(L

x -δ为dirac 函数。

此时,式(2-13)变为

[]2

sin )cos(1)()2(2sin

)()()()()

()()]()([1

,2,122

1

2,21

12,121,2,12ππππωφφj g m j j mgL

h h g m m j y m t T t T a J y m t h a J y m t h y m t h t h k N

i j i j i c t z k j j j N

i i c i t t j i N

i i c i t t j i N i c ci j i j i i ?+-+

+?+

=?+?++-?-+?-??+-∑∑∑∑=-????=???

?=?

??

?--=?

?-

j=1,2,...,n (2-16)

这样,式(2-1)~式(2-4)与式(2-14)、式(2-16)一起组成车—桥—TMD 时变系统耦合振动微分方程组,方程组共有(4m+n+1)方程,以y ci ,y t2i-1,y t2i ,φi ,T j (t),y z 共(4m+n+1)个未知量为求解变量,结合初值条件,可利用动力学连续数值积分方法联合求解。

2.3 求解步骤与方法(以单个TMD 控制系统为例)

车—桥—TMD 系统耦合方程组写成矩阵形式为:

f kx x C x M =++?

?

? (2-17)

其中,x-以y ci ,y t2i-1,y t2i ,Φi ,T j (t),y z 构成的未知向量,即

{}{}T T x z n 21N,t2N 1-t2N cN 2t4t3c21t2t1c1y (t),T (t),...,T (t),T ,y ,y ,y ,...,,y ,y ,y ,,y ,y ,y φφφ=

分块表示为:{}{}T

z T c T

x x x x ,,=;

M,C,K-总体等效质量,阻尼,刚度矩阵; f -等效载荷向量; 2.3.1 系数矩阵

a)质量矩阵分块表示??

??

?

?????=z zT zc Tz T Tc cz cT c m m m m m m m m m M 其中, ),,,...,,,(,111,1tN tN cN cN t t c c c m m J m m m J m diag m =; n n T I m ?=,I 表示单位矩阵; m z =m k ;

n N cT m ?=40,140?=N cz m ,N zc m 410?=,n zT m ?=10;

T

cN n N n N cN N N c t t c c t t c n n c Tc a J h h a J h h a J h h m h m h m h h a J h h m h m h m h h m h h m ???

??

?

?????

????

????????????????????????

??-?-?-???+?-???+?+-=--)(...)(..........)(..

...)(..)(....)(...)(,2,121,21,122

413144133124131121

11221111n 2112111 T

k Tz j m m }2

sin

,...,sin ,2

{sin

πππ

?=; 其中,限于篇幅,h ij (t)简写为h ij .

b)阻尼矩阵分块表示为??

??

?

?????=z zT zc Tz T Tc cz cT c c c c c c c c c c C ),...,,...,,(21cN ci c c c c c c c diag c =,?

??

?

???

?

????

???

???

?

?+--+----=i s i s i s i

s i s i s i s i s i s i s i

s i

s i

s i s ci c a

c c c c a

c c c c a c a c

a c c c c 22122212222222220202

22

00

2; n n T c ?=0; k z c c =; 140?=N cz c ;N n Tc c 40?=;10?=n Tz c ;N zc c 410?=;

}2

sin ,...,2sin

,...,0,1{π

πn j c c k zT ?-=; T cTN cTi cT cT c c c c },...,,...,{1=,

??

????

??

??????????-?-?-?-?-?-?=---0)(sin ...)(sin

...)(sin )(sin ...)(sin ...)(sin 0212121121121121i i s i i s i i s i i s i i s i i s cTi

l vt L n c l vt L j c l vt L c l vt L n c l vt L j c l vt L c c π

πππππ c)刚度矩阵分块表示为??

??

?

?????=z zT zc Tz T Tc cz cT c k k k k k k k k k K ),...,,...,,(21cN ci c c c k k k k diag k =,?

??

?

???

?

????

???

???

?

?+--+----=i s i s i s i

s i s i s i s i s i s i s i

s i

s i

s i s ci k a

k k k k a

k k k k a k a k

a k k k k 22122212222222220202

22

00

2; n n T k ?=0; k z k k =; 140?=N cz k ;N n Tc k 40?=;10?=n Tz k ;N zc k 410?=;

}2

sin ,...,2sin

,...,0,1{π

πn j k k k zT ?-=; T cTN cTi cT cT k k k k },...,,...,{1=,

??

????

??

?

?????????-?-?-?-?-?-?=---0)(sin ...)(sin

...)(sin )(sin ...)(sin ...)(sin 0212121121121121i i s i i s i i s i i s i i s i i s cTi

l vt L n k l vt L j k l vt L k l vt L n k l vt L j k l vt L k k π

πππππ

d)载荷向量分块表示为T z T c f f f f },,{=

N c f 410?=;110?=z f ;321T T T T f f f f ++=;

T

N N cN tN c t T h h m

m h h m m g f )}()2

(...)()2{(1,21,122111111+?++++?+

?=-, T

T n

n mgL f })cos(1,...,32,0,2{2ππ-?=,

T

k T n g m f }2

sin ,...,1,0,1{3π-?=.

2.3.2求解方法

本文采用Newmark-β法,利用MATLAB 软件编程求解矩阵方程组(2-17),获得系统的位移响应。

三、实际算例

根据(二)中建立的计算模型与求解方法,本文给出以下实际算例。

实例研究一辆10节编组的列车通过一座简支梁桥时,引起的桥梁振动,并利用TMD 控制桥梁振动。列车采用德国ICE 动车和拖车,前后2节动车中间8节拖车编组,桥梁为一全长32m 简支梁桥。具体车辆与桥梁参数见附录。 3.1 桥梁静挠度

根据材料力学中简支梁在均布压力下跨中挠度的计算公式,本文算例中的桥梁在自重下跨中挠度为:

mm m w 9.270279.010

18.53843281.91008.1510

440==??????=

3.2 实施控制前,列车过桥时引起的跨中振动响应

如图2,给出了列车以100km/h 车速匀速通过时,简支梁跨中挠度的时程曲线。t=0s 时,列车开始上桥,约9s 时,列车刚好完全离开桥梁。

图2 100km/h 车速下跨中振动响应

对桥梁结构一些经典概念的探讨(阅)

对桥梁结构一些“经典概念”的探讨 对桥梁结构一些“经典概念”的探讨 文/徐栋 6 R. P& A& [% A% r0 ] 作者的话: 非常感谢《桥梁》杂志的约稿,我所理解“重点实验室”栏目中的“实验”是广义的,并不仅仅指真材实料的实验,也可以包括新理论,甚至新 设想的实验性研究成果,或是研究过程中的探讨。 笔者近年来对混凝土桥梁结构的分析和配筋理论等方面做了一些较为深入的研究,借此机会分享一些研究成果,也将一些思考、困惑及感兴趣的问题拿出与业界同仁探讨。由于笔者水平有限,如有条理不清、错误甚至是谬误的地方请大家不吝指正。 综合现状 经过近三十年的大规模建设,我国的桥梁工程师已经具备丰富的设计经验和较高的知识水平。复杂桥梁或复杂截面的桥梁在我国得到了非常普遍的运用,在课堂上学的分析方法和针对简单桥梁的现行规范体系由于不能完全解决问题,往往出现“安全度不足造成的早期破坏和蜕化所带来的损失,或者因过于保守造成的浪费”[1]的现象。在工程实践中发生的许多令桥梁工程师困惑却客观存在的问题使他们不断寻求解答,甚至可以说,由于混凝土桥梁的大规模实践,世界上或许没有哪个国家的工程师像中国工程师那样渴望彻底了解复杂桥梁的受力状况。/ m4 C( q% c5 q7 V2 d/ T+ c2 ^ 桥梁结构理论发展的动力来自工程实践中出现的问题,同时我国对过去新建桥梁的维修加固也在日益增多,但指导维修加固的思想仍然停留在现行桥梁常用计算方法和规程上,现在已经到了应该对过去常用的分析理论和设计思想进行反思和重新梳理的时候。 对于桥梁结构的分析方法,发达国家由于受到来自国家强力发展方向的推动,如航空航天、新材料、机械等,所以发展迅猛,出现了一批水平很高的通用大型有限元分析软件,这些大型通用软件有些甚至已经有几十年的历史。这些软件对于桥梁结构的影响是深远的,使桥梁工程师对于桥梁结构的局部和微观受力情况的认知达到了前所未有的高度和水平。但是,桥梁结构,特别是混凝土桥梁结构具有的几大特征,如桥梁施工、收缩徐变效应、预应力、活载计算等,这些大型软件并不能完全满足要求。8 x5 H$ V# v, Q+ F# i8 y 对于混凝土构件的配筋配束方法,是涵盖受弯、受剪、受扭、受拉(压)的不同方向和不同组合的设计原理,内容非常丰富,也是很早(甚至将近100年)以来发展起来的经典学科。国内外相关规范虽然经过几轮发展,其基本思想仍然停留在“窄梁”范畴。同时,由于各时期的发展和内容补充,里面也留存有大量各时期的,有些甚至已经早已过时的痕迹。所以虽然规范有时显得越来越厚,但实际上并不代表越来越好。1 a; f0 h }; Y* @9 q" [ 作者近年来通过参与我国桥梁规范的最新修订,深刻体会到目前飞速发展的结构分析方法与“蜗行”的桥梁构件设计规范之间的矛盾,就像一个人拥有一条长和一条短的两条腿,其前行速度仍受制约。具体的表现便是结构分析的方法越来越精细,而配筋配束设计理论却仍停留在简单结构范畴,造成了虽然能对复杂桥梁结构进行非常精细的分析,却无法建立与配筋设计方法紧密联系的尴尬情况。 对桥梁结构分析方面一些“经典概念”的探讨 横向分布 桥梁空间结构的近似计算方法,实质上是在一定的误差范围内,寻求一个近似的方法把一个复杂的空间问题转化成平面问题进行求解。早期工程师们采用将空间问题转化为平面问题的横向分布理论,来对多梁式桥梁进行分析验算。横向分布理论的研究,加深了工程师们对桥梁各种上部结构形式的力学性能(纵、横向分配荷载的性能)的理解。如图1为一座常见的多梁式简支梁桥。 图1 多梁式简支梁桥 在横向分布的计算方法中,刚性横梁法和比拟正交各向异性板法(又称G-M法)为最为常用的方法。众所周知,其基本前提是纵横向影响面具有相似的图形[2]。为了简化计算,剪力采用了杠杆法近似考虑。% X9 }) A& u; O, S" ^ 对于箱梁结构,特别是如图2的宽箱梁结构,同样存在各道腹板的荷载横向分配问题。在单梁模型计算中,往往借用“横向分布”的概念,将各道腹板看成一根梁,采用与多道梁式结构同样的横向分布计算方法来计算。) f2 l- ?0 R2 r x* w9 h8 F 图2 多室宽箱梁截面 对图2截面而言,一般一排仅采用2个支座,不会每道腹板下面均设支座,而桥梁结构一般也为连续梁结构。可见,其力学图式与图1的计算原 型结构相差甚远,特别是简支支撑条件已完全改变。 图3是一个4跨连续梁采用的单箱多室箱梁截面及其梁格分割线,中间向两边的腹板编号为0#、1#和2#。该桥的支座布置见图4。图5~7分别为采用梁格计算和传统G-M法计算的3车道活载的0#、1#和2#腹板的剪力横向分布系数。

钢箱梁桥的有限元分析

钢箱梁桥的有限元分析 1.钢箱梁桥的概述 在大跨度桥梁的设计中,恒载所占的比重远大于活载,随着跨度的增大,这种比例关系也越来越大,极大地影响了跨越能力。因此,从设计的经济角度来说,考虑减轻桥梁结构的自重是很重要的。钢材是一种抗拉、抗压和抗剪强度均很高的匀质材料,并且材料的可焊性好,通过结构的空间立体化,钢桥能够具有很大的跨越能力。 随着高强度材料和焊接技术的发展,以及桥梁设计、计算理论的发展和计算机技术发展,从50年代以来,钢梁桥地建设取得了长足的发展,欧洲相继建造了多座大跨钢桥。从前被认为不可能计算的复杂结构,现在能够通过计算机完成,并且计算结果与实测结果吻合较好。同过去相比,在相同的跨度与宽度的条件下,用钢量可减少15一20 %,工期与工程的造价也都减少很多,因此钢桥在大跨桥梁领域内具有相当强的优势和竞争力。 在构成钢桥的主要构件中,其翼缘和腹板均使用薄板,其厚度与构件的高度和宽度比都比较小,是典型的薄壁构件。它与以平面结构组合为主的桥梁结构分析有一定的区别,它涉及到很多平面结构中不常考虑的扭转问题,所以必须依据薄壁结构理论才能明了其应力和应变状态,其应力及变形应按照薄壁结构的理论进行计算。 由于钢箱梁桥是空间结构,结构在恒载或活载的作用下会发生弯一扭藕合。如果采用传统的计算手段和方法,计算模型要进行必要地简化,为了简化计算,一般的设计规范都要通过构造布置,使实际结构满足简化后的计算理论。实践表明在满足构造要求后,计算的精度能够满足实际地需要。但是这样的计算无法得到结构的一些特定部位的精确解,例如变截面和空间构件交汇的部位等。随着计算机技术和有限元理论的发展和进步,计算机的有限元法己成为现代桥梁的重要计算手段,不但有很高的效率而且可以根据实际的需要进行仿真分析,计算结果经验证与结构的实际结果吻合较好。当前结构的计算机仿真分析已成为一种广为应用的计算手段。 同一座桥梁可以采用不同的施工方法,但是成桥后的最终应力状态会有差异,结构的最终应力状态与安装过程密不可分。例如连续梁可采用满堂支架法和悬臂拼装法,两者成桥后的应力状态却有较大的区别。因此必须针对特定的施工方法,对施工过程中每一个施工阶段的结构应力进行计算,确保各个阶段的应力满足相关规范。 由于在制造和安装等原因,结构的最终状态会与设计状态有一定的差异,各国都通过制订有相关的规范来指导施工和竣工验收的标准。这些标准规是通过长期的实践与试验以及计算分析的基础上得出的,满足这些相关规范的要求一般就可以保证结构的安全性。但是由于实际结构是受力复杂的空间结构,特别是结构的一些局部范围可能在某一工况下处于较高的应力状态,而其他部为却处于相对较低的应力状态,这样不利于充分发挥材料的力学性能。现在可以通过大型通用有限元软件对大桥在使用过程中可能存在的各个工况的受力状态进行仿真分析,确定出结构不利的部位以及富余较大的部位,便于调整设计。 1.1本论文的研究目的 常用的计算机方法是将主梁转换成具有等效截面的梁单元计算,这种方法能够较好的从整体上考虑结构的空间特点,虽然也反映了空间结构的特点,但是它也存在以下明显的不足: 1. 不能准确模拟边界条件。例如支点的约束,梁单元通常只能简化为一点的约束,但是不管什么样的约束实际结构总是以面接触来实现的;

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

浅谈桥梁工程与结构力学

浅谈桥梁工程与结构力学 梁桢 土木工程与力学学院地质工程专业2班 2011级 摘要:桥梁工程的发展与力学的进步是紧密相联的,而且是互相促进的:随着经济的发 展,建筑材料、设备、建桥技术也有了很快的发展,特别是电子计算技术的广泛应用加 快了人们对桥梁力学问题的研究,极大地推动了桥梁力学的发展;同时,桥梁力学的研 究成果也使桥梁的设计、施工及管理水平得到了进一步的提高。 关键词:桥梁、力学、发展、现状 一、引言 在原始时代就已经出现了桥梁,那时跨越水道和峡谷是利用自然倒下的树木,自然形成的石梁或石拱,虽然还不具备造桥的能力,但已经知道利用桥梁为生活创造方便。在17世纪以前,桥梁一般是用的木、石材料建造的,并按建桥材料分为石桥和木桥。19世纪50年代以后,随着酸性转炉炼钢和平炉炼钢技术的发展,钢材成为重要的造桥材料,钢的抗拉强度大,抗冲击性能好,尤其是19世纪70年代出现钢板和矩形轧制断面钢材,为桥的部件在厂内组装创造了条件,钢材应用日益广泛。因为只是凭经验修桥,曾使19世纪80-90年代得许多铁路桥发生重大事故;从那时起,正在发展中的结构力学理论得到了重视,在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故大为减少。到了现代,桥梁按建桥材料可分为预应力钢筋混凝土桥、钢筋混凝土桥。混凝土抗拉强度很低,但其价格却远低于钢材,为了增加其抗拉能力,设计了钢筋混凝土这类复合建筑材料,使其既能承受拉力,又能承受压力,但限于混凝土材料本身所具有的力学性能,将其作为梁式桥结构用材,跨度仍远逊色于传统的拱桥结构。而预应力钢筋混凝土桁架拱桥:尽管有受力钢筋在承载,但在受拉区仍然不可避免地会出现一些裂缝,若对钢筋施加一定的张力作用,可以克服此弊端,即通过张拉预应力筋,使得受拉区事先储备一定数值的压应力,当外荷载作用时,混凝土可不出现拉应力或不超过某个临界值的拉应力,从而极大地提高了混凝土结构的抗裂性能,刚度和承载能力,进而导致了预应力混凝土桥梁结构的出现。 二.桥梁建设简述与发展趋向 1、国外桥梁建设简述和发展趋向 纵观国外桥梁建设发展的历史,对于促进和发展现代桥梁有深远影响的,是继意大利文艺复兴后18世纪在英国、法国和其他西欧国家兴起的工业革命。它推动了工业的发展,从而也促进了桥梁建筑技术方面空前的发展。 1855年起,发共建造了第一批应用水泥砂浆砌筑的石拱桥。法国谢儒奈教授在拱桥结构、拱圈

风振对桥梁工程损害及防治

风振对桥梁工程损害及防治 摘要:风对桥梁的作用是一种十分复杂的现象,随着桥梁跨径的不断增加,风振现象也越来越受到工程界的关注。本文针对抖振、涡激共振、风雨振等风致振动对大跨度桥梁的结构安全形成不可忽视的影响,探讨了大跨度桥梁抗风设计原则与风致振动的控制,提出了改善桥梁结构和增加机械阻尼等方法。 关键词:大跨度桥梁;风致振动;抗风设计 1引言 1940年秋,美国华盛顿州建成才四个月的主跨853m的塔科马悬索桥在风速不到20m/s的8级大风袭击下发生了当时还难以理解的强烈振动,奇妙的风竟使桥面扭曲翻腾.而且振幅愈来愈大。直至使桥面倾翻到45度,最终导致桥粱的折断坠入峡谷之中。这次事故后引起了国际桥梁工程界和空气动力界的极大关切,并开展了大量的理论探索和风洞实验研究。我国自70年代起斜拉桥蓬勃发展,跨度日益增大,1999年10月,主跨1385m的江阴长江公路大桥的建成通车,使我国成为世界上能自主设计和建造千米级悬索桥的第六个国家。中国改革开放以来已经建成了百余座缆索承重桥梁,其中包括10座悬索桥和近20座跨度超过400m的斜拉桥。与此同步,斜拉桥和吊桥的风致振动理论与实验研究也结合工程实际迅速发展,并取得了一些有价值的研究成果。 2桥梁结构风致振动理论 风灾是自然灾害中发生最频繁的一种,桥梁的风害事故屡见不鲜。风与结构的相互作用是一个十分复杂的现象,它受风的自然特性、结构的外型、结构的动力特性以及风与结构的相互作用等多方面因素的制约。当风绕过一般为非流线型作用截面的桥梁结构时,会产生旋涡和流动的分离,形成复杂的空气作用力。当桥梁结构的刚度较大时,结构保持静止不动,这种空气力的作用只相当于静力作用。当桥梁结构的刚度较小时,结构振动受到激发,这时空气力的作用不仅具有静力作用,而且具有动力作用。 2.1 风的静力作用 静力作用指风速中由平均风速部分施加在结构上的静压产生的效应,可分

桥梁专业好书推荐

桥梁专业好书推荐 《高等桥梁结构理论》项海帆人民交通出版社 《桥梁工程》(上、下册)范立础、顾安邦主编,2001版,经典书 《桥梁结构震动与稳定》李国豪著 《悬索桥设计》雷俊卿: 《桥梁结构分析及程序系统》,肖汝诚编著,北京:人民交通出版社,2002 《桥梁结构理论与计算方法》,贺拴海,人民交通出版社,2003.8 《桥梁工程师手册》 《斜拉桥建造技术(精)》 《桥梁工程》李亚东 《桥梁结构计算力学》 《桥梁施工监测与控制》 《桥梁风工程》陈政清 《桥梁加固与改造》蒙云 《公路小桥涵勘测设计》 《桥梁结构电算程序》 《桥梁抗震》 《铁路桥梁》 《城镇地道桥顶进施工及验收规程》 《钢筋混凝土及预应力混凝土桥梁结构设计原理》作者:张树仁出版社:人民交通出版社 《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》 《公路桥涵设计通用规范》 《ansys在土木工程应用实例》――中国水利水电出版社 《ansys10.0有限元分析自学教程》 《ANSYS工程结构数值分析》 《apdl参数化有限元分析技术及其应用实例》 《ANSYS在土木工程中的应用》李权人民邮电出版社 《基于有限元软件ansys7.0的结构分析》

《土木工程结构分析程序设计》 《Fortran 95程序设计》 《结构概念和体系》(第二版)》林同炎 《大跨度空间结构》张毅刚 《风对结构的作用――风工程导论》 《结构设计原理》叶见曙李国平 《结构力学》高等教育出版社 《结构力学》酒井忠明 《结构力学题解精粹》 《结构力学复习与习题分析》 《结构动力学》杜修力 《结构动力学》克拉夫和彭津 《结构可靠度理论》赵国藩 《混凝土结构设计基本原理》 《房屋建筑学》 《公路挡土墙设计》 《高速公路》 《公路工程地质(戴文亭)》 《道路工程》(第二版)徐家钰,同济大学出版社《路基路面工程》邓学钧 《土力学地基基础》清华大学出版社,陈希哲第四版《铁路站场及枢纽》 《地铁与轻轨》 《专业英语》 《土木工程专业英语》 《土木工程经济与管理》 《建筑结构》 《高层建筑结构》

结构力学 桥梁结构分析

桥梁结构分析 桥梁结构分析 摘要:设计桥梁可有多种结构形式选择:石料和混凝土梁式桥只能跨越小河;若以受压的拱圈代替受弯的梁,拱桥就能跨越大河和峡谷;若采用钢桁架可建造重载铁路大桥;若采用主承载结构受拉的斜拉桥和悬索桥,不仅轻巧美观,而且是飞越大江和海峡特大跨度桥梁的优选形式。 关键词:梁式桥,拱式桥,悬索桥,桁架桥,斜拉桥 著名桥梁专家潘际炎说:“海洋,是孕育地球生命的产床;河流,是孕育人类文明的摇篮;而桥,则是联系人类文明的纽带。”这纽带越来越宏伟,越来越精致,越来越艺术!建国以

来中国的桥梁工程事业飞速发展。随着时代前进的步伐,人们对桥梁工程提出了更高的要求,对“适用、安全、经济、美观”的桥梁设计原则赋以更新的内容。桥梁工程无论是现在还是以后都不会停步的,它的发展前景会更广阔。通过半个学期的结构力学的学习,我对桥梁结构及他们的受力特点有了一定的认识。理论联系实际,我通过对各种结构的对比分析,进一步加深了印象,对以后的学习奠定了基础。 1.梁式桥 工程实例——洛阳桥,又称万安桥,在福建泉州市区东北郊洛阳江入海处,该桥是举世闻名的梁式海港巨型石桥,为国家重点文物保护单位,为国家重点文物保护单位。 梁式桥的主梁为主要承重构件,受力特点为主梁受弯。梁式桥的上部结构在铅垂荷载作用下,支点只产生竖向反力,支座反力较大,桥的跨中处截面弯矩很大。所以由于这种特性,梁式桥的跨度有限。简支梁桥合理最大跨径约20 米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70 米。采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。但是由于制造梁式桥的材料多为石料与混凝土,随跨度的增加其自重的增加也比较显著。因此梁式桥广泛用于中、小跨径桥梁中。 结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。随着跨度的增大,桥的内力也会急剧增大,混凝土的抗弯能力很低,较难满足强度要求。弯矩产生的正应力沿横截面高度呈三角分布,中性轴附近应力很小,没有充分利用材料的强度。 2.拱式桥 工程实例——赵州桥,坐落在河北省赵县洨河上。建于隋代,由著名匠师李春设计和建造,距今已有约1400年的历史,是当今世界上现存最早、保存最完善的古代敞肩石拱桥。1961年被国务院列为第一批全国重点文物保护单位。因赵州桥是重点文物,通车易造成损坏,所以不允许车辆通行。 拱式桥拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。从几何构造上讲,拱式结构可以分为三铰拱、两铰拱和无铰拱。分析三角拱的受力特点,在竖向荷载下,三角拱存在水平推力,因此,三角拱横截面的弯矩小于简支梁的弯矩。弯矩的降低,拱能更充分的发挥材料的作用,当跨度较大、荷载较重时,采用拱比采用梁更为经济合理。

韩学良的桥梁结构与技术

桥梁工程与技术 08房建1班韩学良 200810701038 1、桥梁结构工程的分类 按结构分类,按结构体系分类是以桥梁结构的力学特征为基本着眼点,对桥梁进行分类,以利于把握各种桥梁的基本特点,也是桥梁工程学习的重点之一。以主要的受力构件为基本依据,可分为梁式桥、拱式桥、刚架桥、斜拉桥、悬索桥五大类。 1.1、梁式桥 主梁为主要承重构件,受力特点为主梁受弯。主要材料为钢筋混凝土、预应力混凝土,多用于中小跨径桥梁。简支梁桥合理最大跨径约20米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70米。优点:采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。缺点:结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。 1.2、拱式桥 拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。主要材料是圬工、钢筋砼,适用范围视材料而定。跨径从几十米到三百多米都有,目前我国最大跨径钢筋砼拱桥为170米。优点:跨越能力较大;与钢桥及钢筋砼梁桥相比,可以节省大量钢材和水泥;能耐久,且养护、维修费用少;外型美观;构造较简单,有利于广泛采用。缺点:由于它是一种推力结构,对地基要求较高;对多孔连续拱桥,为防止一孔破坏而影响全桥,要采取特殊措施或设置单向推力墩以承受不平衡的推力,增加了工程造价;在平原区修拱桥,由于建筑高度较大,使两头的接线工程和桥面纵坡量增大,对行车极为不利。 1.3、钢架桥 钢架桥是一种桥跨结构和吨台结构整体相连的桥梁,支柱与主梁共同受力,受力特点为支柱与主梁刚性连接,在主梁端部产生负弯矩,减少了跨中截面正弯矩,而支座不仅提供竖向力还承受弯矩。主要材料为钢筋砼,适宜于中小跨度,常用于需要较大的桥下净空和建筑高度受到限制的情况,如立交桥、高架桥等。优点:外形尺寸小,桥下净空大,桥下视野开阔,混凝土用量少。缺点:基础造价较高,钢筋的用量较大,且为超静定结构,会产生次内力。 1.4、斜拉桥 梁、索、塔为主要承重构件,利用索塔上伸出的若干斜拉索在梁跨内增加了弹性支承,减小了梁内弯矩而增大了跨径。受力特点为外荷载从梁传递到索,再到索塔。主要材料为预应力钢索、混凝土、钢材。适宜于中等或大型桥梁。优点:梁体尺寸较小,使桥梁的跨越能力增大;受桥下净空和桥面标高的限制小;抗风稳定性优于悬索桥,且不需要集中锚锭构造;便于无支架施工。缺点:由于是多次超静定结构,计算复杂;索与梁或塔的连接构造比较复杂;施工中高空作业较多,且技术要求严格。 1.5、悬索桥 主缆为主要承重构件,受力特点为外荷载从梁经过系杆传递到主缆,再到两端锚锭。主要材料为预应力钢索、混凝土、钢材,适宜于大型及超大型桥梁。优点:由于主缆采用高强钢材,受力均匀,具有很大的跨越能力。缺点:整体钢度小,抗风稳定性不佳;需要极大的两端锚锭,费用高,难度大。

高等桥梁结构理论作业汇总

高等桥梁结构理论课程作业参考答案(2014版) 【作业1】 如图1所示薄壁单箱断面,试分别计算:(1)该截面在竖向弯矩m kN M x ?=100作用下的正应力(注:平截面假定成立。);(2)该截面在竖向剪力kN Q y 100=通过截面中心作用下的剪应力分布。 图1 薄壁单箱断面几何尺寸(单位:cm ) 【参考答案】 由于该截面关于y 轴对称,故需要确定主轴ox 轴的位置,假定ox 轴距离上翼缘中心线为a ,由0=x S ,得 0)2(2 1 2)2(0.3212)5.20.35.2(22=-?--?-?+?++δδδδa a a a 即 04.01.04.03.06.01.08.022=+--+-+a a a a a 0.15.1=a ,即m a 667.0= 由ANSYS 计算截面几何特性参数,计算结果如图2所示。具体几何特性计算结果为: 竖向抗弯惯性矩为)(064.1)(10064.1448m cm I x =?=, 横向抗弯惯性矩为)(370.5)(10370.5448m cm I y =?=, 扭转常数为:)(470.1)(1047.1448m cm I y =?=, 截面几何中心至顶板中心线距离为)(667.0m a =。 (1)截面在竖向弯矩m kN M x ?=100作用下,由初等梁理论可知,截面正应力分布由下式 计算,即

y y y I M x x z 96.93984064 .1000 ,100=== σ(Pa ) (m y m 667.0333.1≤≤-),具体截面正应力分布如图3所示。 X Y O Sig1=62688Pa Sig2=125282Pa 图2截面在竖向弯矩m kN M x ?=100作用下正应力分布图 (2)截面在竖向剪力kN Q y 100=作用下,闭口截面弯曲剪应力计算公式可知,截面剪应力为 ????? ? ?? +-= ??δδds ds S S I Q q x x x y 划分薄壁断面各关键节点如图3(a )所示。将截面在1点处切口,变为开口截面,求x S 、 ?δ ds 和 ?ds S x δ 。作y 图如图3(b )所示。 (a )薄壁断面节点划分图(单位:cm )

(完整版)桥梁工程简答题

五、问答题 1)桥梁有哪些基本类型?按照结构体系分类,各种类型的受力特点是什么? 答:梁桥、拱桥、斜拉桥、悬索桥。按结构体系划分,有梁式桥、拱桥、钢架桥、缆索承重桥(即悬索桥、斜拉桥)等四种基本体系。梁式桥:梁作为承重结构是以它的抗弯能力来承受荷载的。拱桥:主要承重结构是拱肋或拱圈,以承压为主。刚架桥:由于梁与柱的刚性连接,梁因柱的抗弯刚度而得到卸载作用,整个体系是压弯构件,也是有推力的结构。缆索桥:它是以承压的塔、受拉的索与承弯的梁体组合起来的一种结构体系。 2)桥梁按哪两种指标划分桥梁的大小?具体有哪些规定? 答:按多孔跨径总L和单孔跨径划分。 3)各种体系桥梁的常用跨径范围是多少?各种桥梁目前最大跨径是多少,代表性的桥梁名称? 答:梁桥常用跨径在20米以下,采用预应力混凝土结构时跨度一般不超过40米。代表性的桥梁有丫髻沙。拱桥一般跨径在500米以内。目前最大跨径552米的重庆朝天门大桥。钢构桥一般跨径为40-50米之间。目前最大跨径为 4)桥梁的基本组成部分有哪些?各组成部分的作用如何? 答:有五大件和五小件组成。具体有桥跨结构、支座系统、桥墩、桥台、基础、桥面铺装、排水防水系统、栏杆、伸缩缝和灯光照明。桥跨结构是线路遇到障碍时,跨越这类障碍的主要承载结构。支座系统式支承上部结构并传递荷载于桥梁墩台上,应满足上部结构在荷载、温度或其他因素所预计的位移功能。桥墩是支承两侧桥跨上部结构的建筑物。桥台位于河道两岸,一端与路堤相接防止路堤滑塌,另一端支承桥跨上部结构。基础保证墩台安全并将荷载传至地基的结构部分。桥面铺装、排水防水系统、栏杆、伸缩缝、灯光照明与桥梁的服务功能有关。 5)桥梁规划设计的基本原则是什么? 答:桥梁工程建设必须遵照“安全、经济、适用、美观”的基本原则,设计时要充分考虑建造技术的先进性以及环境保护和可持续发展的要求。 6)桥梁设计必须考虑的基本要求有哪些?设计资料需勘测、调查哪些内容? 答:要考虑桥梁的具体任务,桥位,桥位附近的地形,桥位的地质情况,河流的水文情况。设计资料需勘测、调查河道性质,桥位处的河床断面,了解洪水位的多年历史资料,通过分析推算设计洪水位,测量河床比降,向航运部门了解和协商确定设计通航水位和通航净空,对于大型桥梁工程应调查桥址附近风向、风速,以及桥址附近有关的地震资料,调查了解当地的建筑材料来源情况。 7)大型桥梁的设计程序包括哪些内容? 答:分为前期工作及设计阶段。前期工作包括编制预可行性研究报告和可行性研究报告。设计阶段按“三阶段设计”,即初步设计、技术设计、与施工图设计。 8)桥梁的分孔考虑哪些因素?桥梁标高的确定要考虑哪些因素? 答:要考虑通航条件要求、地形和地质条件、水文情况以及经济技术和美观的要求。要考虑设计洪水位、桥下通航净空要求,结合桥型、跨径综合考虑,以确定合理的标高。 9)桥梁纵断面设计包括哪些内容? 答:包括桥梁总跨径的确定,桥梁额分孔、桥面标高与桥下净空、桥上及桥头的纵坡布置等。 10)桥梁横断面设计包括哪些内容? 答:桥梁的宽度,中间带宽度及路肩宽度,板上人行道和自行车道的设置桥梁的线性及桥头引道设置设计等。 11)为什么大、中跨桥梁的两端要设置桥头引道? 答:桥头引道起到连接道路与桥梁的结构,是道路与桥梁的显性协调。 12)什么是桥梁美学? 答:它是通过桥梁建筑实体与空间的形态美及相关因素的美学处理,形成一种实用与审美相结合的造型艺术。 13)桥梁墩台冲刷是一种什么现象?

第四章 桥梁振动试验

第四章桥梁振动试验 4.1概述 振动是设计承受动荷载的工程结构必须研究的问题,桥梁不仅要研究由车辆移动荷载引起的振动,还要研究桥梁结构本身的抗震、抗风性能和能力。 随着结构计算、施工技术和建筑材料等方面科技水平的不断进步,桥梁的跨度越来越大,因此对桥梁振动性能的研究分析提出了更高的要求。桥梁振动试验可以求的基本问题可以归类为三种:桥梁振源、桥梁自振特性和结构动力反应。 桥梁振源的测定一般包括对能引起桥梁振动的风、地震和车辆振动等振动荷载的测定。 桥梁自振特性是桥梁结构的固有特性,也是桥梁振动试验中最基本的测试内容。 车辆、风和地震等外荷载作用下桥梁结构动力反应的测定是评价桥梁结构动力性能的基本内容之一。 传统的结构动力学方法,根据力学原理建立结构的数学模型,然后由已知振源(输入力或运动)去求所需要的动态响应。这种方法至少有两方面的问题难以完善:一是阻尼系数只能凭假定设置;其次是计算图式和设计图式与实际结构之间的差异。 振动试验已经发展起来的参数识别与模态分析技术,是改善理论计算不足的有力手段。它的基本做法是,利用已知(或未知)输入力对结构激振,用仪器测得结构的输出响应,然后通过输入、输出的关系(或仅输出)求取结构的数学模型,使更接近于结构的实际情况。 振动试验作为一门独立的工程振动学科,解决了许多理论计算上无法解决的实际问题,我国从1976年唐山地震后滦河大桥的抗震试验开始,各高校、科研单位先后对许多实桥和模型桥做过振动试验,特别是近年来对新建的一些大跨度桥梁进行施工阶段和运营阶段的振动试验,许多实测数据已直接为桥梁结构的振动分析、抗震抗风研究所利用。 4.2桥梁自振特性参数测定 测定桥梁自振特性参数是桥梁振动试验的基本内容,要研究桥梁结构的抗震、抗风或抗其它动荷载的性能和能力必须了解桥梁结构的自振特性。 自振特性参数,也称动力特性参数和振动模态参数,主要包括结构的自振频率(自振周期)、阻尼比和振型等,是由结构形式、材料性能等结构固有的特性决定,与外荷载无关。 4.2.1自振特性参数 1.自振频率和自振周期 自振频率是自振特性参数中最重要的概念,物理上指单位时间内完成振动的次数,通常用f表示,单位为赫兹(Hz),也可以用圆频率ω(ω =2πf)表示,单位为1/秒(1/s)。 自振周期(T)指物体振动波形重复出现的最小时间,单位为秒(s),它和自振频率互成倒数关系T=1/f。

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

什么样的桥梁结构承重最大

什么样的桥梁结构承重最大 (春光小组:周鹏徐德闯) 一、项目概述 1. 开展年级:五年级、六年级 2.学科:科学、数学、信息技术 3. 简介: 本学习项目主要对象是五年级至六年级学生,桥梁是他们日常生活中常见事物,但桥梁的承重量有多大,什么样的地理环境适合建造什么结构类型的桥梁等等问题却很少同学去关心。本次项目探究 活动,将从少年儿童身边熟悉的桥梁入手,让他们自己提出有关对桥梁感兴趣的问题,设计探究方法,通过调查、实验、观察、搜集资料、整理信息等方法,培养他们对科学探究的兴趣及数学、信息技术 应用的能力。 二、学习团队 1. 教师: 周鹏:综合实践 徐德闯:科学 2.学生: 旅顺口区迎春小学: 庄河光明山中心小学: 三、学习目标与任务 1. 教学目标分析 认知目标:了解不同结构的桥梁承重力是不同的 能力目标:能通过改变桥梁的结构来改变桥梁的承重力 情感与价值观:培养学生科学探究的方法与能力,知道科学就在我们身边。 信息素养:提高学生利用现在网络技术、高科技手段搜集、整理文字、图片信息的能力。 2. 学习任务

5位同学为一小组,合作完成以下任务: ●任务1:从日常生活中同学们司空见惯的桥梁入手,让学生提一些比较感兴趣、乐于研究的问题, 确立研究主题。 ●任务2:从电视、杂志、互联网等寻找一些有关桥梁的图片、数据信息。 ●任务3:通过信息的整理与分析,从中发现问题及思考解决问题的方案,设计对比实验。 ●任务4:把任务1、2、3的研究成果进行整理,做出一份可以相互交流的项目报告。 四、学习过程 项目学习活动过程(概念图): 任务一寻找世界各地的桥梁设计

?报章、杂志:你们可以从报章或杂志寻找你们所熟悉的桥梁结构,把图片及设计方案(或有关新闻)剪下,并记录你是从哪一份报章(报章名称)和哪一天(日期)取得的。 ?互联网:你亦可以从互联网上寻找桥梁结构设计并把它打印出来,记录你是从哪个网址中取得的。 ?其他途径:其实,若你能细心观察,亦可以从其他途径发现桥梁结构的设计应用,例如电视节目等。把有关的桥梁结构设计记录下来,并记录你是从哪里获得有关资料。 想一想以下的问题: ?桥梁的整体形状是什么样子? ?桥梁的主体结构是怎样设计的? ?最突出的、最令人印象深刻的桥梁结构设计对你的启发? 任务二设计桥梁结构设计图 学生搜集力学原理,结构以什么样的形式制作最稳定? 注意:进行访问时,紧记要表现应有的礼貌! 根据搜集讨论得来的思路绘制桥梁设计图(可以是多个设计方案) 从绘制成的桥梁结构设计图中,你们发现什么? 有什么总结? 把你们的发现记录下来。并思考问题: ?桥梁的整体形状及桥体的结构特征? ?你会如何解释你们的发现? ?你们的发现对你有什么启示? 任务三制作项目实践探究整理

有限元原理在桥梁结构分析中的应用

有限元原理在桥梁结构分析中的应用 在过去的30年里,有限元法作为一种通用工具在物理系统的建模和模拟仿真领域已经得到了广泛的接受。在许多学科它已经成为至关重要的分析技术,例如结构力学、流体力学、电磁学等等。 一、有限元原理 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 二、结构有限元求解问题 依据有限元法的基本思想,结构有限元求解问题可以分解为两个问题,即单元分析和单元集合问题。 (1)单元分析 所谓单元分析就是对某一复杂求解的结构取微小单元进行分析,依据其力学物理特性寻找描述该单元特性的数学函数。即通常说的描述该单元变形的形函数。 (2)单元集合 按照单元之间的联结方式,对整个求解问题系统进行整合。在弹性力学中利用单元的内部势能力与外部作用势能一起守恒,建立内部单元与外界作用之间的联系。 (3)问题的求解 获得内部单元与外界作用之间的联系,即系统的总刚度矩阵。要对问题的求解,则需要依据系统的外部条件求解出各个内部单元的变形状态,依据内部单元的变形,确定内部单元的应力。 因此,有限元法是最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。

三、梁结构的有限元分析 1. 有限元程序分析的过程 有限元程序分析的过程大致分为三个阶段: (1)建模阶段 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。 但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 (2)计算阶段 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 (3)后处理阶段 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是结构有限元分析的目的所在。 2、建立有限元模型的一般过程 有限元分析中建模过程有下面7个步骤: (1)分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。 总的来说,要定义一个有限元分析问题时,应明确以下几点: a)结构类型; b)分析类型; c)分析内容; d)计算精度要求; e)模型规模;

桥梁共振和预防

列车-桥梁共振研究的现状与发展趋势及预防共振的措施 列车通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆与桥梁之间振动耦合的问题。人类自1825年建成第一条铁路以来,便开始了对列车与桥梁相互作用研究探索的漫长历史过程。1849年Willis提交了第一份关于桥梁振动研究的报告,探讨了Chester铁路桥梁塌毁的原因。在随后的近100年时间内,由于当时力学水平、计算技术、方法及手段的落后,研究中通常将车辆、桥梁简单地看作两个独立的模型,在这种模型里,机车车辆被简化成单个或多个集中力,或者将其各种动力因素简化为简谐力,而桥梁被处理成均布等截面梁,采用级数展开的方法进行近似的求解,这些方法基本上只能算是解析或半解析法。 20 世纪60、70年代以来,电子计算机的出现以及有限元技术的发展,使得车桥耦合振动研究有了飞速的发展,从车桥系统的力学模型、激励源的模拟到研究方法和计算手段等都有了质的飞跃,人们可以建立比较真实的车辆和桥梁计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动响应,美国、日本、欧洲和国内诸多学者为车桥耦合振动理论的发展做出了重要贡献,在车辆模型、桥梁模型以及车桥系统耦合振动方面取得了不少成就。 本文就车桥耦合振动的研究思路、车辆分析模型、桥梁分析模型、轮轨接触关系、激励源、数值计算方法6个方面,较系统地阐述了列车~桥梁耦合振动研究的现状与进展,总结在上述6个方面已取得的一些研究成果和结论,同时,指出目前研究工作中存在的尚待进一步完善的问题,就如何进一步开展上述领域的研究作了初步探讨。 1 车桥耦合振动研究的现状 20 世纪60、70年代,西欧和日本开始修建高速铁路,对桥梁动力分析提出了更高的要求;同时,电子计算机的出现以及有限元技术的发展,使得车桥振动研究具备了强有力的分析手段,这极大地促进了车桥耦合振动研究的向前发展。 日本在修建本四联络线时,对车桥动力响应做了大量的理论研究、试验研究和现场测试工作。通过分析轮轨横向力、轮重减载率、脱轨系数和车体加速度来

桥梁结构设计的力学稳定性

浅谈桥梁结构设计的稳定性 作者:黑龙江科技学院工业设计10—2班赵云超 摘要:众所周知,抗压强度是评判一座桥梁质量好坏的重要方面,与此同时,稳定性也是一座桥梁不可忽视的重要因素。在历史上以及现今社会中发生的一些桥梁垮塌事故,很大一部分是由于忽视稳定性而造成的。桥梁结构设计的稳定性,是研究桥梁力学的一个重要分支。本文以拱式桥为例,通过力学分析介绍拱式桥拱肋稳定性理论的计算方法。 关键词:桥梁结构稳定性拱式桥拱肋 工程力学知识在现代桥梁的设计与建造中发挥着巨大作用,同时随着一些技术实际问题的产生,也推动着工程力学不断向前发展。桥梁结构的稳定性是涉及其安全与经济的重要因素,它与桥梁的强度问题有着同样重要的意义。随着经济社会的发展,各式各样的桥梁不断涌现出来。在此之中,由于在设计时对稳定性考虑不够,产生了一些事故,这使得对于桥梁稳定的研究,具有更广阔的意义。 桥梁的稳定性取决于它所受到的力系以及它自身结构的设计。挡结构设计合理,桥梁所受载荷分布均匀,整个系统受力保持平衡时,桥梁就具有很强的稳定性。 结构失稳是指在外力的作用下,结构的平衡状态开始丧失稳定性,稍有扰动,则变形迅速增大,最后使结构遭破坏。桥梁结构的失稳现象可分为下列三类: 1,个别构件的失稳; 2,部分结构或整个结构的失稳; 3,构件的局部失稳。 桥梁结构的稳定问题一般分为两类,第一类叫做平衡分支问题,即到达临界荷载时,除结构原来的平衡状态理论上仍然可能外,出现第二个平衡状态;第二类是结构保持一个平衡状态,随着荷载的增加,在应力比较大的区域出现塑性变形,结构的变形很快增大。当荷载达到一定数值时,即使不再增加,结构变形也自行迅速增大而使结构破坏,这个荷载值实质上就结构的极限荷载,也称临界荷载。 下面就拱桥结构谈一下桥梁的稳定性。 拱桥是我国公路、铁路上常用的一种桥梁型式。一般拱桥的拱轴线采用桥梁结构中常见的二次抛物线拱轴形式,拱圈是拱桥的主要承重结构,为曲线形。拱上建筑,又称拱上结构,是指在桥面系与拱圈之间能够传递压力的构件或填充物。本文将对该桥拱肋的稳定问题进行力学分析。 1拱肋稳定理论 拱肋是一种主要承受压力的平面曲杆体系。因此,当拱所承受的荷载达到一定的临界值时,整个拱就会失去平衡的稳定性:或者在拱的平面内发生纯弯屈曲;或者倾出于平面之外发生弯扭侧倾。拱的面内屈曲有两种不同形式:第一种形式是在屈曲临界荷载前后,拱的挠曲线发生急剧变化,可看作这是具有分支点问题的形式,桥梁结构中使用的拱,在体系和构造上多是对称的,当荷载对称地满布于桥上时,如果拱轴线和压力线是吻合的,则在失稳前的平衡状态,只有压缩而没有弯曲变形,当荷载逐渐增加至临界值时,平衡就出现弯曲变形的分支,拱开始发生屈曲;第二种屈曲形式在非对称荷载作用下,拱在发生竖向变位的同时也产生水平变位,随着荷载的增加,两个方向的变位在变形形式没有急剧变化的情况下继续增加,当荷载达到了极大值,即临界荷载之后,变位将迅速增加,这类失稳称为极值点失稳,也称

相关文档
最新文档