一、闸墩结构计算

一、闸墩结构计算
一、闸墩结构计算

一、闸墩结构计算:

1.计算模型:

(1)平面闸门的闸墩→固定于底板的悬臂梁→材料力学法

(2)弧形闸门的闸墩→一边固定、三边自由的弹性矩形板→弹性力学法

2.主要荷载及荷载组合

⑴主要荷载

结构自重;

水压力:纵向(顺水流方向),横向(垂直水流方向);

地震惯性力;

交通桥上车辆刹车制动力

⑵荷载组合

(a)正常或非常挡水时期,闸门全关。→主要核算顺水流方向(纵向)的应力分布。

平面闸门:闸墩底部应力,门槽处应力

弧形闸门:闸墩牛腿及整个闸墩的应力

(b)正常或非常挡水时期,一孔检修,相邻孔过水。

→闸墩两侧有水头差,同时受到横向水压力和车辆刹车制动力。

→主要核算垂直水流方向(横向)应力分布

(c)正常挡水时期闸门全关,遭遇强震。→主要核算垂直水流方向(横向)的应力分布。

⒊平面闸门的闸墩的应力分析步骤

⑴计算边闸墩和中闸墩的形函数:墩底水平截面形心位置和惯性矩I x、I y,面积矩S x、S y。

图9-25 闸墩结构计算示意图

⑵计算墩底水平截面上的正应力与剪应力

①顺水流方向(纵向):最不利情况是闸门全关挡水、闸墩承受最大上下游水位差。产生的水压力。

边闸墩或受力不对称的中墩水平截面上有扭矩作用。闸墩边缘位于x—x轴上点的最大扭剪力可近似为:

②垂直水流方向(横向):最不利情况是一孔检修的情况,此时该孔上下游检修闸门关闭而相邻孔过水。→闸墩两侧有水头差,同时受到横向水压力和车辆刹车制动力等荷载。

⑶垂直截面上的应力计算(门槽处应力计算)

对任一垂直截面位置,在任一高程取高度为1m的闸墩作为脱离体,其顶面、底面上的正应力和剪应力分布已由⑵得出,均属已知,由静力平衡条件可求出任一垂直截面上的N、M、Q,从而可以求出该垂直截面上的平均剪应力和平均正应力。在门槽处截取脱离体(取上游段闸墩或下游段闸墩都可以),将其作为固结于门槽位置的悬臂梁,同理可求得门槽处垂直截面上的应力。

二. 底板结构计算(开敞式闸室整体式平底板)

常用方法:倒置梁法、反力直线分布法、弹性地基梁法。

各种算法都是以垂直水流方向截取的单宽板条作为计算对象,简化为平面问题进行计算。

倒置梁法忽视了闸墩处变位不等的重要因素,误差较大,因此不宜在大、中型水闸设计中采用;

大、中型水闸,当地基为相对紧密度Dr≤0.5的砂土时,由于变形容易得到调整,可用反力直线分布法计算,当地基为粘性土或Dr>0.5的砂土时,可采用弹性地基梁法计算。

1.倒置梁法

⑴计算模型及基本假定

以垂直水流方向截取的单宽板条作为计算对象,把闸室底板作为固支于闸墩的连续梁进行计算。即把闸墩作为底板连续梁的支座。

假定:ⅰ.地基反力在顺水流方向直线分布

ⅱ.地基反力在垂直水流方向均匀分布

ⅲ.相邻闸墩间无任何相对位移

倒置梁法计算十分简便,但假定地基反力在横向为均匀分布与实际情况不符,而且支座反力与闸墩铅直荷载也不相等,故只能在小型水闸中采用。

图9-26 倒置梁法及反力直线分布法简图图9-27 分离式底板接缝型式

用偏心受压公式计算纵向(顺水流方向)地基反力。

②取横向单宽板条,按倒置连续梁计算内力并进行配筋。

⒉反力直线分布法

⑴计算模型及基本假定

以垂直水流方向截取的单宽板条作为计算对象,把闸墩当作底板的已知荷载进行计算。假定(a)地基反力在顺水流方向直线分布。

(b)地基反力在垂直水流方向均匀分布。

(c)把闸墩当作底板的已知荷载,闸墩对底板无约束,底板可以自由变形。

大、中型水闸,当地基为相对紧密度Dr≤0.5的砂土时,可用反力直线分布法计算。

⑵计算步骤

①用偏心受压公式计算纵向(顺水流方向)地基反力。

②取横向单宽板条,计算不平衡剪力⊿Q。

*式中假定不平衡剪力⊿Q的方向向下,如其计算结果为负值,说明⊿Q的实际方向向上。

③对不平衡剪力进行分配。不平衡剪力⊿Q应由闸墩和底板共同承担。

,b=1m,对既定截面,Q/I是常数,τ与S(y′)成正比,设闸墩和底板对应的S(y′)的面积分别为A1和A2,则闸墩和底板分担的不平衡剪力分别为:

⊿Q1还要由中墩和缝墩按厚度再进行分配,两者分配的⊿Q1′和⊿Q1″分别为:

④计算作用在底板上的荷载

分配给闸墩的不平衡剪力连同包括上部结构的闸墩重力可示为集中力作用在梁上,将分配给底板的不平衡剪力转化为均布荷载,则作用在底板梁上的均布荷载为:

均布荷载q=q3+地基反力q4-水重q2′-q1-⊿Q2/2L′。

⑤计算底板内力并进行配筋。

⒊弹性地基梁法

⑴计算模型及基本假定

以垂直水流方向截取的单宽板条作为计算对象,按平面应变的弹性地基梁,利用静力平衡条件及底板与地基的变形协调条件,计算地基反力和底板内力。

假定(a)地基反力在顺水流方向直线分布。

(b)地基反力在垂直水流方向呈弹性(曲线)分布,为待求未知数。

(c)把闸墩当作底板的已知荷载,闸墩对底板无约束,底板可以自由变形。

当地基为粘性土或Dr>0.5的砂土时,可采用弹性地基梁法计算。

图9-28 闸底板结构计算图

⑵计算步骤

①用偏心受压公式计算纵向(顺水流方向)地基反力。

②取横向单宽板条,计算不平衡剪力⊿Q。与反力直线分布法中相同。

③对不平衡剪力进行分配。不平衡剪力⊿Q应由闸墩和底板共同承担。与反力直线分布法中相同。

④计算作用在底板(弹性基础梁)上的荷载

分配给闸墩的不平衡剪力连同包括上部结构的闸墩重力可示为集中力作用在梁上,将分配给底板的不平衡剪力转化为均布荷载,则作用在底板梁上的均布荷载为:均布荷载q=扬压力q3 -水重q2′-底板自重q1-⊿Q2/2L′。此时地基反力的横向分布为待求未知荷载。

注意:规范7.5.4规定,当采用弹性地基梁法时,可不计闸室底板的自重,但当作用在基底面上的均布荷载为负值时,则仍应计及底板自重的影响,计及的百分数以使作用在基底面上的均布荷载值等于0为限度确定。

注意:

(a)如果计算对象包括直接挡土的边墩,则侧向土压力、侧向水压力等引起的弯矩对弹性地基梁也有影响。在有些水闸工程设计中,从安全考虑,当弯矩使梁内力减小时,考虑弯矩计算值的50%,使梁内力增加时,考虑弯矩计算值的100%。

表7.5.5 边荷载计算百分数

⑤计算底板内力并进行配筋。

具体算法及其理论假定要适应底板及地基的具体条件:

ⅰ.对于土基上的水闸的整体式平底板:

(a)当地基可压缩层(厚度为T)很厚(即厚度远大于梁的最大水平尺寸)时(T/L′>2)可将地基视为半无限弹性体进行计算。

(b)当地基可压缩层较薄时(T/L′<0.25)

→可按反力与地基变形成正比的文克尔假定(即基床系数法)进行计算。

(c)当地基可压缩层厚度与梁的最大尺寸同量级时(T/L′=0.25–2)

可按有限深弹性地基梁用链杆法进行计算。

ⅱ.对于岩基上水闸的整体式平底板的应力分析,可按基床系数法计算。这是因为岩基弹性模量较大,其单位面积上的沉降变形与所受压力之间的关系比较符合文克尔的假定。

*文克尔假定下的基础梁:

假定地基单位面积上所受的压力与该单位面积上的地基沉降成正比。按此假定,基底应力值计算显然未考虑基础范围以外的地基变形的影响,即边荷载并不引起梁的内力;同时,在文克尔假定下,当全梁受均布荷载q时,地基反力也均匀分布,它的集度p就等于均布荷载集度q,因此基础梁并不弯曲,梁截面上并不发生弯矩。

具体计算时可以采用查表法,先计算出柔度系数

然后查表(《水工设计手册(1)》得弯矩系数,然后计算弯矩。

*半无限深弹性地基梁:

先计算出柔度系数

然后查表(《水工设计手册(1)》得弯矩系数,然后计算弯矩。需考虑全梁受均布荷载、梁上受弯矩荷载、梁上受集中荷载、集中边荷载、均布边荷载的情况。

*有限深弹性地基梁:

先计算出柔度系数

然后查表《水闸设计(上册)》,华东水利学院编得地基反力系数,然后计算弯矩。

在分析底板应力时,底板自重q1的取值也应根据地基的具体情况确定。新规范指出:“原规范规定,在分析底板应力时,应根据不同的地基情况,分别考虑底板自重对其应力的影响,即在粘性土地基上,可采用底板自重的50%~100%,在砂性土地基上可不计底板的自重。经分析认为,这种考虑方法是不够全面的,因为水闸闸室底板绝大多数是挖埋式,底板自重远小于基坑开挖前的原压荷载,由底板自重引起的地基沉降是基坑开挖回弹后的再压缩,属于弹性压缩的性质,不象排水固结那样需要较长的时间,弹性变形可在很短时间内完成,因此不论是粘性土地基还是砂性土地基,都可以不考虑底板自重对其的影响,但当不计底板自重时致使作用在底板基底面上的均布荷载为负值时,则仍应计及底板自重的影响,计及的百分数以使作用在基底面上的均布荷载值等于零为限度。”

水电站试题

第一部分引水建筑物 第一章水电站的布置形式及组成建筑物 一、填空题 1.水电站的基本布置形式有_______、__________、__________ 三种,其中坝式水电站分__________、__________、__________等形式。 2.有压引水式水电站由_________________、_________________、______________、______________、______________等组成;而无压引水式水电站由_____________、_____________、______________、______________、______________等组成。 3.抽水蓄能电站的作用是___________________________________,包括_________________和_________________两个过程。 4.按其调节性能水电站可分为____________和______________两类。 二、思考题 1.按照集中落差的方式不同,水电站的开发分为几种基本方式?各种水电站有何特点及适用条件? 2.水电站有哪些组成建筑物?其主要作用是什么? 3.抽水蓄能电站的作用和基本工作原理是什么?潮汐电站基本工作原理是什么 4.何为水电站的梯级开发? 第二章水电站进水口及引水建筑物 一、判断题 1.无压引水进水口,一般应选在河流弯曲段的凸岸。( ) 2.有压进水口的底坎高程应高于死水位。( ) 3.通气孔一般应设在事故闸门的上游侧。( ) 4.进水口的检修闸门是用来检修引水道或水轮机组的。() 5.渠道的经济断面是指工程投资最小的断面。( ) 6.明渠中也会有水击现象产生。( ) 二、填空题

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

水平垂直弯头支墩计算书

水平、垂直弯头支墩计算书 1.引言 本计算书为不同弯头的支墩尺寸计算提供了相关数据。 2.流体推力 2.1 弯头处的推力合力 假设弯头顶角为β(用百分度表示),横截面积为S,其所受流体压力为P。 作用于弯头两侧截面之间结构上的力分别为F p1和F P2,支墩的反作用力为R。在此结构上套用动量定理可得: 该弯头顶角为β,用百分度表示,其补角为α,即: 合力R由次可得:

2.2 管道的压力 流体推力随管道压力而发生变化,此压力存在一个正常值,即为管道的运行压力,用PS表示,此外还有一个较大的值,为管道的试验压力,用PE表示。管道的试验压力导致最大的流体推力。 3.支墩 支墩的形状取决于其所受合力的方向。 当为水平弯头时,合力位于水平方向,我们称该支墩为水平支墩。 当为垂直弯头时,分为两种情况,合力朝上时,我们称该支墩为垂直向上支墩,反之,当合力朝下,我们称之为下部垂直支墩垂直向下支墩。 3.1 水平支墩 3.1.1 水平支墩的一般形状 水平支墩的一般形状如下图所示。支墩之上需要铺设一定厚度的回填料(厚度用h表示)。 3.1.2稳定性的研究 支墩稳定性研究类似于挡土墙稳定性的研究,需检查其防滑稳定性、倾覆稳定性和基础稳定性。 根据弯头的位置,关于施工现场土壤力学特性的相关假设可根据地质研究报告确定:比重,内摩擦角,黏附系数Co:

●比重= 1,6 t/m3 ●内摩擦角=30° 作用于支墩上的力 下图呈现的便是支墩的受力情况: h回填↓超负荷 对支墩受力总结如下: ●P m为支墩的自重 ●P r为回填料的重量 ●F ph为流体推力 ●F Q1为超负荷支墩作用力 ●F Q2为与基座内壁相接触的土壤支墩作用力 N代表竖直方向上的合力: B代表支墩作用合力: 由于超负载而产生且作用在支墩壁中间位置的作用力可按照以下公式进行计算:

矩形水池结构计算书

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规及参考书目: 《水工混凝土结构设计规》(SL 191-2008),以下简称《砼规》 《建筑地基基础设计规》(GB 50007-2002),以下简称《地基规》 《给水排水工程构筑物结构设计规》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型: 无顶盖,半地下水池 水池长度L =11940 mm,宽度B =5990 mm,高度H =4180 mm 地面标高=0.000 m,池底标高=-4.180 m 池壁厚度t3=400 mm,池壁贴角c1=0 mm 底板中间厚度t2=400 mm,底板两侧厚度t4=400 mm 底板贴角长度c2=0 mm,底板外挑长度a =400 mm 池壁顶端约束形式: 自由 底板约束形式: 固定 3.地基土、地下水和池水信息: 地基土天然容重γ=18.00 kN/m3,天然容重γm=20.00 kN/m3 地基土摩擦角φ=30.00 度,地下水位标高=-2.000 m 池水深H W=0.00 mm,池水重度γs=10.00 kN/m3 地基承载力特征值f ak=120.00 kPa 宽度修正系数ηb=0.00,埋深修正系数ηd=1.00 修正后地基承载力特征值f a=170.89 kPa 浮托力折减系数=1.00,抗浮安全系数K f=1.05

水工钢结构平面钢闸门设计计算书

水工钢结构平面钢闸门设计计算书 一、设计资料及有关规定: 1?闸门形式:潜孔式平面钢闸门。 2. 孔的性质:深孔形式。 3. 材料:钢材:Q235 焊条:E43;手工电焊;普通方法检查。 止水:侧止水用P型橡皮,底止水用条型橡皮。 行走支承:采用胶木滑道,压合胶布用MC—2。砼强度等级:C20b 启闭机械:卷扬式启闭机。 4. 规范:水利水电工程刚闸门设计规范(SL74-95),中国水利水电出版社1998.8 二、闸门结构的形式及布置 (一)闸门尺寸的确定(图1示) 1?闸门孔口尺寸: 孔口净跨(L) : 3.50m。孔口净高:3.50m。 闸门高度(H) : 3.66m。闸门宽度:4.20m。 2. 计算水头:50.00m。 (二)主梁的布置 1. 主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=3.50m,闸门高度h=3.66m,L

三、面板设计 根据《钢闸门设计规范 SD — 78 (试行)》关于面板的设计,先估算面板厚度,在主梁截面选择以 后再验算面板的局部弯曲与主梁整体弯曲的折算应力。 1?估算面板厚度 假定梁格布置尺寸如图2所示。面板厚度按下式计算 匸9 ?OF :] 现列表1计算如下: 表1 根据上表计算,选用面板厚度。 2.面板与梁格的连接计算 已知面板厚度t=14mm ,并且近似地取板中最大弯应力c max=[c ]=160N/mn n ,则 p=0.07 x 14x 面板与主梁连接焊缝方向单位长度内地应力: 3 VS 790 10 1000 14 272 T = =— 21。 2 3776770000 面板与主梁连接的焊缝厚度: h f . P 2 T 2 /0.7 [ t w ] 398/0.7 113 5mm , 面板与梁格连接焊缝厚度取起最小厚度 h f 6mm 。 四、水平次梁,顶梁和底梁地设计 1. 荷载与内力地验算 水平次梁和顶,底梁都时支承在横隔板上地连续梁,作用在它们上面的水压力可 按下式计算,即 a 上 a 下 现列表2计算如下: 表2 当 b/a < 3 时,a=1.65,则 t=a kp =0.065 a% kp 0.9 1.65 160 当 b/a >3 时,a=1.55,则 t=a kp 0.9 1.55 160 =0.067 a., kp 398N / mm,

蓄水池的结构

蓄水池的结构 蓄水池是用人工材料修建、具有防渗作用的蓄水设施。根据其地形和土质条件可以修建在地上或地下,即分为开敝式和封闭式两大类,按形状特点又可分为圆形和矩形两种,因建筑材料不同可分为:砖池、浆砌石池、混凝土池等。蓄水池布置原则和水窖基本相同。 (一)蓄水池结构设计要求 蓄水池结构设计除应符合前述蓄水工程设计要求外,尚应考虑下列要求: 1.:不考虑,只考虑蓄水池自重、水压力和。对开敞式蓄水池,荷载组合为池内满水,池外无土;对封闭式水池,荷载组合为池内无水,池外有土。计算时,砌体及混凝土的容重取为2.4t/m。地下式水池,池壁外面要求夯实,计算土压力时填土容重取为 1.8t/m,取为30°。 2.应按地质条件推求容许,如地基的实际承载力达不到设计要求或地基会产生不均匀沉陷,则必须先采取有效的地基处理措施才可修建蓄水池。蓄水池底板的基础要求有足够的承载力、平整密实,否则须采用碎石(或)铺平并夯实。

3.蓄水池应尽量采用标准设计,或按五级建筑物根据有关规范进行设计。水池池底及边墙可采用、或。最冷月平均温度高于5℃的地区也可采用砖砌,但应采用抹面。池底采用浆砌石时,应座浆砌筑,水池砂浆标号不低于M10,厚度不小于25cm。采用混凝土时,标号不宜低于C15,厚度不小于10cm。土基应进行翻夯处理,深度不小于40cm。池墙尺寸应按标准设计或按规范要求计算确定。 4.蓄水池的基础是非常重要的,尤其是地区,如有轻微渗漏,危及工程安全。因而在湿陷性黄土上修建的蓄水池应优先考虑采用整体式钢筋混凝土或素混凝土蓄水池。地基土为弱湿陷性黄土时,池底应进行翻夯处理,翻夯深度不小于50cm;如基土为中、强湿陷性黄土时,应加大翻夯深度,采取浸水预沉等措施处理。 5.蓄水池内宜设置,池底应设排污管,封闭式水池应设清淤检修孔,开敞式水池应设护栏,护栏应有足够强度,高度不低于1.1m。 (二)蓄水池结构特点 1.开敞式圆形蓄水池 开敞式蓄水池池体由池底和池墙两部分组成。它多是季节性蓄水池,不具备防冻、防蒸发功效。圆形池

水电站(问答题标准答案版)

水电站复习思考题(1) 复习思考题(水轮机部分)(一) 1.水电站的功能是什么,有哪些主要类型? 2.水电站的装机容量如何计算? 3.水电站的主要参数有哪些(H、Q、N、N装、P设、N保),说明它们的含义? 4.我国水能资源的特点是什么? 5.水力发电有什么优越性? 复习思考题(水轮机部分)(二) 1.水轮机是如何分为两大类的?组成反击式水轮机的四大部件 是什么? 水轮机根据转轮内的水流运动和转轮转换水能形式的不同可分为反击式和冲击式水轮机两大类。 组成反击式水轮机的四大部件是:引水部件、导水部件、工作部件、泄水部件 2.反击式和冲击式水轮机各是如何调节流量的? 反击式水轮机:水流在转轮空间曲面形叶片的约束下,连续不断地改变流速的大小和方向。 冲击式水轮机:轮叶的约束下发生流速的大小和方向的改变,将其大部分的动能传递给轮叶,驱动转轮旋转。

3.什么是同步转速,同步转速与发电机的磁极对数有什么关系?尾水管的作用是什么? 同步转速:电机转子转速与定子的旋转磁场转速相同(同步)。同步转速与发电机的磁极对数无关。 尾水管的作用:①将通过水轮机的水流泄向下游;②转轮装置在下游水位之上时,能利用转轮出口与下游水位之间的势能H2;③回收利用转轮出口的大部分动能 4.水轮机的型号如何规定?效率怎样计算? 根据我国“水轮机型号编制规则”规定,水轮机的型号由三部分组成,每一部分用短横线“—”隔开。第一部分由汉语拼音字母与阿拉伯数字组成,其中拼音字母表示水轮机型式。第二部分由两个汉语拼音字母组成,分别表示水轮机主轴布置形式和引水室的特征;第三部分为水轮机转轮的标称直径以及其它必要的数据。 水轮机的效率:水轮机出力(输出功率)与水流出力(输入功率)之比。?=P/Pw 5.什么是比转速? n s 表示当工作水头H=1m、发出功率N=1kw时,水轮机所具有的转速n称为水轮机的比转速。

矩形水池力学计算

水池结构计算 2009-08-17 23:19 水池一般由底板和壁板组成,有些水池设有顶板。当平面尺寸较大时,为了减少顶板的跨度,可在水池中设中间支柱 设计要求在水压及其他荷载的作用下,池体的各部分应有足够的强度、刚度和耐久性;贮存水的渗透量应在允许的范围内;水池的材料应能防腐和抗冻,对水质无影响。 结构计算水池所受的荷载除自重外,还有水压力、土压力和下述各种荷载。在地震区,地震时可能引起自重惯性力、动水压力及动土压力;在寒冷地区,如无防寒措施,有可能产生冰压力。此外,水池内外的温湿度差及季节温湿度差,也在水池中产生温湿度应力。 由正方形板和矩形板组成的钢和钢筋混凝土矩形水池可用有限元法进行较为精确的分析,或采用近似方法计算。矩形水池高宽比大于2的称为深池;小于0.5的称为浅池;介于0.5~2.0之间的称为一般池。深池壁板在高度的中间部分受顶板和底板的影响很小,可按水平框架进行计算;在靠近顶板和底板的某一高度范围内(通常取等于宽度的一半),壁板受顶、底板的影响较大,应按三边支承一边自由的双向板计算;在平面尺寸较小时,深池的底板和顶板可按四边嵌固的板计算。浅池的壁板高度小、宽度大,中间部分受相邻壁板的影响很小,可作为竖直的单向板计算;壁板两侧边部分因受相邻壁板的影响,应按双向板计算。一般池的底板、壁板和顶板都是双向板,当每块板的四边都有支承时,整个水池可看作连续的双向板,各板的边缘弯矩可用双向板的弯矩分配法求得;然后用叠加法求各板的跨中弯矩。在目前所采用的双向板弯矩分配法中,假定矩形板的边缘弯矩是按正弦曲线分布的,这一假定对均布荷载情况比较合理;但对非均布荷载(如作用于壁板上的水压力是三角形的荷载),则有一定的误差。此外,弯矩传递系数还没有反映与板接触的地基的影响。 无论是圆形水池或是矩形水池,作用在底板上的地基反力应按弹性地基理论计算。但当水池的平面尺寸较小时,地基反力可以假定按直线规律变化。 对钢、钢筋混凝土和砖石水池,都应进行强度计算。对池壁较薄的钢水池和钢筋混凝土水池还应验算刚度。当钢筋混凝土水池的构件为轴心受拉或小偏心受拉时,应进行抗裂度的验算;当构件为受弯、大偏心受拉或大偏心受压时,应进行裂缝开展验算,裂缝的宽度应不大于容许值。除了各种外荷载可能导致裂缝外,由于水泥的水化热以及温湿度的变化,水池的各部分将发生收缩,当收缩受到基底的约束时,就在构件中引起拉应力而可能出现裂缝。为了防止裂缝的出现或减小裂缝的宽度,可采取下列措施:①每隔一定距离设置伸缩缝;②在底板与垫层间设置滑动层,以减少垫层对底板的摩擦力;③采用小直径的变形钢筋;④在施工中采取措施,以减少混凝土中的温湿度变化。 对半地下式及地下式的水池,当底板处于地下水位之下时,应验算水池的抗浮稳定性。

水工建筑物复习题库

《水工建筑物》复习题 一、填空题: 1、水闸下游连接段的海漫材料及构造要求是具有一定的、 及。 2、底流式消能防冲措施一般由、 三部分组成; 3、渠道过水断面大小由公式计算确定,边坡应满足 要求,底宽根据条件确定,渠中流速应满足的要求; 4、渠系建筑物中,常用的交叉建筑物有与 ,落差建筑物有与,穿山建筑物常为; 5、水闸通常由、及三大部分组成,其主要作用分别是、及消能防冲,平顺水流。 6、水闸底流式消能的设计中,消能池型式常有、 及综合式;消力池尺寸设计主要是确定和 ,并确定护坦等构造。 7、水闸闸孔尺寸设计主要任务是确定和 ,其尺寸大小主要取决于与 。 8、倒虹吸一般由,及 三大部分组成。 9、平底板水闸按底板与闸墩的连接结构形式可分为与 ;其中适用于地基条件较好或中小型水闸中。 10、水闸按其作用及所承担的任务可分为,、

、及挡潮闸等;按其结构型式则可分为 与。 11、重力坝按其结构形式可以分为、与。 12、土石坝按其施工方法可以分为、、及堆石坝。 13、无压隧洞常用断面型式有、与 ,而有压隧洞断面型式为。 14、侧槽式溢洪道常由进水渠、测槽、 及尾水渠等部分组成。 15、有压隧洞进口型式有、、和斜坡式四种。 二、判断题: 1、建于河道上,用来控制水位及下游流量的水闸称为进水闸() 2、水闸下游连接段的主要作用是防冲、消能及防渗的() 3、平底板水闸与实用堰相比,具有结构简单、施工方便、池流量大的优点,是常用的闸孔型式() 4、在水闸设计中,闸底板高程定得高些,则闸室宽度增大,则两岸连接建筑物相对较低() 5、水闸闸墩结构计算时,可视为一端固结于闸底板上的悬臂结构,其水平切面应力,应按轴心受压公式计算() 6、当水闸闸孔数较少时,宜采用奇数孔,以便对称开启() 7、水闸主门槽位置上移,对整体式水闸闸室稳定性不利() 8、倒虹吸具有水头损失小,施工较方便的优点,所以是一种常用的渠系中交叉建筑物() 9、分离式水闸应先进行闸室整体稳定计算,再进行闸墩、底板等各组成部分结构计算() 10水闸防渗段下移,有助于减小底板上杨压力() 11、为适应地基不均匀沉降及温度变化的影响重力坝应设置横缝()

水工钢闸门结构设计(详细计算过程)

6 金属结构设计 6.3 金属结构设计计算 6.3.1 设计资料 (1)闸门型式:露顶式平面钢闸门 (2)孔口尺寸(宽×高):6m ×3m (3)设计水头:3.16m (4)结构材料:Q235钢 (5)焊条:E43 (6)止水橡皮:侧止水型号采用P45-A ,底止水型号采用I110-16 (7)行走支承:采用胶木滑道,压合胶木为MCS-2 (8)混凝土强度等级:C25 (9)规范:《利水电工程钢闸门设计规范》(SL74-95) 6.3.2 闸门结构的形式及布置 6.3.2.1 闸门尺寸的确定 1.闸门高度:考虑风浪产生的水位超高,将闸门的高度确定为3m 。 2.闸门的荷载跨度为两侧止水的间距:L 0=6.0m 3.闸门计算跨度:L=L 0+2d=6.0+2×0.15=6.3m 6.3.2.2静水总压力 闸门在关闭位置的静水总压力如图6.1所示,其计算公式为: 2 29.8344.1/2 2gh P kN m ρ?= == 图6.1 闸门静水总压力计算简图 P

6.3.2.3 主梁的形式 主梁的形式应根据水头的大小和跨度大小而定,本设计中主梁采用实腹式组合梁。 6.3.2.4主梁的布置 根据主梁的高跨比,决定采用双主梁。两根主梁应布置在静水压力合力线上下等距离的位置上,并要求两主梁的距离值要尽量大些,且上主梁到闸门顶缘的距离c 小于0.45H ,且不宜大于3.6m ,底主梁到底止水的距离应符合底缘布置的要求。故主梁的布置如图6.2所示 图6.2 主梁及梁格布置图 6.3.2.5 梁格的布置和形式 梁格采用复式布置并等高连接,并使用实腹式竖向隔板兼作竖直次梁,使水平次梁穿过隔板上的预留孔而成为连续梁,其间距上疏下密,面板各区格需要的厚度大致相等,具体布置尺寸如图6.2所示。 6.3.3 面板设计 根据《利水电工程钢闸门设计规范》(SL74-95),关于面板的计算,先估算面板厚度,在主梁截面选择之后再计算面板的局部弯曲与主梁整体弯曲的折算应力。 初选面板厚度。面板厚度计算公式为: δ当b/a >3时,α=1.4;当b/a ≤3时,α=1.5。 列表进行计算,见表6.1:

矩形水池结构计算方案

矩形水池结构计算方案 The latest revision on November 22, 2020

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规范及参考书目: 《水工混凝土结构设计规范》(SL191-2008),以下简称《砼规》 《建筑地基基础设计规范》(GB50007-2002),以下简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型:无顶盖,半地下水池 水池长度L=11940mm,宽度B=5990mm,高度H=4180mm 地面标高=0.000m,池底标高=-4.180m 池壁厚度t 3=400mm,池壁贴角c 1 =0mm 底板中间厚度t 2=400mm,底板两侧厚度t 4 =400mm 底板贴角长度c 2 =0mm,底板外挑长度a=400mm 池壁顶端约束形式:自由 底板约束形式:固定 3.地基土、地下水和池内水信息: 地基土天然容重γ=18.00kN/m3,天然容重γ m =20.00kN/m3地基土内摩擦角φ=30.00度,地下水位标高=-2.000m 池内水深H W =0.00mm,池内水重度γ s =10.00kN/m3 地基承载力特征值f ak =120.00kPa 宽度修正系数η b =0.00,埋深修正系数η d =1.00 修正后地基承载力特征值f a =170.89kPa 浮托力折减系数=1.00,抗浮安全系数K f =1.05 4.荷载信息: 地面活荷载q=10.00kN/m2,活荷载组合值系数=0.90 恒荷载分项系数:池身的自重γ G1=1.20,其它γ G =1.27 活荷载分项系数:地下水压力γ Q1=1.27,其它γ Q =1.27 地面活荷载准永久值系数ψ q =0.40 温(湿)度变化作用的准永久值系数ψ t =1.00 池内外温差或湿度当量温差△t=10.0度 温差作用弯矩折减系数η s =0.65 混凝土线膨胀系数αc=1.00×10-5/℃ 5.材料信息: 混凝土强度等级:C25 轴心抗压强度标准值f=16.70N/mm2;轴心抗拉强度标准值f=1.78N/mm2

圆形水池结构计算书

无梁板式现浇钢筋混凝土圆形水池结构计算书1、设计资料: 主要结构尺寸: 内径(d):32m 底板厚:0.3m 壁板高:4.15m 壁板厚:0.35m 顶板厚:150mm 底板外挑宽度:400mm 荷载和地质条件: 顶板活荷载:q k=1.5kN/m2 池内水深:4m 地下水深:1.2m(底板以上)底板覆土:0.3m 土内摩擦角:30* 修正后地基承载力特征值:f a=100kPa 水重力密度:10kN/m3 回填土重度取:18kN/m3 钢筋混凝土重度:25kN/m3 钢筋选用HRB235和HRB400 混凝土选用C25,f t=1.27N/mm2,f c=11.9N/mm2

2、抗浮稳定性验算: i )局部抗浮稳定性验算:取中间区格(4×4m 2)作为计算单元,抗力荷载标准值如下: 顶板自重:25×0.15×4×4=60kN 底板自重:25×0.3×4×4=120kN 支柱自重:25×0.3×0.3×3.45=7.76kN 柱帽重:25×[1.42×0.1+31(0.32+0.3×1+12)×0.35]=8.95kN 柱基重:25×[1.52×0.1+3 1 (0.42+0.4×1.1+1.12)×0.35]=10.9kN 池顶覆土重:18×4×4×0.3=86.4kN ΣG k =60+120+7.76+8.95+10.9+86.4=294.01kN 局部浮力:F 浮=11)(A h d w ?+γ=10×(1.2+0.3)×4×4=240kN K= 浮 F G k ∑=24001 .294=1.23>1.05满足局部抗浮要求 ii)整体抗浮验算: 顶板自重:π(16+0.35)2×0.15×25=3149.32kN 顶板覆土重:π(16+0.35)2×0.3×18=4535.02kN 壁板自重:2π(16+0.35/2)×0.35×4.17×25=3708.24kN 悬挑土重:π[(16+0.4+0.35)2-(16+0.35)2]×[(18-10)×1.2+18×3.5]=3019.77kN 池内支撑柱总重:45×(7.76+8.95+10.9)=1242.5kN 底板浮重:π(16+0.35+0.4)2 ×0.3×(25-10)=3966.35kN ΣG k =3149.32+4535.02+3708.24+3019.77+1242.5+3966.35=19621.2kN 总浮力:F 浮=A h d w ?+)(1 γ=10×(1.2+0.3)×π(16+0.4+0.35)2 =13221.2kN K= 浮F G k ∑=2 .132212 .19621=1.48>1.05满足整体抗浮要求

反虹吸水力及镇墩结构计算算例

一、水力计算 1、基本参数选择 本次计划建设那里屯反虹吸1座,管长158米,上下游水头差1.39米,设计流量0.137m3/s,设计采用Ⅰ阶段预应力承插管,管径为DN500mm,承压标准为0.6MPa。 2、水力计算 (1)不淤流速计算(采用挟砂流速) V挟砂={ω06ρ0.5(4Q/πd752)1/4}1/1.25 ω0——泥砂沉降速度,mm/s,本项目取1.07mm/s; ρ——水流中的挟砂含量,取1%; Q——设计流量,0.137m3/s; π——圆周率,3.142; d75——挟砂粒径,本次设有沉砂池,项目区为粉砂质粘土地区,不会有大的粒径通过,参考广西一些地方经验,取0.04mm; 经计算,V挟砂=0.56m/s。 (2)管内流速计算 V管=Q/πr2=0.137/(3.142×(0.5/2)2)=0.70m/s>V挟砂=0.56m/s。 管内在设计流速情况下不会出现淤积。 (3)水头损失计算 1)沿程水头损失 H f=λV2L/(8Rg) λ=8g/C2 C=R1/6/n H f——沿程水头损失,m; R——水力半径,R=D0/4=0.5/4=0.125;

D0——管道内径,D0=0.5米; n——本项目采用钢筋砼管道,n=0.014。 V——管内流速,V=0.70m/s; L——管道长度,158米; 经计算,H f = 1.23米。 2)局部水头损失 H j=[ξ进口+ξ拦栅+ξ弯道+ξ出口]V2/2g=[0.5+1.79+0.3×1.2×5+0.64]×0.72/(2×9.81)=0.12m。 3)总水头损∑h= H f + H j =1.35米<1.39米,满足过流要求。 二、结构设计 管道单节管长2米,为承插管。为防止地基不均匀沉降破坏,管道底部设30cm厚C20现浇砼管垫,管垫与管道接触处铺设油毡垫层防温变,管与管之间连接采用橡胶环止水,并设C20钢筋砼管接外包防渗,沿管长在地形剧变地段设C20砼镇墩固管;管道入口第一节管采用Dg500mm无缝钢管,在入口稍下部位设置竖向Dg200mm无缝钢管作为导气管,无缝钢管内外均采用防腐漆涂抹防锈。管道进口前设沉砂池及控制(检修)闸,并设拦污栅,出口设置消力池与渠道相接。沉砂池和消力池均设置钢筋焊接防护网,避免小孩或动物进入管道。 三、结构稳定计算 (一)管道承压复核 管道入口到管道埋置最低端最大水头为17.74米,则最低端内水 2=177.4KPa<管道压强(工作压强):P=Hγ ω=17.74×10=177.4KN/m 设计工作水头P工=0.6MPa=600KPa。因此,设计管道采用承压0.6MPa 是满足管道工作要求的。 (二)镇墩稳定计算 本次项目设计共有5个镇墩,选择2号墩进行受力计算,其余镇

水池结构设计指南

工业建筑结构设计混凝土结构设计指南及规定 第六册水池结构设计指南 (共八册) 中冶京诚工程技术有限公司

工业建筑院 二○○五年七月 目录 一.材料 (2) 二.水、土压力计算 (3) 三.侧壁内力计算 (4) 四.底板内力计算 (6) 五.配筋计算 (9) 六.裂缝宽度验算 (9) 七.侧壁、底板厚度拟定 (10) 八.抗浮验算 (11) 九.工况组合 (11) 十.构造要求 (11)

十一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14) 十二.例题 (26) 编制:李绪华 审核:孙衍法 编程:覃嘉仕 钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。因没有统一的设计方法,导致设计方法较为离散。结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。 一.材料 1.砼强度等级不低于C25,严寒和寒冷地区不低于C30。 2.抗渗等级,根据最大作用水头与砼厚度的比值确定

一般情况下采用S6即可满足要求。 3.抗冻等级 最冷月平均气温低于-3℃的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用:

砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5%。 最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。如:北京-4.5℃天津-4.0℃ 通化-16.1℃石家庄-2.9℃ 承德-9.4℃西安-0.9℃ 太原-6.5℃本溪-12.2℃ 兰州-6.7℃银川-8.9℃ 基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。 二.水、土压力计算 1.水压力

水工钢结构钢闸门课程设计样本

水工钢结构钢闸门 课程设计

水工刚结构潜孔式焊接平面钢闸门设计计算书 一、设计资料及有关规定: 闸门形式:潜孔式平面钢闸门 孔口净宽:10m 孔口净高:13m 上游水位:73m 下游水位:0.1m 闸底高程:0m 启闭方式:电动固定式启闭机 启闭机械:液压式启闭机 材料:钢材:Q235-A.F; 焊条:E43型; 行走支承:采用滚轮支承; 止水橡皮:侧止水和顶止水用P型橡皮,底止水用条型橡皮。 制造条件:金属结构制造厂制造,手工电弧焊,满足III级焊缝质量检验标准 规范:《水利水电工程刚闸门设计规范 SL 1974- 》 混凝土强度等级:C30

二、闸门结构的形式及布置 (一)闸门尺寸的确定(图 1示) 1 闸门孔口尺寸: 孔口净跨:10m 孔口净高:13m 闸门高度: 13.2m 闸门宽度: 10.4m 荷载跨度: 13.2m 计算跨度: 10.4m 2 计算水头:73m (二)主梁的布置 1.主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=10m,闸门高度h=13m,L

中等跨度,为了便于制造和维护,决定采用实腹式组合梁。 2.主梁的布置 本闸门为高水头的深孔闸门,孔口尺寸较小,门顶与门底的水压强度差值相对较小。因此,主梁的位置按等间距来布置。设计时按最下面的那根受力最大的主梁来设计,各主梁采用相同的截面尺寸。 3.梁格的布置及形式 梁格采用复式布置与等高连接,水平次梁穿过横隔板所支承。水平梁为连续梁,间距应上疏下密,使面板个区格需要的厚度大致相等,布置图2示 三、面板设计 根据《钢闸门设计规范SDJ—78(试行)》关于面板的设计,先估算面

水池结构设计指南

工业建筑结构设计 混凝土结构设计指南及规定 第六册水池结构设计指南 (共八册) 中冶京诚工程技术有限公司 工业建筑院 二○○五年七月

目录 一.材料 (2) 二.水、土压力计算 (3) 三.侧壁内力计算 (4) 四.底板内力计算 (6) 五.配筋计算 (9) 六.裂缝宽度验算 (9) 七.侧壁、底板厚度拟定 (10) 八.抗浮验算 (11) 九.工况组合 (11) 十.构造要求 (11) 十一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14) 十二.例题 (26) 编制:李绪华 审核:孙衍法 编程:覃嘉仕

钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。因没有统一的设计方法,导致设计方法较为离散。结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。 一.材料 1.砼强度等级不低于C25,严寒和寒冷地区不低于C30。 2.抗渗等级,根据最大作用水头与砼厚度的比值确定 一般情况下采用S6即可满足要求。 3.抗冻等级 最冷月平均气温低于-3℃的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用: 砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5%。

最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。如: 北京-℃天津-℃ 通化-℃石家庄-℃ 承德-℃西安-℃ 太原-℃本溪-℃ 兰州-℃银川-℃ 基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。 二.水、土压力计算 1.水压力 按季节最高水位计算水压力,勘察报告中一般提出勘察期间地下水位,可根据勘察的季节及水位变化幅度确定计算水位,准永久值系数为。 2.土压力 主动土压力系数K a可按1/3,地下水位以上土的重度取18kN/m3,地下水位以下取土的有效重度,可按10 kN/m3,准永久值系数为。 3.地面堆积荷载(作用于水池侧面) 无特殊情况时,地面堆积荷载取10 kN/m2,准永久值系数为。 4.汽车荷载(作用于水池侧面) 等代均布荷载见下表,准永久值系数为0。

水泵与水泵站的设计说明

第一章 设计任务与基本资料 一、设计任务 完成胜利排水泵站的初步设计 二、建站目的 为对某市用水环境进行综合治理,满足全市排污排涝等 需求,拟在该市东区建一座排水泵站,将水排入外河,市内 有一环卫河自西向东,市内外泄水流可汇入南北流向的外河 —上龙河。 三、设计标准 水泵站按《泵站设计规范》和《室外给水排水设计规范》 的标准,该站为三级建筑物。 四、基本资料 1、地形资料 环卫河自西向东,河底高程 4m ,底宽 4m ,外河为南北流 向。防洪堤顶高程 14.5m ,堤坡底为 1:2.5,建站地点高程 9m 。 2、地质资料 建站地点地势平坦,地面下向至 5.04m 为素填土,夹少 量碎砖、小石子、植物根,r=190KN/m ,c=17 KN/m ,内磨擦 角 φ=13°,[R]=80KN/m ;5.04 米以下为亚粘土, r=190KN/m ,c=10 KN/m ,内磨擦角 φ=18°,[R]=100KN/m 2 泵站墙后回填土,r=190KN/m ,c=30 KN/m ,φ=15°, 外磨擦角取(1/3-2/3)φ。 3 2 2 3 2 3 2

3、水文资料 环卫河末底面高程:▽4.0m 环卫河河底宽度:4.0m 水 组位合: 5、交通 外河可以行船,附近有公路通往市区,交通便利。6、电源 站址附近有变电所一座,6KV输电线路经过此站。7、排水时最高气温37°,最高水温25°。 五、其它设计依据 1、设计任务与指导书扬州大学2003 2、《泵站设计规范》GB/T50265-97 3、《水泵站设计示例与习题》 4、《中小型泵站设计与改造技术》储训刘复新主编 5、《泵站过流设施与截流闭锁装置》 严登丰著6、《中小型泵站设计图集》

水池计算书

矩形水池设计 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋: E - HRB400 1 基本资料 1.1 几何信息 水池类型: 有顶盖半地上 长度L=7.750m, 宽度B=14.300m, 高度H=6.350m, 底板底标高=-1.850m 池底厚h3=350mm, 池壁厚t1=300mm, 池顶板厚h1=150mm,底板外挑长度t2=350mm 注:地面标高为±0.000。 (平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土内摩擦角30度 修正后的地基承载力特征值fa=210.00kPa 地下水位标高-2.000m,池内水深5.000m, 池内水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 池顶板1.50kN/m2, 地面10.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.27 活荷载分项系数: 地下水压1.27, 其它1.27 活载调整系数: 其它1.00 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 不考虑温湿度作用. 1.4 钢筋砼信息 混凝土: 等级C30, 重度25.00kN/m3, 泊松比0.20

水池设计经验谈..

水池设计经验谈 水池设计注意几个方面的问题: 1、水池壁厚的选取(我建议选取在150~300),因为太厚对温度应力不利,太薄,会对施 工造成难度。 2、就是池壁荷载的组合了:一般有两种组合: 1)池内有水,池外无土 2)池内无水,池外有土 3、池壁的计算简图:一般常用3种计算模式1)三边嵌固顶端自由(或简支)的三边(或四边)支撑双向板计算;2)当高宽比过大的时候,可以按两部分的组合(三边嵌固一边自由的三边支撑双向板+水平闭合框架);3)按悬臂板计算;但是要注意顶端的支撑条件:当和盖板现浇的时候为铰接计算,为预制顶盖时为自由边考虑 4、水池底板的计算了:厚度的选择:一般不小于150 荷载组合,注意不要遗漏水的浮力 计算简图可以采用四边嵌固板计算 5、就是一些构造措施了 另要注意的一点是:计算池壁的土压力时,活荷载取值不应小于10,而且还要了解一下看看是否过消防车(若过的话,要取相应的荷载) 我在实际工作中也习惯按《地下工程防水技术规范》中的要求,在迎水面取钢筋 保护层厚度为50mm。前不久看见一篇文章,有不同观点,也很有道理,所以欢迎 大家参与谈论:《PKPM新天地》2004年第三期第6页,四川省建筑设计院胡允棒 总工认为地下室外墙迎水面的混凝土保护层厚度不必取50mm。《地下工程防水技术规范》GB50108-2001中4.1.6条第3款规定已经不是强制性条文,由于《混凝土结构设计规范》GB50010-2002第9.2.1条(强制性条文)规定墙在二a类环境的 混凝土保护层最小厚度为20mm,故地下室外墙迎水面的混凝土保护层厚度可取20mm,不必取50mm。如坚持取50mm,应参照《混凝土结构设计规范》GB50010-2002 第9.2.4条规定,对保护层“采取有效的防裂构造措施”,如配置防裂钢筋网等。 我所计算过的水池当中,大部分的池壁配筋都不是以强度来控制, 而是以裂缝来控制,对于一般不出现裂缝的池壁,按δf=0.2mm来 取的话,配筋就以它的大小起控制作用了。 我感觉20楼不必担心,我们做的保护层都没有取到50,按地下放水规范太死了.况且它针对的建筑物也不同.可以参考一下<给排水结构构筑物设计规范>,名字记不准了,水池应 属于构筑物的.取30可以满足! 个人观点: 1、水池壁厚的选取,因分地上和地下式,要求并不严格,但太薄也是不好的,一样不利于 施工,建议厚度≥200mm比较合理,就是按b=h/20左右选取(经验值)。 2、就是池壁荷载的工况:1)内水外空 2)外土内空同时要考虑水平角隅的计算问题,不 可忽略!就是池壁拐角处会有负弯距产生,要加设水平筋。 3、水池底板的计算:厚度不可太小,应按1.2~1.5b池壁厚选取,不然何谈底板是池壁的 嵌固啊!

镇墩稳定分析

(四)镇支墩设计 根据《水电站压力管道设计规范》计算作用在镇墩上的轴向力,取A1A3A4A7 A8A9 同时存在,关机计入A2,求取上述各力的水平,垂直合力∑X ∑Y 取镇墩体容重 rh=2.3t/m3,. f=0.45 并满足镇墩的结构要求。

按式Kc=f(∑Y+G)/∑X计算抗滑安全系数。 要求Kc大于1.5 按式:W=Kc∑X/ f-∑Y 按式:V=W/rh 计算体积即得每一个镇墩体积。(满足设计要求),以上计算,考虑水击压力取最大水头的1。25*H设。 下面以5#墩为例进行设计。 L=78.1-1.5=76.6m r g h=7.8*9.81=76.518KN/m3 h=0.008m D内=0.3m D'=0.308m H设=739.15-536.77=202.38m 1作用在镇墩上轴向力的计算 一:由上游管段(由伸缩接头至镇墩中心)传来的力 a: 水管自重的轴向分力 A1= g管L’sina g管=π* D'* h* r g h=3.1416*0.308*0.008*76.518=0.592K N/ m A1=g管L’sin36。=0.592*76.6*sin36。=26.66851 kN↘

a. b:水管转弯处的内水压力 A3=3.1416*D2r*H设/43.1416*0.3*0.3*9.81*202.38/4=140.3363 kN↘ c:温升时伸缩节边缘间的摩擦力 A7=3.1416*Db填fH设r=3.1416*0.33*0.03*202.38*9.81*0.3=18.524 Kn ↘ d:温升时管壁沿支墩的摩擦力 A8=f(N管+N水) 设水管与支墩的摩擦力系数f=0.6 N管=0.592*76.6*cos36。=36.69 KN ↙ N水=3.1416*0.32*9.81*76.6*COS36。=42.97 KN ↙ A8=0.6* (N管+N水)=0.6*(36.69+42.97)=35.85 Kn ↘ e:水管转弯时引起的离心力之轴向力 A9= 3.1416*D2*V2*9.81/(4*9.81)=3.1416*0.32*0.712*9.81/(4*9.81)=0.036 KN ↘∑A=(A1+A3+A7+A8+A9)=221.414 KN ↘ X=∑A*COS36。=179.124 KN → Y=∑A*sin36。=130.147 KN ↑ 二.下游管段(由镇墩中心至下游伸缩接头)传来的力: a: 水管自重的轴向分力:A1’=0.592*(1.1+1.5)* COS56。01’16”=0.86 KN ↘ b: 水管转弯处的内水压力:

相关文档
最新文档