主给水及除氧器系统

主给水及除氧器系统
主给水及除氧器系统

主给水及除氧器系统

主给水系统是指除氧器与锅炉省煤器之间的设备、管路及附件等。其主要作用是在机组各种负荷下,对主给水进行除氧、升压和加热,为锅炉省煤器提供数量和质量都满足要求的给水。

整个过程从除氧器水箱开始,在其中经过加热、除氧的给水经前置泵和给水泵升压,再由三台高压加热器加热,最后通过给水操作台送至锅炉省煤器进口集箱。

此外,给水系统分别向汽轮机高压旁路(给水泵出口)各级过热器(1号高加后)和再热器(给水泵抽头)提供减温水。

本汽动给水泵布置在运转层,其标高为13.7m,汽动给水泵前置泵布置在除氧框架零米,每台机组的汽动给水泵组为不同轴、镜面对称布置型式。其中,汽动给水泵由汽动给水泵汽轮机驱动,汽动给水泵前置泵由电动机驱动。电动给水泵组布置在除氧框架零米,电动给水泵电动机、液力偶合器及给水泵与前置泵连体布置。

本机组的主给水系统见图3-6,系统包括一台除氧器、三台给水泵、三台前置泵和三台高压加热器,以及给水泵的再循环管道、各种用途的减温水管道以及管道附件等。

主给水系统的主要流程为:除氧器水箱→前置泵→流量测量装置→给水泵→#3高压加热器→#2高压加热器→#1高压加热器→流量测量装置→给水操作台→省煤器进口集箱。

汽轮机除氧器水位控制逻辑优化

汽轮机除氧器水位控制逻辑优化 随着当今社会的迅速发展,人们对电力能源的需求不论在工作方面还是生活方面都是不可或缺的。而在我国电力能源的主要产出方式还是以火力发电为主,在火电厂的发电过程中,除氧器是其重要的辅机设备,其工作状态以及水位是否在其正常的工作范围,将直接决定火力电厂发电机组的运行是否安全和稳定。因此,对汽轮机除氧器水位控制逻辑的优化是保证电厂发电机组合理运行的必要手段。 标签:除氧器水位控制逻辑优化 前言 电厂发电机组的安全稳定性的要求决定汽轮机除氧器水位的控制在一定合理的范围内,除氧器能够对锅炉的给水進行合理有效地除氧和去不凝结气体处理,从而提高了锅炉给水的品质,保证给水中没有氧气,避免含氧对所接触的金属设备造成腐蚀影响,从而对设备性能产生影响。所以,本文主要针对汽轮机除氧器水位控制逻辑优化进行分析,从而推动发电机组的稳定发电。 一、汽轮机除氧器水位控制的现状 1.汽轮机除氧器水位调节阀控制 汽轮机除氧器水位控制主要有其相关调节阀进行水位的正常控制,调节阀采用一主一辅的方式进行控制,当汽轮机除氧器的水位发生较大变化时,调节阀就会根据变化的程度是增高还是降低的一定范围,进行合理的调节作用。在启停机的过程中,需要根据发电机组具体的参数变化和工况进行汽轮机除氧器水位的合理控制,当发电机组启机时间,先启动辅助调节阀进行调节,并网运行后再选择主调节阀进行调节。往往在汽轮机除氧器调节阀控制中有手动调节和自动调节两种方式,在运行调节过程中,要保证手动调节和自动调节互不干扰影响,而在其自动调节的自动化水平还有待提高,所以手动调节的运用比较频繁。 2.汽轮机除氧器具有复杂性 在火力发电机组中,对汽轮机除氧器水位的控制是重要任务。除氧器具有很强的复杂性,它的状态会随着运行时间的变化而变化,而且没有一定的规律,多种变量也对其存在影响,因此传统的控制方法对它来说存在一定的局限性,所系需要引进先进的控制理念和技术优化。在火电厂发电中,就有用到除氧器水位多变量模糊PID控制和除氧器水位多变量神经元PID控制,就很有效地解决了传统除氧器PID控制的弊端和存在的不足,因此可以看出这两种先进控制技术具有很好的前景和潜力[1]。 二、汽轮机除氧器水位控制意义

除氧给水系统操作规程

中海石油华鹤煤化有限公司?锅炉系统操作规程 中海石油华鹤煤化股份有限公司 3052尿素装置公用工程热电 站 除氧给水系统操作规程 编写::审核::审定:—批准: 二O一三年二月 目录 第一章工艺说明和设备参数特性 1. 除氧给水系统的任务 2?给水除氧系统的工作范围 3. 除氧给水系统的各种物料

锅炉系统操作规程 4. 除氧给水系统的工艺过程 5. 主要设备的特性 第二章工艺指标和联锁保护 1. 工艺指标 2. 连锁报警 第三章除氧器的操作规程 1. 投运前的检查与准备 2. 单台除氧器的投运 3. 连续排污扩容器投运 4. 除氧器并列运行 5. 除氧器的运行和维护 6. 除氧器的停运 7. 除氧器的事故处理 第四章锅炉高压给水泵操作规程 1. 锅炉高压给水泵的保护实验 2. 给水泵的备用条件 3. 给水泵备用闭锁条件: 4. 给水泵的启动 5. 给水泵的备用 6. 给水泵的停用: 7. 停用给水泵隔离放水 8..给水泵运行中注意事项 9.给水泵的稀油站操作步骤 10给水泵故障处理

锅炉系统操作规程 附表一给水系统阀门一览表 附表二给水泵的启停操作票

第一章工艺说明和设备参数特性 1. 除氧给水系统的任务 1.1合理回收和补充各路化学补充水、冷渣器冷却水、疏水等至除氧器,对联排扩容蒸汽等余热进行回收,保持除氧器水位正常,不能大辐波动; 1.2对锅炉给水进行调节PH加药,除氧,升压等工艺过程,满足锅炉给水品质和给水压力、温度的工艺要求。 1.3保证除氧器、锅炉给水泵及高低压给水管线与其附件等设备的安全、稳定长周期运行。 1.4保证除氧给水系统的运行中相关工艺参数在规定范围内: 除氧器压力保持在0.15~0.2MPa; 水温控制在130~135C 水位控制在水箱中心线以上在750?1150mm之间,正常水位为 950mm 溶解氧含氧量w 7ug/1 锅炉给水PH值8.8~9.3 高压给水压力12~14MPa 1.5除氧器的运行中,值班经常检查汽水管路应无泄漏及振动现象,校对水位指示;定期作好检查和维护工作。 1.6定期作除氧器安全门动作试验;安全阀整定压力为0.8MP& 2. 给水除氧系统的工作范围 工作范围包括:三台高压除氧器、四台电动锅炉给水泵及润滑油站、加药装置、联排扩容器及以上设备相关的管线、阀门、仪表、电气等部件等。 3. 除氧给水系统的各种物料 3.1冷渣器的冷却水:0.6MPa, 60 C 3.2来自外网变换加热器的脱盐水:0.6MPa, 114 C 3.3 疏水:0.7MPa, 80 C 3.4联排回收蒸汽:0.172MPQ 130 C

除氧器水位问题

除氧器水位急剧下降的事故处理预案 一、事故前工况: 凝泵单台工作,除氧器水位自动调节正常,两台电泵工作,汽包水位自动调节正常,机组运行正常。 二、除氧器水位急剧下降事故现象: 1、除氧器OS画面水位、电接点水位、就地水位计水位一个或全部指示降低。 2、凝汽器水位可能升高,汽包水位可能升高。 3、水位降到OS画面水位低报警发出。 4、水位降到水位低II值时,将使给水泵掉闸。 5、凝泵电流、出口压力、流量、给水泵转速、给水流量可能发生大幅变化。 三、除氧器水位急剧下降事故原因: (一)、凝水系统有故障,包括: 1、主凝水调门机构故障使调门关闭。 2、除氧器水位自动调节系统失灵。 3、A凝泵跳闸(或变频器故障跳闸)备用B泵未及时联起。 4、加热器跳闸后水侧阀门动作不正常使凝水中断。 5、凝水启动再循环门、凝水再循环门误开,自动调整跟踪不及时或除氧器水位设定块误设定时。 (二)、给水系统扰动,包括: 1、给水泵故障,转速飞升,除氧器水位跟踪不及时。 2、其他故障使锅炉需水量急剧增加,除氧器水位跟踪不及时。 (三)、除氧器系统有故障,包括: 1、除氧器溢流阀、事故放水阀误开不关或联开后不关。

2、水位测量部分故障,发水位假信号。 3、机组启动过程中,操作不当使除氧器与凝汽器连通。 4、高负荷时高加事故疏水开启,凝水补充不及时。 四、除氧器水位急剧下降事故处理: 1、发现除氧器水位急剧下降,应首先根据两个OS画面水位和一个电接点水位的变化情况进行故障确认,如为控制用变送器故障,应退出除氧器水位自动调节改为手动调整,如为指示用变送器故障应加强监视通知热工,如为电接点故障,应联系热工短接闭锁电泵启动接点并及时处理。 2、如所有水位计指示均急剧下降,应根据凝水主调门开度(变频器控制块开度)、凝泵电流、出口压力、凝水流量进行判断,迅速查明原因,进行相应处理。如为主调门故障关闭,表现为凝泵电流减小,出口压力升高,流量下降等,此时应立即开启主调门旁路电动门补水,观察凝水流量,使用凝水再循环辅助调整流量,必要时手动调整旁路电动门;如为加热器故障跳闸,水侧阀门切换不正常引起断水,则故障阀门闪黄,凝泵电流减小,出口压力升高,流量下降,此时应就地手动开启故障电动门维持上水;如为除氧器水位自动调节失灵,应立即改为手动调节;如变频器跳闸或A凝泵电机跳闸备用泵未及时联起,应手起备用泵;如为系统阀门误开应检查关闭,设定操作失误应汇报机长立即恢复;如为炉侧扰动,应以炉侧为主,必要时启动备用泵上水,防止事故扩大;除氧器系统阀门误开等原因引起的水位下降,应及时关闭,如为溢流阀故障应关闭手动门;启动过程中应认真检查除氧循环泵系统阀门及凝水启动循环门位置,防止除氧水箱的水窜到凝汽器,一旦发生水位下降现象应立即进行系统隔离;高负荷时高加事故疏水开启应根据情况适当减负荷使事故疏水关闭,否则通知热工关闭。 3、处理除氧器水位急降事故过程中,炉侧应进行减负荷操作以减缓水位下降速度,同时可以暂时减小锅炉上水量。如果处理不及时水位下降到保护值应按炉灭火处理,以防止损坏设备。 一、事件经过 ×年×月×日,××发电有限责任公司,夜班时,某值运行值班员在设定除氧气水位时,本想设定为2260mm,却误设定为2600mm,当时并没有发现。运行工况:负荷指令450MW,四台磨煤机运行,两台汽泵运行,电泵处于热备用,除氧器供汽由四抽带,除氧器压力0.51Mpa,温度154℃,滑压运行。 误设定值后水位上升,发了除氧器水位高Ⅰ值报警(大于2530mm),检查除氧器水位已经达到2540mm,除氧器溢流阀没有开。除氧器上水调门开度52%比正常是大(正常是约为40%),除氧器上水流量增大,除氧器水温下降,低加水位开关发高Ⅰ报警,凝结水泵出口压力降低为2.9MPa,凝汽器水位降低到650mm,凝汽器补水调门已经全开。经检查除氧器水位设定值位2600mm,且除氧器水位有升高的趋势,立刻解除水位设定自动,关小。处理如下: 1. 除氧器水位高Ⅰ值(大于2530mm),发报警,联开溢流阀。高Ⅱ值(大于2640mm)联开危机疏水门,除氧器事故疏水门开启后,要注意放水管路的振动情况。高Ⅲ值(大于2900mm)会引起保护关四段抽汽逆止门,由于小机也由四抽供汽。因此若除氧器水位高Ⅲ值,注意给水泵汽源由四抽供汽自动切为冷再供汽,由于冷再压力较高,此时小机有可能发生转速上升甚至超速,引起汽包水位过高,应对汽包水位及时调整,做好小机超速引起RB、汽包水位高MFT、甚至汽机进水的预想;

除氧器水位急剧下降处理

七、除氧器水位急剧下降的事故处理预案 一、事故前工况: 凝泵单台工作,除氧器水位自动调节正常,两台电泵工作,汽温汽压自动调节正常,机组运行正常。 二、除氧器水位急剧下降事故现象: 1、除氧器DCS画面水位、电接点水位、就地水位计水位一个或全部指示降低。 2、凝汽器水位可能升高,汽温汽压可能升高。 3、水位降到DCS画面水位低报警发出。 4、水位降到水位低II值时,将使给水泵掉闸。 5、凝泵电流、出口压力、流量、给水泵转速、给水流量可能发生大幅变化。 三、除氧器水位急剧下降事故原因: (一)、凝水系统有故障,包括: 1、主凝水调门机构故障使调门关闭。 2、除氧器水位自动调节系统失灵。 3、A凝泵跳闸(或变频器故障跳闸)备用B泵未及时联起。 4、加热器跳闸后水侧阀门动作不正常使凝水中断。 5、凝水启动再循环门、凝水再循环门误开,自动调整跟踪不及时或除氧器水位设定块误设定时。 (二)、给水系统扰动,包括: 1、给水泵故障,转速飞升,除氧器水位跟踪不及时。

2、其他故障使锅炉需水量急剧增加,除氧器水位跟踪不及时。 (三)、除氧器系统有故障,包括: 1、除氧器溢流阀、事故放水阀误开不关或联开后不关。 2、水位测量部分故障,发水位假信号。 3、机组启动过程中,操作不当使除氧器与凝汽器连通。 4、高负荷时高加事故疏水开启,凝水补充不及时。 四、除氧器水位急剧下降事故处理: 1、发现除氧器水位急剧下降,应首先根据两个DCS画面水位和一个电接点水位的变化情况进行故障确认,如为控制用变送器故障,应退出除氧器水位自动调节改为手动调整,如为指示用变送器故障应加强监视通知热工,如为电接点故障,应联系热工短接闭锁电泵启动接点并及时处理。 2、如所有水位计指示均急剧下降,应根据凝水主调门开度(变频器控制块开度)、凝泵电流、出口压力、凝水流量进行判断,迅速查明原因,进行相应处理。如为主调门故障关闭,表现为凝泵电流减小,出口压力升高,流量下降等,此时应立即开启主调门旁路电动门补水,观察凝水流量,使用凝水再循环辅助调整流量,必要时手动调整旁路电动门;如为加热器故障跳闸,水侧阀门切换不正常引起断水,则故障阀门闪黄,凝泵电流减小,出口压力升高,流量下降,此时应就地手动开启故障电动门维持上水;如为除氧器水位自动

给水除氧系统

给水除氧系统 给水除氧系统的启动条件 1.1 给水泵组遇有下列情况之一,禁止启动给水泵 1.1.1主要表计(电流表、转速表、油压表、轴向位移表、出入口压力表等)缺少或损坏。 1.1.2给水泵出口逆止门关闭不严。 1.1.3保护试验不合格。 1.1.4勺管卡涩或调节不灵。 1.1.5油箱油位低至极限值或油质不合格,油温低于15℃时。 1.1.6密封水不能正常投用。 1.1.7电机绝缘不合格。 1.1.8辅助油泵故障及润滑油压低于0.12MPa。 1.1.9给水泵冷油器无冷却水。 1.1.10给水泵未暖泵或暖泵不良造成泵体上、下温差大于20℃。 1.1.11除氧器水位低I值2225mm。 1.2 高压加热器存在下列缺陷之一时禁止投入。 1.2.1水位计失灵,无法监视水位。 1.2.2高加钢管泄漏。 1.2.3#1、2抽汽逆止门卡涩或动作不正常。 1.2.4高加保护、高加危急疏水保护、抽汽逆止阀保护不能正常投入时。 给水除氧系统启动前的检查 2.1 除氧器上水加热投入运行。 2.1.1确认除氧器及系统检修已结束,现场清洁,设备完好,安全措施已拆除,有关的工作票已全部办结束。 2.1.2按“阀门检查卡”检查确认阀门开关位置正确。 2.1.3联系热工各仪表电动阀门、水位计及保护送电,指示正确。 2.1.4确认上水泵电机绝缘良好并送电。 2.1.5确认水位及压力高、低信号报警良好,电动门、调整门开关灵活无卡涩,开关动作方向正确。 2.1.6联系化学准备充足的除盐水,通知化学启动除盐水泵,将上水箱补至高水位,化验水质合格。 2.1.7向三抽母管供汽,供汽前应进行三抽母管暖管和疏水。 2.1.8启动上水泵,除氧器上水500mm,通知化学化验水质,如水质不合格应放水至合格。溢放水门置“自动”。 2.1.9水质合格上水至2225mm(低Ⅰ值),适当开启除氧器排氧门。 2.1.10缓慢开启再沸腾A、B侧进汽手动门,除氧器投入底部加热。注意,在本机向除氧器供汽前,控制除氧器压力≯0.15MPa。 2.1.11当水位升至正常水位2725mm时,停止除氧器上水。控制水温在100℃左右,如有特殊要求,经专责人同意情况下,可提高水温,但不得超 过150℃。 2.1.12汽轮机已启动,凝结水合格后回收,根据凝结水量决定开启凝结水至

除氧器水位单回路控制系统设计

课程设计报告 ( 2014-- 2015年度第二学期) 名称:控制装置及仪表课程设计 题目:除氧器水位单回路控制系统设计院系:自动化系 班级:1204班 学号:201209010313 学生姓名:沈一鸣 指导教师:韦根源老师 设计周数:一周 成绩:

日期:2015年6月26日

《控制装置与仪表》课程设计 任务书 一、目的与要求 认知控制系统的设计和控制仪表的应用过程。 1.了解过程控制方案的原理图表示方法(SAMA图)。 2.掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM 数据写入器的使用方法。 3.初步了解控制系统参数整定、系统调试的过程。 二、主要内容 1.按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2.组态设计 2.1KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写 KMM的各组态数据表。 2.2组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3.控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4.系统调试

设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: l)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 三、进度计划

锅炉给水除氧技术的应用

编号:SM-ZD-17354 锅炉给水除氧技术的应用Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

锅炉给水除氧技术的应用 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 在锅炉给水处理工艺过程中,除氧是非常关键的一个环节。氧是锅炉给水系统的主要腐蚀性物质,给水系统中的氧应当迅速得到清除,否则它会腐蚀锅炉的给水系统和部件,腐蚀性物质氧化铁会进入锅炉内,沉积或附着在锅炉管壁和受热面上,形成难溶而传热不良的铁垢,腐蚀的铁垢会造成管道内壁出现点坑,阻力系数增大。管道腐蚀严重时,甚至会发生管道爆炸事故。国家规定蒸发量大于等于2吨每小时的蒸汽锅炉和水温大于等于95℃的热水锅炉都必须除氧。多年来许多锅炉给水处理工作者一直都在探求既高效又经济的除氧方法。 热力除氧 热力除氧一般有大气式热力除氧和喷射式热力除氧。其原理是将锅炉给水加热至沸点,使氧的溶解度减小,水中氧不断逸出,再将水面上产生的氧气连同水蒸汽道排除,这样能除掉水中各种气体(包括游离志CO2,N2)。除氧后的水不

除氧器水位控制简介

除氧器水位控制简介 目前超临界压力机组运行中,除氧器水位控制是工厂自动控制中的一部分。其特点是由于机组的热力系统及运行特性决定了除氧器水位控制在不同的工况下可以自动先择单冲量或三冲量控制。 一、除氧器水位调节工艺流程。 工艺流程如图(一)所示,单台凝结水泵出力及单台汽动给水泵出力均为50%MCR。电动给水泵通过液力偶合器变速运行,出力为30%MCR。除氧器水箱正常水位2875mm,水容量425T。机组在干态下(即160MW-600MW区间)滑压运行。正常时高压加热器疏逐级自流到除氧器水箱。#2~4低压加热器疏水逐级自流到低加疏水箱经低加疏水泵打入#3低加水侧入口,#1低加疏水直接流凝汽器扩容器。除氧器的水位控制是通过轴封加热器出口的除氧器水位调节阀的节流从而改变进入除氧器的凝结水流量来调节的。

FT1:#4低加出口流量变送器;FT2:锅炉给水流量变送器;LS:除氧器水位开 关;LT:除氧器水位变送器;I/P:电流压力转换器;SV:电磁阀;ZT:除氧器水 位调节阀位置变送器. 图 (一) 二、除氧器水位调节控制部分 除氧器水位控制简图如图(二)所示,系统采用了三冲量串控制和单冲量控制两种方式,以适应不同工况的需要。 测量元件: a)LT:除氧器水箱的运行参数相对比较低(额定: p=0.97MPa、t=176℃),所以在水位的测量部分并没有如 汽泡水位测量一样有测量误差修正。但是为了提高系统可 靠性而采用了三个水位变送器取其三者平均值为除氧器 的水位反信号。 b)LS:水位开关用来检知水位低1值、水位低2值、水位高 1值、水位高2值、水位高3值并触发报警或启动相关保 护。 c)FT1:给水流量测量信号来自锅炉协调控制中的给水流量

除氧给水系统

除氧给水系统 高压给水管道零件明细表 序号名称规格型号技术参数数量材料重量 1 闸阀 Z41H-100 PN10 DN150 5 1760(kg) 2 对焊凸面法兰GD0502 PN10 DN150 10 20 339.5(kg) 3 止回阀H44H-100 PN10 DN100 3 300(kg) 4 电动闸阀Z941H-100 PN10 DN100 11 1474(kg) 5 对焊凸面法兰GD0502 PN10 DN100 22 20 347.38(kg) 6 闸阀 Z41H-100 PN10 DN50 3 234(kg) 7 对焊凸面法兰GD0502 PN10 DN50 6 20 40.2(kg) 8 单筋加强焊制异径三 通GD0448-84 PN<10 DN150X100X150 8 20 113.36(kg) 9 单筋加强焊制异径三 通GD0448-84 PN<10 DN100X80X150 4 20 20.64(kg) 10 单筋加强焊制异径三 通 GD0448-84 PN<10 DN100 3 20 17.88(kg) 11 锻制等径三通GD0448-84 PN<10 DN507 20 13.51(kg) 12 焊接堵头GD0614-15 PN<10 DN50 2 20 0/268(kg) 13 焊接堵头GD0614-15 PN<10 DN50 2 20 5.58(kg) 14 钢管模压大小头GD0308-28 PN<10 DN150X100 2 20 8.24(kg) 15 钢管模压大小头GD0308-28 PN<10 DN50X20 4 20 1.24(kg) 16 接管座GD0414-03 PN<10 DN20 4 20 1.26(kg)

锅炉给水除氧技术的应用介绍(通用版)

锅炉给水除氧技术的应用介绍 (通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0550

锅炉给水除氧技术的应用介绍(通用版) 在锅炉给水处理工艺过程中,除氧是非常关键的一个环节。氧是锅炉给水系统的主要腐蚀性物质,给水系统中的氧应当迅速得到清除,否则它会腐蚀锅炉的给水系统和部件,腐蚀性物质氧化铁会进入锅炉内,沉积或附着在锅炉管壁和受热面上,形成难溶而传热不良的铁垢,腐蚀的铁垢会造成管道内壁出现点坑,阻力系数增大。管道腐蚀严重时,甚至会发生管道爆炸事故。国家规定蒸发量大于等于2吨每小时的蒸汽锅炉和水温大于等于95℃的热水锅炉都必须除氧。多年来许多锅炉给水处理工作者一直都在探求既高效又经济的除氧方法。 热力除氧 热力除氧一般有大气式热力除氧和喷射式热力除氧。其原理是

将锅炉给水加热至沸点,使氧的溶解度减小,水中氧不断逸出,再将水面上产生的氧气连同水蒸汽道排除,这样能除掉水中各种气体(包括游离志CO2,N2)。除氧后的水不会增加含盐量,也不会增加其他气体溶解量,操作控制相对容易,而且运行稳定、可靠。热力除氧是目前应用最多的一种除氧方法。 真空除氧 这是一种中温除氧技术。相对热力除氧技术来说,它的加热条件有所改善,锅炉房自耗汽量减少,但热力除氧的大部分缺点仍存在。真空除氧的高位布置,对运行管理喷射泵、加压泵等关键设备的要求比热力除氧更高。低位布置也需要一定的高度差,而且对喷射泵、加压泵等关键设备的运行管理要求也很高,另外还增加了换热设备和循环水箱。 真空除氧能利用低品位余热,可用射流加热器加热软化水,又能分级及低位安装,除氧可靠,运行稳定,操作简单,适用范围广。我国大力开展节能工作以来,工业锅炉房用此法除氧日渐增多。 化学除氧

除氧器水位控制

课程实验总结报告 实验名称:除氧器水位控制系统实践 课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)

1 概述 1.1 除氧器工作原理 除氧器的主要作用是除去锅炉给水中的氧气和其它不凝结气体,以保证给水的品质。若水中溶解氧气,就会使与水接触的金属被腐蚀,同时在热交换器中若有气体聚积,将使传热的热阻增加,降低设备的传热效果。因此水中溶解有任何气体都是不利的,尤其是氧气,它将直接威胁设备的安全运行。在火电厂采用热力除氧,除氧器本身又是给水回热系统中的一个混合式加热器,同时高压加热器的疏水、化学补水及全厂各处水质合格的高压疏水、排汽等均可汇入除氧器加以利用,减少发电厂的汽水损失。 在双鸭山600MW火电机组中使用的是旋膜式除氧器(又称膜式除氧器及水膜式除氧器),这是一种新型热力除氧器,是用汽轮机抽汽将锅炉给水加热到对应除氧器工作压力下的饱和温度,除去溶解于给水的氧及其它气体,防止和降低锅炉给水管、省煤器和其它附属设备的腐蚀。可用于定压、滑压等方式运行,并且具有运行稳定,除氧效率高,适应性能好等特点。适用于各类电力系统锅炉、工业锅炉给水及热电厂补给水的除氧旋膜改进型除氧器是近年来研究并推广的一种全新结构除氧器。其设计主要是将原射流式改为旋射膜式,是集旋膜及泡沸缩合为一体的高效能新型除氧器,具有除氧效率高,换热均匀,耗气量小,运行稳定,适应性能好,对水质、水温要求不苛刻等优点,而且可超出运行。 除氧器水位过高:大量水从溢水管排出,造成工质和热量损失;造成除氧器内工作压力不稳定及设备安全;水位过高可能会淹没除氧头,影响除氧效果。除氧器水位过低:使给水泵进口压力降低,造成给水泵汽化,严重时会造成给水泵损坏危及机组安全。因此维持除氧器水位稳定十分重要。 1.2 定压运行滑压运行 除氧器的定压运行即运行中不管机组负荷多少,除氧器始终保持在额定的工作压力下运行。定压运行时抽汽压力始终高于除氧器压力,用进汽调节阀节流调

除氧器水位控制的课程设计

课程设计用纸 教师批阅: 目录 一、任务要求 (01) 二、除氧器工作原理 (02) 三、总体设计方案 (03) 四、差压变送器的选择 (04) 1.工作原理 (05) 2.变送器的功能及特点 (06) 五.执行机构的选择 (07) 1.工作原理 (07) 2.执行器的选用及特点 (08) 六.KMM可编程调节器 (09) 七.控制系统SAMA图 (11) 八.组态图 (12) 九.参考文献 (13) 十.体会和小结 (14) 十一.致谢 (15)

教师批阅:一.设计题目内容及要求 1.设计题目 600MW超临界机组除氧器水位控制系统设计 2.设计课题要求 针对机组运行要求,利用所学知识,设计除氧器水位控 制系统的总体方案,合理选择传感器、变送器、调节器和执 行器等。并根据自己方案编写主要模块的组态,实现对除氧 器水位的控制。该控制系统要求的功能: 1)维持除氧器水位为要求值,并实现保护调节功能; 2)能显示除氧器水位测量值; 3)能记录除氧器水位测量值; 4)能显示和记录执行器阀位值; 5)可在线设置或修改参数和组态,实现控制功能设计内容。 3.设计内容: 1) 选择传感器,执行器、调节器等,设计总体方案; 2) 画出系统框图及接线图; 3) 设计调节器组态; 4) 设计模拟量输出/输入通道; 5) 画出控制系统SAMA图; 6) 撰写设计说明书,要求字迹清楚,图表规范。

教师批阅:二.除氧器工作原理 在火电厂中,除氧器主要用于去除凝结水中的溶解氧, 并为主给水泵提供足够的吸入压头,为蒸汽发生器提供一定 装量的应急水源。在机组正常运行时,需控制凝结水流量, 并与蒸汽发生器的给水,抽气,疏水相匹配,保证维持稳定 的液位。除氧器液位要求在1172-1204mm之间,而且除氧器 的工作方式连续式工作。除氧器内的水是不停的在流动的, 上水量要求能够和出水量达到平衡。如果采用工频给水方 式,水量的冲击会很大,液位很难控制。而且不利于电机水 泵正常工作,经常的冲击启动容易造成电机水泵机械损坏。 采用回流控制的方法,水泵长期工作在工频状态下,不利于 能降耗,故选用变频驱动。 系统框图 岗位操作人员可以在液位控制器K上直接输入控制液位 数值L,液位控制器K将给定值与液位变送器LE传来的液位 信号(4-20mA)进行运算比较后,送出一个控制信号(4-20mA) 至变频器Q,由就频器一个可变频率,来控制电机M的转数, 从而达到控制上水量的目的。当水位升高,L1>L超过设定

#2机除氧给水系统检修安全措施详细版

文件编号:GD/FS-2990 (解决方案范本系列) #2机除氧给水系统检修安全措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

#2机除氧给水系统检修安全措施详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、检修主要内容 1、更换四米管道间低压母管联络门 2、更换除氧器水平衡门 3、处理除氧器水位计下法兰漏 4、高加水侧放水门更换 二、危险点分析 由于需要关闭低压母管分段门,高压冷母管分段门,所以在检修期间#1机没有备用给水泵。如图所示: 三、安全措施及注意事项

1、隔离前运行人员应对#1给水泵进行详细的检查,例如:给水泵和电机的振动、给水泵回油温度变化率、稀油站稀油泵和电机的运行等,确认没有问题后通知值长开始隔离除氧给水系统。 2、值长应做好各专业联系,保持机组负荷等参数的稳定。机组负荷不得出现大起大落现象。 3、汽机运行人员密切监视给水系统参数,如有变化,及时向值长和车间值班人员汇报,并做好相应的事故预想。 4、运行人员尽量保持给水流量的稳定,防止给水流量突然增加影响给水泵的安全稳定运行。 5、运行人员应加强对#1给水泵的巡视检查,从2小时检查一次变为1小时检查一次,对设备的振动、电机温度、油温进行检查,如有问题及时联系处理,并汇报值长。

除氧系统与给水系统有关问答

除氧器系统 1、掌握除氧器工作原理,热力除氧和物理除氧的区别? 答:给水的除氧是防止锅炉腐蚀的主要方法,在容器中,溶解于水中的气体量主要由两个方面决定:一方面与水面上该气体的分压力成正比例(即压力越高,该气体在水中的溶解度就越大,反之则越小),另外一方面与水的温度有关(即水的温度越高,那么该气体在水中的溶解度就越小,当温度为相应工作压力下的饱和温度时,气体在水中的溶解度为零)。采用热力除氧,即用蒸汽来加热给水,提高水的温度,且使水面上蒸汽的分压力逐步增大,而溶解气体的分压力则渐渐降低,溶解于水中的气体就不断逸出,当水被加热至相应压力下的饱和温度时,水面上全部是水蒸汽,溶解气体的分压力为零,水不再具有溶解气体的能力,亦即溶解于水中的气体,包括氧气均可被除去。 物理除氧,简单的说除氧的方式是氧参与反应的话生成别的化合物,是化学除氧,不参与反应,没有化合物生成的话是物理除氧。 2、掌握除氧器结构形式?除氧器的作用和位置? 答:结构形式:中压旋膜式;作用:除氧、加热给水;位置:离给泵入口14米。 3、为什么除氧器布置要有一定的高度?锅炉给水为什么要除氧? 答:为了提高给水泵的进口压力,防止因进口压力低于饱和温度下对应的压力下而汽化了,造成水泵的汽蚀。 如果锅炉给水中含有氧气,将会使给水管道、锅炉设备及汽轮机通流部分遭受腐蚀,缩短设备的寿命。防止腐蚀最有效的办法是除去水中的溶解氧和其它气体,这一过程称为给水的除氧。 4、除氧器的组成?与除氧头连接的汽、水管道有哪些?与除氧水箱连接的汽、 水管道有哪些?除氧器事故放水管和溢流管通向哪里? 答:除氧器的组成有除氧头与水箱;与除氧头连接的汽、水管道有:除盐水、凝结水、加热蒸汽、疏水泵、排氧管道、蒸预器疏水扩容器水管,安全阀;与除氧水箱连接的汽、水管道有给水再循环、底部加热气管、汽侧平衡管;除氧器事故放水管和溢流管通向疏水箱。 5、运行中的除氧器为什么要保持一定的水位。 答:除氧器的水位稳定是保证给水泵安全运行的重要条件。在正常运行中,除氧

除氧器水位控制及凝汽器热井水位控制

除氧器水位及凝汽器热井水位控制系统策略的优化除氧器是整个单元机组给水加热系统中唯一的缓冲环节,其水位是机组运行需监控的几个最重要的参数之一,除氧器水位过高,影响除氧效果;水位过低又将危及给水泵的安全运行。因此,精确控制除氧器水位对单元机组的正常运行是必须的,而好的控制策略和对应策略内的参数整定精准是实现单元机组除氧器水位正常的保证。 一、一般意义的除氧器水位控制方案: 除氧器水位,一般是通过直接改变进入除氧器的凝结水流量来控制的。在以往的除氧器水位的控制组态中,除氧器水位控制系统原理图如左图所示: 这是一个单冲量和串级三冲 量相结合的控制系统。以 DEA1_PID和DEA2_PID为核心 组成串级三冲量控制系统, DEA1_PID是主调器,DEA2_PID 是副调器;以DEA3_PID为核心 组成单冲量控制系统。除氧器水 位(三选中)是主信号,该信号 与运行人员设置的水位定值信号 的偏差,分别送到单冲量和串级 三冲量主调器的入口,给水流量 和凝结水流量是系统的辅助信 号:给水流量为除氧器的所有流 出量的总和,为省煤器入口给水 流量与过热器一、二级喷水流量 之和;凝结水流量是除氧器的流 入量。在三冲量模式下,主调器 DEA1_PID接受除氧器水位设定 值与检测值(三选中)的偏差信 号,经比例积分运算后的输出与 给水流量的前馈量之和,减去凝 结水流量,其偏差值送至副调器 DEA2_PID,副调器的输出去控制 除氧器入口的凝结水流量调节阀 开度,作用于凝结水流量的改变以稳定除氧器水位;在单冲量模式下,DEA3_PID直接根据水位的偏差信号控制凝结水流量以调节除氧器的水位。 三冲量与单冲量模式的切换逻辑是: 1、当凝结水流量<200T/H,为单冲量模式; 2、当凝结水流量>300T/H,为串级三冲量模式; 3、当200T/H<凝结水流量<300T/H,维持当前的控制模式不变 二、一般意义的凝汽器热井水位控制方案: 与除氧器一样,凝汽器水位也是机组运行必须监控的重要参数之一:凝汽器水位过高,将直接影响凝汽器的真空,严重时将导致汽轮机低压缸进水;凝汽器热井水位过低,也将危及凝结水泵的安全运行和整个热力系统的水循环,因此必须对其进行自动控制,确保机组的安全高效运行。

除氧器水位控制

层厚度为40+10+10=60(mm )。 2.2 辊套内层设计 辊套内层选用灰铸铁,其化学成分主要控制碳和硅,碳控制在3.0%~3.4%,硅含量控制在1.8%~2.0%。内层加工余量取10mm ,因内孔为220mm ,故内层浇注厚度为250-60-110=80(mm )。 3 双金属复合辊套离心工艺参数的确定3.1 重力倍数的选择 重力倍数选择是保证辊套质量的重要参数,当重力倍数不足时将导致合金元素偏析,冷型的震动会使偏析激增,故一般应大于80,但过大对冷型冲击大,铁水与冷型转速不适应,则形成“淋雨”状飞溅,故应小于150。生产实践表明,重力倍数选100~125较为合适。 3.2 离心机转速的确定 以重力倍数G 为基础,金属型转速计算公式为: n =29.9(G/R )1/2 式中 n -金属型转速,r/min ;  R -外层铁水内半径,m 。 通过离心机转速控制,控制重力倍数,G 取110,外层铁水内半径为0.19m ,则离心机转速为800r/min 。 4 辊套离心复合的浇注工艺确定4.1 外层铁水 外层铁水用1#稀土硅铁进行变质处理,1#稀土加入量为铁水量的0.3%,75#硅铁孕育剂加入量为铁水量的 0.1%,两种材料一起加入包底,铁水放够后应充分搅拌。75#硅铁粒度为5~10mm 。 4.2 内层铁水 内层铁水为HT 250高强度孕育铸铁,孕育剂用75#硅铁,加入量为铁水量的0.6%。孕育剂粒度为10~20mm ,把孕育剂放入包底,冲入铁水后应充分搅拌。 4.3 金属型涂料 1)金属型涂料用复膜砂,厚度为1.5~2.0mm 。2)金属型涂料温度140~180℃,把金属型吊放到离 心机上,开动离心机,当离心机转速达到650r/min 时开始涂涂料,当金属型内的烟气散尽后关闭离心机,待金属型停稳后检查涂料层情况,确认完好把金属型吊入烘干窑,在140~180℃保温待用。 4.4 辊套热处理 辊环毛坯经粗加工后进行消除应力退火处理。 5 使用效果 该轧辊已在窄带钢轧机上应用,生产量已超过8000t ,仅有轻微磨损,使用情况良好,未发生剥落事故。由于辊套质量稳定,减少了事故隐患,避免了不必要的停机换辊,轧材表面质量也有了明显提高,减少了不合格轧材的出现。由于该类辊套硬度较高,车削一次后,硬度仍比镍 铬钼无限冷硬球铁轧辊高,可增加修磨次数一次,提高了轧辊的利用率。 参考文献 [1]王廷溥.轧钢工艺学.北京:冶金工业出版社,1980.7[2]A.E.克利沃谢耶夫.铸造轧辊生产理论与工艺基础. 北京:中国工业出版社,1962年 (收稿日期:2003—07—18) 除氧器水位及溶氧的控制 郝吉廷①  王莉 (河南省安阳钢铁股份有限公司动力厂 安阳市455004) 摘要 在热电站的生产过程中,供水系统的正常运行是安全生产的顺利保证,而锅炉给水的溶氧系统是一个很重要的环节。除氧效果的好坏,对蒸汽的品质有着直接的影响,同时也影响着锅炉的寿命。除氧器的除氧水位的自动控制存在着相当大的容积滞后,除氧水温的控制也存在着相当大的滞后,为克服这两个对象的容量滞后,应增加出水流量前馈控制副回路,实现除氧水位控制的稳定和快速作用,增加给水流量系统与除氧蒸汽流量系统的比值控制回路,保证工艺的稳定和能源的充分利用。 关键词 除氧器 水位 温度 自动控制 1 前言 安钢热电联产主要有一座45t/h 锅炉及其配套设备和一台6000kW 汽轮发电机组。除氧器的功能主要有两 个:1)除去锅炉给水中的氧气;2)为防止水源停水,作为一个蓄水箱,延长锅炉的紧急停运过程。对锅炉和汽机运行的稳定性和安全性,具有重要的意义。 — 06—①作者简介:郝吉廷,男,1964年11月出生,助理工程师

除氧给水系统资料

一.给水系统的组成及其作用 给水系统大的组成部分主要有,除氧器、给水泵组、高加系统三大部分组成。其作用主要是把凝结水经过除氧器除氧后,经给水泵升压,通过高压加热器加热供给锅炉提高循环的热效率,同时提供高压旁路减温水、过热器减温水和再热器减温水。下面就分三部分介绍一下给水系统 二.除氧器部分 1.给水中带入气体的危害 当水与空气接触时,就会有一部分溶解到水中,溶解于水中的气体主要来源有两个:一是补水带入;二是处于真空状态下的热力设备及管道附件不严密进入。给水带入气体的主要有以下危害: (1)腐蚀热力设备及其管道,降低其其工作可靠性与使用寿命,给水中溶解气体危害最大的是氧气,他会对热力设备及管道材料产生腐蚀,所容二氧化碳会加快氧的腐蚀,而在高温条件下,及水的碱性较弱是氧腐蚀将加快。 (2)阻碍传热,影响传热效果,降低热力设备的热经济性,不凝结气体附着在传热面上,以氧化物沉积形成的盐垢,会增大传热热阻,使热力设备传热恶化。同时,氧化物沉积在汽轮机叶片上,会导致汽轮机出力下降和轴承推动力增加。 2.除氧器的作用及原理 公司除氧器采用滑压运行方式,设有三路汽源:本机冷再、四段抽汽和辅汽。在四抽管路上只设防止汽轮机进水的截止阀和逆止门,不设调节阀,为现滑压运行。而辅汽供汽管路上设压力调节阀,用于除氧器定压运行时的压力调节。它的作用主要是除去给水中的氧,其次也是给给水加热的过程。

它的工作原理如下:亨利定律指出,当液体和气体处于同一平衡状态时,在温度一定的情况下,单位体积液体内溶解的气体量与液面上该气体分压力成正比。当水温升高时,水的蒸发量增大,水面上水蒸汽的分压力升高,气体分压力相对下降,导致水中的气体不断析出,达到新的动平衡状态,除氧器就是利用这种原理进行除氧的。 道尔顿定律指出:混合气体的全压力等于各组分气体分压力之和。对于给水而言,水面上混合气体的全压力,等于气体的分压力与蒸汽的分压力之和。可见当增加水面上混合气体中水蒸汽的量时,就可降低氧气的分压力,为除氧创造条件。 水达到饱和温度时,水面上蒸汽的分压力接近于其混合气体的总压力,而不凝结气体的分压力接近于零,这样水中溶解的气体就会不断的排出水面,直至达到此温度和压力下的平衡状态。热力除氧过程是个传热和传质的过程,传热过程是把水加热到除氧器压力下的饱和温度,传质过程是将水中的气体分离析出。 气体的析出方式大致有两种:一种是在除氧的初始阶段,气体以小气泡的形式从水中逸出。此时水中气体的含量较多,其分压力大于水面以上气体的分压力,气体会以气泡的形式克服水的粘滞力和表面张力析出,如此除去水中80%-90%的气体。另一种是气体以扩散形式从水中逸出。经过初级除氧的给水中仍含有少量气体,这部分气体的不平衡压差很小,气体离析的能力较弱,为达到深度除氧目的,可适当增加水的表面积,缩短气体析出路径,强化水中气体的析出。 3.除氧器运行满足的几个条件 第一:有足够量的蒸汽将水加热到除氧器压力下的饱和温度; 第二:及时排走析出的气体,防止水面的气体分压力增加,影响析出; 第三:增大水与蒸汽接触的表面积,增加水与蒸汽接触的时间,蒸汽与水采用逆向流动,以维持足够大的传热面积和足够长的传热、传质时间。

除氧器水位自动调节原理

除氧器水位调节系统简介 王荣鑫 一、除氧器水位调节的意义: 除氧器水箱用以保证锅炉有一定的给水储备量,一般要求能满足锅炉额定负荷下连续运行15—20min的给水量。水位太低因储备量不足而危及锅炉的安全运行,还可能使给水泵入口汽化,导致给水泵不能正常工作;水位太高,可能淹没除氧头而影响除氧效果。一般要求水位在规定值±100mm—±200mm范围内,所以除氧器设计有水位自动控制系统,并有高、低水位异常报警和连锁保护。 将给水加热到相应除氧器内压力的饱和温度,可以保证气体从水中分离出来,很好地清除氧气。给水在除氧器中清除氧气的主要机理是加热除氧。除氧器除了通过用汽轮机抽汽加热给水到沸腾状态以除氧外,还担负着向给水泵不断供水的任务,为了保证给水泵安全运行,即要求避免给水泵入口发生汽化或缺水事故,一定要保证除氧器下部的给水箱保持规定的水位。除氧器水位过低,除了影响给水泵安全运行之外,甚至会威胁锅炉上水,造成停炉事故;除氧器给水箱水位过高,汽轮机汽封将上水,抽汽管将发生水击,威胁汽轮机的安全运行;因此要设计可靠的除氧器水位自动调节系统。 二、除氧器水位自动调节原理: 除氧器水位自动调节系统根据热力系统设计的不同有不同的设计思路。中小型机组有的采用单冲量单回路调节系统,通过控制化学水补给水门或者低压加热器至除氧器的调节阀来实现,也有采用三冲量控制系统。大型机都采用全程控制系统,当给水流量从零到一定值

(如10%额定负荷)时,系统单冲量水位控制系统,当给水流量大于一定值(如10%额定负荷)时,系统为三冲量水位控制系统,即水位控制器接受三个输入信号:水位信号、化学水流量、给水流量。两种方式的切换通过逻辑切换实现,控制主凝结水到除氧器的进水阀。 大型机组的除氧器水位为全程控制系统,当给水流量小时,采用单冲量水位控制系统,当给水流量大时切换至三冲量水位控制系统。三冲量分别为除氧器水位、给水流量、凝结水流量。下图中为除氧器水位全程控制图。 为了补充机组热力系统汽水循环过程中的汽、水损失,除氧器要

相关文档
最新文档